Текст книги "Черная маска из Аль-Джебры"
Автор книги: Эмилия Александрова
Жанр: Учебная литература, Детские книги
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 9 страниц)
Нулик-пограничник
(Нулик – отряду РВТ)
Пламенный привет от Нулика-Пограничника! Теперь наша школа называется пограничной. Мы не пропускаем ни одной цифры, пока не узнаем, какой у нее знак отличия: плюс или минус. Один Нулик даже не пустил домой собственную маму, потому что она рассердилась и не хотела отвечать на его вопросы. Кончилось тем, что мама его наказала, пожаловалась моей маме и нашу школу чуть не закрыли.
Хорошо еще, что у меня такая добрая мама. Она меня простила и даже подарила силомер. Получше вашего-то: волшебный! Выбираешь число, задумываешь, в какую степень его возвести, бьешь молотком, и гирька сама показывает ответ.
Я принес силомер в школу, и все стали возводить нуль в разные степени. Но как мы ни старались, гирька ни разу не поднялась выше нуля. Словно ее приклеили. Как вы думаете, отчего это? Может, у нас сил не хватает, чтобы ударить как следует?
Потом я надумал сделать то, чего вы не успели: возвести целое положительное число в отрицательную степень.
Но и от этого толку мало: какое число ни возьмешь, гирька хоть и поднимается, но очень немножко, не выше единицы. Тогда мы взяли большущее число 1000 и возвели его в минус третью степень: 1000—3. Ухватились за молоток сообща и как трахнем! А противная гирька почти не сдвинулась с места. Что ж это такое? Неужели мама подарила мне испорченный силомер?
Я на нее очень обиделся, но она только рассмеялась. Она вообще любит смеяться. А потом сказала, что если возводить целое положительное число в целую отрицательную степень, то больше единицы никогда не получится. И чем большее число возводишь, тем меньшее число получается. Вот силомер и показал всего – навсего одну миллиардную: 0,000000001.
Пришлось поверить на слово. Потому что, отчего это происходит, мама не объяснила. Зато она сказала, что число, которое возводится в степень, называется основанием степени, число, в которое возводится это основание, – показателем степени, а уж сама степень получается только в ответе.
На этом основании я могу сказать, что не только вы меня, но и я вас могу кое-чему научить. Вот как!
Нулик-Пограничник.
P.S. Когда же вы напишете про кафе «Абракадабра»?
Карнавал
(Олег – Нулику)
Здравствуй, дружище! Ты просишь рассказать про кафе «Абракадабра», но так случилось, что мы опять туда не попали. Заколдованное оно, что ли? Мы уже были совсем близко, но тут дорогу нам преградило веселое карнавальное шествие.
Впереди всех шли цифры. Многие держали на плечах маленьких Нуликов. Прямо как у нас на первомайской демонстрации.
Вслед за цифрами дружно выступали латинские и греческие буквы.
Четким строевым шагом прошли знаки равенства, за ними – действующие знаки.
Легко подпрыгивали разноцветные точки, похожие на целлулоидовые мячики. Некоторые плавали в воздухе, как воздушные шары.
Вот промелькнули, кувыркаясь на ходу, ловкие гимнасты: знаки сложения и вычитания. Проковыляли на ходулях радикалы. Над ними – ни дать ни взять рой бабочек – порхали показатели корней.
А потом пошли скобки, скобки, скобки… Круглые, квадратные, фигурные…
Позади маршировал сводный оркестр восклицательных знаков.
– Слава доблестным факториалам! – закричали в толпе. Мы хотели спросить, что за слово такое, но тут эти самые факториалы грянули марш. Разом ударились друг о друга десятки медных тарелок, загремели трубы. Защебетали, словно стая ласточек, флейты, и все кругом запели.
Так никто нам и не объяснил, что такое факториал и что вообще происходит.
– Может быть, это праздник Кирилла и Мефодия? – сказала Таня.
Ее мама недавно была в Болгарии. Там каждый год устраивают торжества в честь создателей славянской письменности. В этот день жители надевают свои лучшие платья и выходят на улицу, чтобы посмотреть парад букв. В параде участвуют школьники. Каждый из них изображает какую-нибудь букву.
– При чем тут Кирилл и Мефодий? – фыркнул Сева. – Аль-Джебра – государство математическое. Не пойму только, как сюда попали буквы? Наверное, по недоразумению?
Он, как всегда, сказал это чересчур громко. Вот когда нас наконец услышали!
– Как это – по недоразумению? – возмутились толпившиеся кругом буквы. – Это мы-то по недоразумению? Нас оскорбляют! Нас унижают!
– Да знаете ли вы, – кипятилась латинская буква Тэ, – знаете ли вы, что без нас, может, и не было бы никакой Аль-Джебры!
– Может, и не было бы! – подтвердили хором другие буквы.
Мне с трудом удалось объяснить им, что Сева не хотел никого обидеть. Просто мы здесь впервые и многого еще не знаем. Буквы сменили гнев на милость и стали наперебой что-то нам объяснять. Но они так волновались и галдели, что ничего нельзя было разобрать.
– Граждане буквы, – сказал я, – говорите по очереди! Так мы легче поймем друг друга.
Тогда из толпы вышел важный Дэ.
– Пусть каждый из вас, – сказал он, – задумает какое-нибудь число. Задумали? Хорошо. Теперь умножьте его на три. Так. Прибавьте четыре. Готово? Теперь пусть каждый скажет, какое число у него получилось.
– Десять! – объявила Таня.
– Нет, девятнадцать! – возразил Сева.
– А у меня шестьдесят четыре, – сказал я.
– Видите, вас трое, и у каждого получилось по-разному.
Но в этой игре могут быть тысячи, миллионы участников. Каждый может задумать любое число, и мы получим целую гору ответов. Для того только чтобы прочитать их – не то что записать, – понадобится уйма времени. А я вот записал на этом клочке бумаги все возможные ответы.
И Дэ показал нам свою запись: 3а + 4.
– Позвольте, где же девятнадцать? – всполошился Сева.
– Да здесь же. Вы, как я догадываюсь, задумали число пять. Трижды пять – пятнадцать. Прибавим четыре – получится девятнадцать.
– Но где же тут пять?
– Да вот оно: буква а.
– Значит, а – это пять?
– Для вас, – улыбнулся Дэ. – Для другого оно три. И тогда ответ будет тринадцать. Для третьего – сто. В этом случае ответ – триста четыре. Буква а может быть по вашему желанию заменена любым числом.
– Вот не знал, что она такая особенная! – почтительно сказал Сева.
– Ничего особенного в ней нет. Вместо а вы можете поставить любую другую букву. Ответ нисколько не изменится: 3с + 4.
– Дайте нам еще одну задачу! – попросила Таня, – А мы запишем ее буквами.
– Пожалуйста. Задумайте два числа. Первое умножьте на два, второе – на пять и сложите эти произведения.
– Очень просто, 2а + 5а, – сказал Сева.
Дэ удивленно поднял брови:
– Вы что, задумали два одинаковых числа?
– Нет, разные.
– Тогда почему же они обозначены одинаковыми буквами? У нас, слава богу, и других достаточно. Уж если вы задумали разные числа, так и обозначайте их разными буквами: 2а + 5b.
– Почему это, – спросила Таня, – вы говорите, что умножаете два на а, пять на b, а знаков умножения не ставите? Может, вы экономите крестики? Поставили бы хоть точку.
– Мы и вправду экономим, но не крестики, а время. И не только время, но и место. Разве 2а не тоже самое, что а, умноженное на два, иначе говоря: а, взятое два раза? Для чего же тратить место на знак умножения? Однако что же это мы здесь стоим! – спохватился Дэ. – На стадионе, наверное, уже начался физкультурный парад. Вот где вам покажут разные действия, которые у нас называются алгебраическими.
И мы заторопились на стадион. А теперь, как в театре, антракт.
Олег.
Примечание: скажи тому Нулику, который не пускал домой маму, – пусть зарубит на носу, что положительными и отрицательными бывают только числа, а не цифры. А так как у вас, в Карликании, все мамы цифры, то дома никаких знаков отличия у них нет. Эти знаки появляются только на работе, когда мамы-цифры становятся числами. Вот как!
Круг почета
(Таня – Нулику)
Дорогой Нулик! Праздник был просто замечательный!
Мы пришли как раз вовремя. Переполненный стадион гудел, как пчелиный улей. Но вот на главной трибуне в убранной цветами ложе появился величественный А. Он подошел к микрофону, поднял руку, и улей сейчас же затих.
– Дорогие сограждане! Дорогие друзья! – начал А. – Приветствую вас в день ежегодного праздника Аль-Джебры. Сегодня мы чествуем всех, кто в разные века и в разных странах трудился во славу нашего великого государства.
Все вы знаете, что государство это очень древнее. Но многие ученые, создававшие его, жили задолго до его рождения. Они работали не так, как мы сейчас – сообща, в тесном содружестве, а врозь, разделенные временем и пространством. Они начинали эту науку, а начинать всегда труднее. Тем выше их заслуги перед людьми, а значит, и перед нашим государством.
Государство это не всегда было таким, как сейчас. Да оно и не сразу стало государством. Но необходимость в нем появилась давным-давно, еще у древних народов: вавилонян, китайцев, индийцев, а потом и у греков.
Это были народы большой культуры. Развитие земледелия, торговли, мореходства требовало решения трудных арифметических задач. Но вот беда! Рассуждения древних математиков были так длинны и запутанны, что простые люди не могли в них разобраться.
Тогда ученые стали думать, как бы упростить решения задач. И не только упростить, но и обобщить, то есть найти для многих однородных задач одно общее решение. Достаточно подставить в него нужные числа – и ответ готов.
Ученые трудились не напрасно: решать задачи становилось все легче. Зато сами задачи становились все труднее. Потому что жизнь шла вперед. Некоторые задачи ставили даже математиков в тупик: их нельзя было решить ни одним известным способом. И тут на помощь пришли особые, до тех пор незнакомые числа: отрицательные, иррациональные, мнимые и другие.
Числа эти входили в обиход долго, с трудом. Многие математики их поначалу не признавали. Отрицательные числа они называли ненужными, а мнимые – ложными. Но со временем польза этих чисел стала очевидной для всех. Теперь она ясна каждому школьнику, побывавшему на воздушной монорельсовой дороге. Попробовал бы он обойтись без отрицательных чисел при вычитании из меньшего числа большее!
Но особую роль в расцвете Аль-Джебры сыграли буквы. Они сразу навели порядок в беспорядочном ворохе самых различных задач.
Буквенные обозначения появились очень давно. Их ввел в арифметику двадцать четыре столетия назад величайший мыслитель древности Аристотель. Однако широкое применение буквы нашли не сразу.
Сейчас научные новости распространяются быстро. Еще бы! Ведь у нас есть и печать, и радио, и телевидение! Но в далекие времена ничего этого не было. И понадобилось двадцать веков, чтобы люди по достоинству оценили изобретение Аристотеля.
Это было начало новой эпохи в геометрии, физике, астрономии, химии и других науках. А уж о математике и говорить нечего! Вряд ли сам Мухаммед ибн Муса аль-Хварезми мог мечтать о таком расцвете своего детища.
Не хочу этим сказать, что нашим ученым больше уже нечего делать. Ничего подобного! У науки нет предела. Развитие ее бесконечно. Ведь что такое Бесконечность, объяснять не нужно. Все вы это отлично знаете. Поэтому мы с особенным удовольствием приветствуем сегодня всех, кто изучает историю и законы нашего государства. Мы возлагаем на них особые надежды: ведь им предстоит решить многие нерешенные задачи!
Вдруг оратор повернулся в нашу сторону и низко нам поклонился. И все сидящие на трибунах встали и громко зааплодировали.
Мы просто не знали, куда деваться, и очень обрадовались, когда зрители снова уселись на места.
Но тут А скомандовал: «Поднять флаги!» – и все встали опять. Заиграла музыка, и в воздух взвились десятки разноцветных полотнищ. Здесь были флаги многих стран. Некоторые мы видели впервые, но одно узнали сразу: алое знамя Советского Союза.
Потом начался парад. На огромном зеленом поле появился движущийся помост. На помосте толпились костюмированные буквы и цифры. Кого только они не изображали! Были здесь и важные бородатые восточные мудрецы, и древние греки в белоснежных одеждах. В маленьких пагодах сидели китайцы в черных шапочках и пестрых халатах. Ах, Нулик! Это была целая костюмерная! У меня до сих пор в глазах рябит от фесок, тюбетеек, шаровар, пудреных париков, камзолов, фраков, сюртуков…
Мы спросили у Дэ, что означает этот маскарад.
– Как?! Неужели вы не поняли? Перед вами ученые, которым посвящен сегодняшний праздник. Они совершают круг почета. Впереди в белой чалме Мухаммед аль-Хварезми, рядом – Аристотель.
– А это кто? – Сева указал на длиннокудрую маску в плаще и широкополой шляпе с перьями.
– Знаменитый французский математик Виет. Ему мы обязаны тем, что буквы в шестнадцатом веке получили, наконец, всеобщее признание. Справа от него стоит другой великий француз – математик и философ Рене Декарт. Он жил несколько позже, в семнадцатом веке, и тоже многое сделал для Аль-Джебры.
– А вот и еще один древний грек! – обрадовалась я.
– Вы, наверное, говорите о Диофанте? – догадался Дэ. – О, это замечательный человек! Еще в третьем веке нашей эры он решал сложнейшие алгебраические задачи. Диофант изложил их в своей знаменитой книге «Арифметика». Правильнее было бы назвать ее «Алгебра», но тогда этого слова еще не знали.
– На полях «Арифметики» Диофанта записал свою теорему Ферма, – сказал Олег.
Дэ посмотрел на него недоверчиво:
– Вы знакомы с Ферма? С великим французским математиком?
– Мы встречались с ним на Дороге Светлого Разума, когда возвращались из Карликании. Да вот он, рядом с Диофантом!
– Ребята, ребята, смотрите, Лобачевский! – тормошил нас Сева.
– Как, вы и Николая Ивановича знаете? – еще больше изумился Дэ.
– Конечно! – важно ответил Сева. – Он нам и письмо прислал: «Кажется, нельзя сомневаться в истине того, что все в мире может быть представлено числами…»
– И буквами, – добавил Дэ. – Уверен, Лобачевский не сказал так лишь потому, что это само собой разумеется.
Платформа с учеными сделала три круга и покинула поле под гром приветствий.
И тогда началось самое интересное.
Но об этом тебе расскажет Сева.
Так что жди письма.
Таня.
Не думай, что я такая умная и запомнила все, что говорил А.
Речь его была тут же отпечатана и размножена. Мне оставалось только переписать. Листочек же я сохранила на память.
Разноцветные береты
(Нулик – отряду РВТ)
Дорогие ребята! Как мне досадно, как мне обидно, что я не смог побывать на стадионе и увидать карнавал!
Но зато я сделал важное открытие. То есть открытие сделала мама. И вообще это не открытие, а давно известная вещь. Но для меня она была открытием.
Дело было так.
Мои ученики тоже решили устроить карнавал. И семь Нуликов явились в школу в новеньких беретах, – все береты разных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Словом, семь цветов радуги. Нулики в беретах должны были идти во главе карнавального шествия. Но мне не понравилось, в каком порядке они стоят. Мне показалось, что красный берет должен быть рядом с синим, а синий – с оранжевым. А другому Нулику захотелось, чтобы желтый был рядом с фиолетовым. Тут каждый стал вносить свои предложения:
– Желтый с красным!
– Красный с синим!
– Фиолетовый с желтым!
Все так расшумелись, что я долго не мог их успокоить. Порешили перепробовать все перестановки. А потом большинством голосов выбрать самую красивую.
И началось! Расставили Нуликов так, как они стояли вначале: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.
Потом Нулики стали меняться местами. Красный оказался на месте оранжевого, потом перешел на место желтого, потом на место зеленого и так до тех пор, пока он не очутился на месте фиолетового. Теперь впереди оказался Нулик в оранжевом берете. Мы стали его тоже постепенно передвигать вправо. Так же поступили и с зеленым, и со всеми остальными. А когда красный берет опять оказался первым слева, мы решили его оставить на месте, и стали двигать вправо другие береты: желтый, зеленый, синий… Переставляем, переставляем… Второй день переставляем. О карнавале никто уж не заикается. Сделали 527 перестановок, а до конца – далеко.
Мы было хотели бросить, но тут появилась моя мама. Пришлось рассказать, в чем дело. А она давай смеяться! А когда отсмеялась, спросила:
– Неужели вы не знаете, что такое факториал?
– Знаю! – выпалил я, вспомнив ваше письмо. – Это оркестр восклицательных знаков.
Мама стала смеяться снова. А потом сказала, что факториалы могут, конечно, играть в оркестре. Но это не мешает им оставаться математическим знаком. Его ставят после какого-нибудь числа. И тогда он показывает, сколько чисел натурального ряда надо перемножить. Вот например: если написать 3! – значит, надо перемножить все числа натурального ряда от единицы до трех включительно: 3! = 1 * 2 * 3 = 6
А записывается это так, чтобы было покороче. Задумали перемножить числа от единицы до миллиона – пожалуйста: пишем 1000000! Коротко и ясно.
А еще мама сказала, что слово «факториал» произошло от латинского слова «фактор». По-нашему это «производящий действие». Вот факториал и производит перемножение чисел натурального ряда.
Ну, это я запомнил сразу. Одного только никак не мог понять: при чем здесь разноцветные береты?
– А вот при чем, – сказала мама. – Если вы хотите узнать, сколько раз надо переставить семь Нуликов в разноцветных беретах, чтобы сделать все возможные перестановки, надо вычислить факториал числа семь, то есть перемножить все числа натурального ряда от единицы до семи. Стали перемножать и получили большущее число: 7! = l * 2 * 3 * 4 * 5 * 6 * 7 = 5040.
Пять тысяч сорок! Пять тысяч сорок перестановок! А мы сделали всего 527. Ужас!…
Хорошо, что в разноцветных беретах явились всего семь Нуликов. А что если бы двадцать семь? Пришлось бы вычислять факториал двадцати семи. Нет уж, дудки! Хотите – считайте сами. А я не буду.
Всего вам хорошего. С нетерпением жду новых сообщений.
Нулик-Факториал.
Репортаж со стадиона
(Сева – Нулику)
Внимание, внимание! Говорят все радиостанции Аль-Джебры! Начинаем репортаж с Центрального стадиона. Здесь сейчас будут выступать самые юные гимнасты страны. Слышите гул приветствий? Это на поле выбегают дошкольники – латинские буковки а в зеленых костюмах, за ними буковки b, – они в красном, и, наконец, с – в светло-желтом. Они образуют несколько рядов и замирают. Теперь каждая из них не просто буква. Здесь она называется одночлен.
Сверху нам открывается чудесное зрелище: пестрый прямоугольник из букв. Но вот грянул оркестр факториалов. Звучит вальс, и прямоугольник приходит в движение. Буквы делают шаг в сторону. Одни вправо, другие влево. Потом они берутся за руки, и вот уже перед нами десятки разноцветных пар: аb, ас, bc.
Зеленое с красным, желтое с зеленым, красное с желтым…
Юные гимнасты показывают действие, которое называется перемножением одночленов. Разумеется, никаких знаков умножения при этом нет. Каждый младенец в Аль-Джебре знает, что если две буквы стали рядом, значит, они помножены друг на друга.
Не подумайте только, что от перемножения буквы превратились в двучлены. Боже упаси! Это грубая ошибка! Они как были, так и остались одночленами.
Но вот идет новая перестановка. Теперь буковки объединяются по три: abc, acb, bac, bca, cab, cba.
Легко догадаться, что это тоже произведения и каждое из них опять-таки одночлен.
Умножение одночленов закончилось. Буквы снова заняли первоначальные позиции. Оркестр играет веселую полечку. На стадионе появляются знаки сложения и вычитания. Плюсы и минусы занимают места между буковками-одночленами: а + b, b + с, a – b, b – с.
Вот когда буквы из одночленов превратились в двучлены. Но не успели зрители как следует полюбоваться этой картиной, как буквы образуют уже другие суммы: a + b – c, a + c – b, а – b – c…
Теперь это уже трехчлены. Жаль, что в упражнениях принимают участие только а, b и с. Будь здесь другие буквы, мы увидели бы еще более сложные алгебраические суммы.
Внимание! Начинается новое упражнение. Забавно! Очень забавно! Знаки плюс стали между одинаковыми буквами. Сейчас сложились семь буковок а, и… о чудо! Вместо семи осталась только одна. Остальные шесть исчезли на наших глазах, а вместо них на поле появилось число Семь. Оно стало слева от буквы а, и весь стадион хором прочитал: «семь а».
Это волшебное алгебраическое упражнение называется приведением подобных. Оно возможно только тогда, когда все слагаемые действительно подобны, то есть совершенно одинаковы. Какая экономия места, времени и чернил! В Аль-Джебре очень любят экономию. В самом деле, к чему писать а + а + а + а + а + а + а, если можно записать коротко и ясно: 7а.
Семерка немного важничает. Оно и понятно: ведь она одна заменила шесть одинаковых букв и ей присвоено почетное звание числового коэффициента при букве а.
Ага! Другим буквам это тоже понравилось. Они просят плюсы занять места между ними. И вот число букв стремительно уменьшается. Вместо них на поле появляются числа-коэффициенты. Вместе с оставшимися буквами они образуют одночлены: 12b, 8а, 24abc, 3bс, и так далее.
Их зорко охраняют рыцари-коэффициенты.
Упражнениям нет конца! Только что на поле образовался многочлен abc + abc + abc + abc + abc + abc, как мигом произошло приведение подобных и появился верный рыцарь – коэффициент шесть: 6abc.
Но что это? Оркестр замолкает… Понимаю: сейчас произойдет перегруппировка и начнется новое упражнение. В самом деле: минусы и плюсы покидают поле под дружные аплодисменты. Буковки снова образовали пестрый прямоугольник. Но теперь в первом ряду стоят буквы в зеленом, во втором – в красном, в третьем – в светло-желтом. Они повторяют самое первое упражнение – перемножение одночленов. Только теперь все сомножители одинаковые. И опять происходят чудеса. Как только две одинаковые буквы перемножатся, одна из них сейчас же исчезает, а на поле появляется число Два. Буква протягивает руку, и Двойка ловко вскакивает к ней на ладошку: а2.
Вы думаете, число Два называется коэффициентом? Ничего подобного! Это показатель степени. Вы уже с ним знакомы. Ведь упражнение, которое сейчас проделывают буквы, – это возведение в степень!
Вот перемножились три b, и получилось Бэ в кубе: b3.
Десять с, перемножившись, образовали одночлен – Цэ в десятой степени: с10.
Одна комбинация сменяется другой. Перед нами возникают: a25, b40, c16, a6
И вот появляется Цэ в степени эн: сn.
Это уже что-то новое. Правда, только на первый взгляд. Мы ведь уже знаем, что буквами обозначаются числа. Цэ в энной степени означает Цэ, возведенное в любую степень. Подставьте вместо эн любое число – и ответ готов.
Музыканты после небольшой паузы снова заиграли вальс. Начались самые пластичные, самые замысловатые гимнастические упражнения: умножение многочленов на одночлен. Вот уже образовались двучлены: а + b, а + с, потом трехчлены: а + b + с и много других. Сейчас они начнут умножаться на одночлены… Но в чем дело? Произошла какая-то заминка. Музыка смолкла. Ага! Теперь все ясно: оказывается, многочлены не могут ни на что умножаться, если их предварительно не заключить в скобки. Иначе может выйти ужасная путаница: никто не узнает, где тут одночлен, а где многочлен.
На поле появляются круглые скобки. Они становятся по бокам каждого многочлена. Ну вот, все в порядке, можно продолжать.
Начинается представление, под названием «Хитрый обманщик».
На поле появляется выражение: (а + b)с.
Цэ стучится в скобку, как в дверь.
Цэ. Хозяева дома?
А+Бэ (вместе). Да! А кто это?
Цэ. Это я, Цэ.
A+Бэ. А с вами никого нет?
Цэ (невинным голосом). Никого.
А+Бэ. Тогда входите.
Скобки открываются, Цэ входит и… раздваивается. Одно Цэ подходит к А, другое – к Бэ. И вот мы уже видим новую сумму: ас + bс.
Все негодуют. Свист, крики:
– Гоните обманщика!
А+Бэ (вместе). На помощь! Спасите!!
Вбегают дружинники и выносят отчаянно сопротивляющихся Цэ за скобки. Здесь обе буквы снова превращаются в одно Цэ.
Обманщик наказан. Справедливость торжествует. На поле снова красуется прежнее выражение: (а + b) с.
Пьеса имеет шумный успех. Артистов вызывают много раз, точнее, эн раз – n раз.
Сказав так, я никого не обману, и дружинникам не придется выносить меня за скобки.
Дорогие радиослушатели! Как видно, эти упражнения никогда не кончатся, а я уже устал. Очень прошу вас, возьмите карандаши и бумагу и придумайте сами пример на перемножение многочленов.
До свидания.
Репортаж с Центрального стадиона Аль-Джебры вел
Сева.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.