Текст книги "Машины создания"
Автор книги: Эрик Дрекслер
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 21 страниц)
Эволюция конструкций
Могло бы показаться, что конструирование предполагает альтернативу эволюции, но проектирование вовлекает эволюцию двумя различными способами. Во-первых, развивается сама практика проектирования. Не только инженеры накапливают работающие конструкции, но они накапливают методы работающие проектирования. Они включают весь спектр от изложенных в книжечке стандартов по выбору труб до управленческих систем для организации исследований и разработок. И как утверждал Альфред Норд Вайтхэд, «Величайшим изобретением девятнадцатого века было изобретение метода изобретений.»
Во-вторых, конструкция сама развивается путём вариации и селекции. Инженеры часто использует математические законы, разработанные, чтобы описывать, к примеру, тепловые потоки и эластичность, чтобы проверять моделируемые конструкции перед тем, как их строить. Таким образом намечают планы, далее цикл конструирования, вычислений, критики и изменения конструкции, избегая тем самым расходов по непосредственной обработке металла. Таким образом создание конструкций происходит через нематериальную форму эволюции.
Например, закон Хука описывает, как металл гнётся и распрямляется: деформация пропорциональна приложенному напряжению; в два раз увеличивается напряжение, в два раза увеличивается растяжение. Хотя он только приблизительно правилен, он продолжает быть довольно точным, пока эластичность металла наконец не уступает напряжению. Инженеры могут использовать форму закона Хука для разработки бруса металла, который способен поддерживать груз без слишком большого изгиба, а затем сделать его только немного более толстым, чтобы учесть погрешности в законе и в своих конструкторских вычислениях. Также они могут использовать форму закона Хука для описания изгиба и скручивания крыльев самолёта, теннисных ракеток и автомобильных каркасов. Но простые математические уравнения не подходят прямо для таких изогнутых структур. Инженеры должны подгонять уравнения для упрощения форм (частей конструкции), и далее собрать эти частичные решения для описания изгиба целого. Это – метод (называемый "анализ конечных элементов"), который обычно требует огромных вычислений, а без компьютеров он был бы невыполним. С компьютерами он стал общеупотребительным.
Такое моделирование продолжает древнюю тенденцию. Мы всегда воображали последствия, в надежде и в страхе, когда нам нужно было выбирать курс действия. Более простые мысленные модели (будь то врожденные или приобретённые) несомненно также управляют и животными. Базируясь на правильных мысленных моделях, мысленный эксперимент может заменить более дорогостоящие (или даже смертельно опасные) физические эксперименты – приобретение, которой эволюция благоприятствовала. Инженерное моделирование просто продолжает эту способность воображать последствия, чтобы делать ошибки мысленно, а не в действиях.
В "Одном высоко развитом комплекте инструментов"" Дж. Болдуин обсуждает, как инструменты и мысли смешиваются в работе единичного производства: "вы начинаете встраивать вашу инструментальную способность в то, как вы думаете о создании вещей. Как скажет вам каждый, кто долго работает, инструменты скоро становятся чем-то вроде автоматической частью процесса конструирования… Но инструменты не могут становиться частью вашего процесса конструирования, если вы не знаете, что у вас есть и что каждый инструмент делает."
Наличие ощущения способностей инструментов необходимо при планировании индивидуального проекта для поставки в следующую среду; и это не менее существенно при формировании стратегии для управления крупными достижениями грядущих десятилетий. Чем лучше наше ощущение инструментов будущего, тем более основательными будут наши планы выживания и процветания.
Мастер в цехе может держать инструменты в пределах видимости; работа с ними каждый день делает их знакомыми его глазам, рукам и разуму. Он узнаёт их способности естественным образом и может непосредственно творчески использовать это знание. Но люди, такие как мы, которым требуется понять будущее, встают перед более сложной задачей, поскольку будущие инструменты существуют сейчас только как идеи и как возможности, заложенные в законы природы. Эти инструменты не висят на стене, и не производят впечатления на разум через свой вид, звук или прикосновение, также они не будут это делать, пока не появятся как реальные предметы. В следующие годы подготовки только изучение, воображение и мысль могут сделать их способности реальными для ума.
Какими будут новые репликаторы?
История показывает нам, что средства производства развиваются. РНК из испытательной пробирки, вирусы и собаки – всё показывает, как эволюция движется модификацией и тестированием репликаторов. Но средства производства (сегодня) не могут воспроизводить себя, так что где же репликаторы в свете эволюции технологии? Что является генами машин?
Конечно, нам нет нужды действительно идентифицировать репликаторы, чтобы распознать эволюцию. Дарвин описал эволюцию ранее, чем Мендель обнаружил гены, а генетики узнали много о наследственности прежде, чем Ватсон и Крик открыли структуру ДНК. Дарвин не нуждался в знании молекулярной генетики, чтобы понять, что организмы различаются и что некоторые оставляют больше потомков.
Репликатор – это структура, которая способна сделать так, чтобы образовалась её копия. Ей может требоваться помощь; без копирующих белковых машин ДНК не могла бы себя копировать. Но по этому стандарту, некоторые машины – репликаторы! Компании часто делают машины, которые попадают в руки конкурента; конкурент далее изучает их секреты и строит копии. Также как гены «используют» белковые машины, чтобы себя копировать, также такие машины «используют» человеческие умы и руки, чтобы размножаться. С нанокомпьютерами, управляющими ассемблерами и дизассемблерами, копирование средств производства могло бы даже быть автоматизировано.
Человеческий разум, однако намного более тонкая машина имитации, чем любая простая белковая машина или ассемблер. Голос, письмо и рисунок могут передать конструкции из разума к разуму прежде, чем они примут форму как аппаратные средства. Идеи, стоящие за методами разработки, ещё более тонкие: более абстрактные, чем аппаратные средства, они копируются и функционируют исключительно в мире разума и систем символов.
Там, где гены эволюционировали в течение поколений и эпох, мысленные репликаторы пока эволюционируют в течение дней и десятилетий. Подобно генам, идеи расщепляются, объединяются и принимают многообразные формы (гены могут быть расшифрованы из ДНК в РНК и снова использованы; идеи могут быть переведены с языка на язык). Наука не может пока описать нейронные структуры, которые воплощают идеи в мозгу, но любой может видеть, что идеи мутируют, воспроизводятся и конкурируют. Идеи подвержены эволюции.
Ричард Давкинс называет элементы воспроизводящихся мысленных структур «мимами» (англ. "meme"). Он говорит: "примеры мимов – мелодии, идеи, общеупотребительные выражения, мода в одежде, способы производства горшков и постройки арок. Также, как гены размножаются в среде генов, перескакивая от тела к телу (от поколения к поколению) через сперму или яйца, также мимы размножаются в среде мимов перескакивая из мозга в мозг посредством процесса, который в широком смысле может называться имитацией."
Существа разума
Мимы копируются, потому что люди учатся и учат других. Они изменяются, потому что люди создают новые и неправильно истолковывают старые. Они подвергаются селекции (отчасти), потому что люди не верят или повторяют все, что слышат. Также как молекулы РНК из испытательной пробирки конкурируют за ограниченные в количестве копировальные машины и строительные элементы, мимы должны конкурировать за ограниченный ресурс – человеческое внимание и усилия. Так как мимы формируют поведение, их успех или неудача – это жизненно важный вопрос.
Начиная с древних времён, мысленные модели и способы поведения передавались от родителя ребенку. Мимические структуры, которые помогают выживанию и воспроизводству, имели тенденцию распространяться. (Ешьте этот корень только после приготовления; не ешьте те ягоды, их злой дух будет скручивать ваши кишки." Год за годом, люди поступали по-разному и с разнообразными результатами. Год за годом кто-то умирал, в то время как остальные находили новые способы выживания и передавали их дальше. Гены построили мозги на принципе имитации, поскольку имитируемые структуры были в целом полезны: в конце концов их носители выживали и распространяли их.
Сами мимы, тем не менее, встречают свои собственные вопросы «жизни» и «смерти»: как репликаторы, они развиваются исключительно, чтобы выживать и распространяться. Подобно вирусам, они могут воспроизводиться, не помогая выживанию или благосостоянию их хозяина. В действительности мим "жертвы во имя" может распространяться через сам факт убийства своего хозяина.
Гены, подобно мимам, выживают, используя различные стратегии. Некоторые гены утки распространили себя, поощряя уток разбиваться на пары для заботы о твоих яйцах, несущих гены и молодняка. Некоторые гены утки распространили себя (находясь в самцах утки), поощряя насилие, а некоторые (находясь в самках утки), поощряя отложение яиц в гнёздах других уток. Ещё одни гены, обнаруживаемые в утках – гены вируса, способные распространяться без того, чтобы производить новых уток. Защита яиц помогает виду уток (и индивидуальным генам уток) выживать; насилие помогает одному набору утиных генов в ущерб другому; инфекция в общем случае помогает вирусным генам за счёт утиных генов. Как отмечает Ричард Давкин, гены «заботятся» только о копировании себя: они ведут себя эгоистично.
Но эгоистичные мотивы могут поощрять кооперацию. Люди, ищущие деньги и признание для себя, сотрудничают, чтобы строить корпорации, которые служат потребностям других людей. Эгоистичные гены сотрудничают, чтобы строить организмы, которые сами часто сотрудничают. Даже в этом случае, чтобы вообразить, что гены автоматически служат какому-то благу более высокого уровня (своим хромосомам? своим клеткам? телам? своим видам?), нужно неправильно понимать общее действие лежащей в основе причины. Игнорировать эгоистичность репликаторов значит быть убаюканным опасной иллюзией.
Некоторые гены в клетках – полнейшие паразиты. Подобно генам герпеса, вставленным в человеческие хромосомы, они эксплуатируют клетки и вредят их хозяевам. Однако если гены могут быть паразитами, почему не также ими быть мимы?
В "Расширенном фенотипе", Ричард Давкинс описывает червя, который паразитирует на пчеле и заканчивает свой жизненный цикл в воде. Он попадает из пчелы в воду, заставляя пчелу-хозяина нырнуть и умереть. Точно так же муравьиный мозговой червь должен войти в овцу, чтобы закончить свой жизненный цикл. Чтобы это сделать, они прогрызают отверстие в мозгу хозяина-муравья, некоторым образом вызывая такие изменения, что заставляет муравья «хотеть» взобраться на верхушку стебля травинки и ждать, пока в конце концов его не съест овца.
Как черви входят в другие организмы и используют их, чтобы выживать и копироваться, так же делают мимы. Действительно, отсутствие мимов, эксплуатирующих человека для своих собственных эгоистичных целей было бы удивительно, это было бы признаком некоторой мощной, действительно, почти совершенной, умственной иммунной системы. Но мимы-паразиты явно существуют. Также как вирусы научились побуждать клетки производить вирусы, также слухи научились звучать правдоподобно и пикантно, побуждая повторение. Спросите, не является ли слух правдой, а как он распространяется. Опыт показывает, что идеям, научившимся быть успешными репликаторами, нужно иметь лишь очень немного от правды.
В лучшем случае письма по цепочке, ложные слухи, модные глупые поступки, и другие умственные паразиты вредят людям, тратя впустую их время. В худшем случае, они внедряют смертельные заблуждения. Эти системы мимов эксплуатируют человеческое невежество и уязвимость. Их распространение подобно тому, что у кого-то простуда и он чихает на своих друзей. Хотя некоторые мимы действуют во многом подобно вирусам, заразность не обязательно является чем-то плохим (вспомните заразную улыбку или заразную хорошую натуру). Если набор идей имеет достоинство, то такая заразность просто повышает её достоинство, и действительно, лучшие этические учения также нас учат учить этике других. Хорошие публикации могут развлекать, обогащать понимание, помогать суждению и рекламировать подарочные подписки. Распространение полезных систем мимов подобно предложению полезных зёрен для сада друга.
Отбор идей
Паразиты заставили организмы развивать иммунные системы, такие как ферменты, которые используют бактерии для отражения вторгающихся вирусов, или блуждающие белые клетки крови, которые используют наше тело для уничтожения бактерий. Мимы-паразиты заставляют разум вступить на подобный путь разработки систем мимов, которые служат умственными иммунными системами.
Старейшая и самая простая умственная иммунная система просто даёт команду: ""верь старому и отбрасывай новое". "Что-то вроде этой системы обычно удерживало племена от отказа от старого, проверенного пути в пользу безумства новых идей – таких как идея повиновения предполагаемым приказам призрака уничтожить весь скот и всё зерно племени, и что это принесёт каким-то образом чудесное изобилие пищи и армии предков выгонят чужеземцев. (Этот пакет мимов заразил племя Ксоза из Южной Африки в 1856 году; к следующему году 68 000 умерли, большей частью от голода.)
Иммунная система вашего тела следует подобному правилу: она обычно принимает все типы клеток, присутствовавшие в начале жизни и отторгает как инородные и опасные такие, как потенциальные раковые клетки и вторгающиеся бактерии. Этот простая система "отбрасывай новое" когда-то работала хорошо, однако в век трансплантации органов она может убить. Аналогично, в век, когда наука и технология – постоянно присутствующие факторы, которые и новые и заслуживающие доверия, негибкая умственная иммунная система становится опасной помехой.
При всех своих недостатках, тем не менее принцип "отклоняй всё новое" прост и предлагает реальные преимущества. Традиция содержит многое, что испытано и истинно (или, если не истинно, то по крайней мере осуществимо). Изменение рискованно: как большинство мутаций носят отрицательный характер, также и большинство новых идей неправильно. Даже разум может быть опасен: если традиция связывает обоснованную практику со страхом приведений, то слишком уверенная в себе рациональная мысль может отвергнуть хорошее вместе с ложным. К сожалению, традиции, которые в процессе эволюции стали нести нечто хорошее, могут быть менее привлекательными, чем идеи, в процессе эволюции научившиеся выглядеть хорошими, когда исследуют первые, самая глубоко обоснованная традиция может быть смещена худшими идеями, которые выглядят более привлекательно для рационального ума.
Однако мимы, которые запечатывают разум против новых идей, защищают себя способом, вызывающим подозрения в обслуживании собственных интересов. Защищая ценные традиции от неуклюжего редактирования, они также могут ограждать паразитирующую бессмыслицу от испытания истиной. Во времена быстрых изменений они могут делать умы опасно косными.
Многое из истории философии и науки может рассматриваться как поиск лучших умственных иммунных систем, лучших способов отклонять ложное, бесполезное и вредное. Лучшие системы уважают традицию, однако поощряют эксперимент. Они предлагают стандарты для оценки мимов, помогая уму различить паразитов и полезные инструменты.
Принципы эволюции обеспечивают способ рассматривать изменение, будь то в молекулах, организмах, технологиях, умах или культурах. Встают те же самые основные вопросы: Что такое репликаторы? Как они различаются? Что определяет их успех? Как они защищаются против захватчиков? Эти вопросы возникают снова, когда мы рассматриваем последствия революции ассемблеров, и ещё раз, когда мы рассматриваем, как общество могло бы поступить с её последствиями.
Принципы эволюционного изменения, имеющие глубокие корни, будут формировать развитие нанотехнологии, даже когда различие между аппаратными средствами компьютеров и жизнью начнёт стираться. Эти принципы показывают много о том, на что мы можем и не можем надеяться достичь, и они могут помочь нам сконцентрировать наши усилия, чтобы формировать наше будущее. Они также говорят нам много о том, что мы можем и не можем предсказать, потому что они управляют эволюцией не только материального, но и эволюцией самого знания.
Глава 3. ПРЕДСКАЗАНИЕ И ПРОЕКТИРОВАНИЕ
Критическое отношение может быть описано как сознательная попытка заставить наши теории и гипотезы страдать вместо нас в борьбе за выживание наиболее приспособленных. Оно дает нам возможность пережить гибель неадекватной гипотезы, в то время как более догматичное отношение уничтожало бы её, уничтожая нас.
Сэр КАРЛ ПОППЕР
ПОСКОЛЬКУ МЫ ЖЕЛАЕМ увидеть, к чему приведёт гонка технологий, ведет, мы должны задать три вопроса. Что является возможным, что является достижимым, и что является желательным?
Во-первых, в том, что касается аппаратных средств, законные природы устанавливают ограничения тому, что возможно. Так как ассемблеры откроют путь к этим ограничениям, понимание ассемблеров – ключ к пониманию того, что является возможным.
Во-вторых, принципы изменения и факты о нашей имеющейся ситуации устанавливают пределы достижимому. Поскольку эволюционирующие репликаторы будут играть основную роль, принципы эволюции – ключ к пониманию, что будет достижимо.
Относительно того, что является желательным или нежелательным, наши отличающиеся мечты подталкивают поиск будущего, где будет место разнообразию, в то время как наши общие опасения подталкивают к поиску безопасного будущего.
Эти три вопроса – возможного, достижимого и желаемого – создают основу подхода к предвидению. Во-первых, научное и техническое знание формирует карту пределов возможного. Хотя пока размытая и неполная, эта карта обрисовывает постоянные пределы, внутри которых должно находиться будущее. Во-вторых, эволюционные принципы определяют то, какие пути открыты, и устанавливают пределы достижимого, включая его нижние границы, потому что продвижения технологии, которые обещают улучшить жизнь или увеличить военную мощь, практически нельзя будет остановить. Это даёт возможность ограниченного предсказания: если старая как вечность эволюционная гонка некоторым непостижимым образом не остановится, то конкурентное давление будет формировать наше технологическое будущее, приближая его пределам возможного. Наконец, в широких пределах возможного и достижимого, мы можем попытаться достичь будущего, которое мы находим желаемым.
Ловушки предсказания
Но как кто-либо может предсказывать будущее? Политические и экономические тенденции – хорошо известные непостоянные, и чистая случайность катит кубик по континентам. Даже сравнительно устойчивый прогресс технологии часто уклоняется от предсказания.
Предсказатели часто пытаются угадать, какое время и затраты потребуются, чтобы начать использовать новые технологии. Когда они выходят за пределы описанных возможностей и пытаются делать точные предсказания, обычно они терпят неудачу. Например, хотя было очевидно, что космический челнок был возможен, предсказания о его стоимости и дате первого запуска были ошибочны на несколько лет и миллиардов долларов. Инженеры не могут точно предсказать, когда технология будет разработана, потому что разработка всегда включает неопределённости.
Но мы должны пытаться предсказывать и управлять развитием. Разработаем ли мы монстров технологии до технологий, позволяющих этих монстров посадить в клетку, или после? Некоторые монстры, однажды будучи отпущенными на свободу, не могут быть посажены в клетку. Чтобы остаться в живых, мы должны сохранять контроль, ускоряя некоторые разработки и придерживая другие.
Хотя одна технология иногда может защитить от опасности другой (защита против нападения, средство управления загрязнением против загрязнения), конкурирующие технологии часто идут в одном и том же направлении. 29 декабря 1959 года, Ричард Фейнман (теперь Нобелевский лауреат) прочитал лекцию на ежегодной конференции Американского физического Общества, озаглавленную "На дне много места." Он описал небиохимический подход к наномашинам (разработка сверху вниз, шаг за шагом, используя большие машины для построения более маленьких), и заявил, что принципы физики не противоречат возможности манипулирования объектами атом за атомом. Это – не попытка нарушить какие-либо законы; это – что-то, что в принципе можно сделать; но в практике это не было сделано, потому что мы слишком большие… В конце концов мы можем делать химический синтез… выкладывая атомы, где скажут химики, и таким образом вы будете делать вещество." Вкратце, он набросал план другого, не биохимического пути к ассемблерам. Также он утверждал, уже тогда, что это "разработка, которой, я думаю, нельзя избежать."
Как я буду обсуждать в главах 4 и 5, ассемблеры и интеллектуальные машины упростят многие проблемы, связанные со сроками и стоимостью технологических разработок. Но вопросы сроков и стоимости будут все еще маячить в поле нашего зрения на протяжение периода между сегодняшним днём и этими крупными достижениями. Ричард Фейнман видел в 1959, что наномашины могли бы направить химический синтез, возможно включая синтез ДНК. Однако он не мог предвидеть ни сроки, ни стоимость выполнения этого.
В действительности, конечно, биохимики разрабатывали методы создания ДНК без программируемых наномашин, используя упрощённые методы, основанные на определенных химических уловках. Технологии-победители часто преуспевают благодаря неочевидным уловам и деталям. В середине 1950-ых физики могли бы понять основные принципы полупроводников, что делало микросхемы физически возможными, но предсказание, как их можно было бы сделать, предвидение деталей создания масок, изоляторов, выращивание оксидов, внедрение ионов, гравировка и т. д., во всей их сложности, было бы невозможно. Нюансы деталей и конкурентное преимущество, которое выбирает технологии-победители делает гонку технологий сложной и её путь непредсказуемым.
Но делает ли это долгосрочное предсказание бесполезным? В гонке к пределам, установленным законом природы, линия финиша предсказуема, даже если дорожка и скорость бегунов – нет. Не человеческие прихоти, но неизменные законы природы рисуют линию между тем, что является физически возможным и тем, что не является, и ни один политический акт, никакое социальное движение не может изменить закон гравитации ни на йоту. Поэтому как бы футуристически они не выглядели, хорошо обоснованные прогнозы технологических возможностей весьма отличны от предсказаний. Они основываются на законах природы, которые вне времени, а не в причудах событий.
К сожалению, понимание этого остается редким. Без этого, мы с изумлением переступаем горизонт возможного, путая фонтаны с миражами и не веря ни тому, и другому. Мы смотрим вперед через очки разума и культур, имеющих корни в идеях более медленнотекущих времён, когда и наука и технологическая конкуренция не имели своих сегодняшних силы и скорости. Мы только недавно начали развивать традицию технологического предвидения.
Наука и закон природы
Наука и технология переплетаются. Инженеры используют знание, произведенное учеными; ученые используют инструменты, произведенные инженерами. И Ученые, и инженеры работают с математическими описаниями естественных законов и проверяют идеи экспериментами. Но наука и технология отличаются радикально по их сути, методам, и целям. Понимание этих различий принципиально для обоснованного предвидения. Хотя обе области состоят из эволюционирующих систем мимов, они развиваются под давлением различных факторов. Рассмотрим корни научного знания.
Большую часть истории люди плохо понимали эволюцию. Это оставляло философам лишь думать, что чувственная видимость, посредством рассудка, должна каким-то образом оставлять отпечаток в памяти всего человеческого знания, включая знание естественного закона. Но в 1737, шотландский философ Давид Хьюм предложил им пренеприятную загадку: он показал, что наблюдения не могут логически доказать общее правило, что факт, что Солнце светит день за днём по логике ничего не доказывает насчёт того, будет ли оно это делать завтра. И действительно, однажды Солнце перестанет это делать, опровергая любую такую логику. Проблема Хьюма, казалось, разрушила идею рационального знания, чрезвычайно расстроив рациональных мыслителей (включая его самого). Они изо всех сил пытались что-то сделать, но иррационализм получил свою почву. В 1945 году философ Бертранд Русс заметил, что "рост нерациональности на протяжении девятнадцатого века и то, что прошло в двадцатом – естественное последствие хьюмовского разрушения эмпиризма." Мим-проблема Хьюма подрубила саму идею рационального знания, по крайней мере, как люди его себе представляли.
За последние десятилетия, Карл Поппер (возможно любимый философ учёных), Томас Кун и другие признали науку эволюционным процессом. Они рассматривают её не как механический процесс, посредством которого наблюдения некоторым образом производят заключения, а как сражение, где идеи соревнуются за то, чтобы быть принятыми.
Все идеи, как мимы, конкурируют за принятие, но мимическая система науки имеет специфику: она имеет традицию преднамеренной мутации идей и уникальной иммунной системы для контроля мутантов. Результаты эволюции изменяются выборочным приложением давления, будь то среди молекул РНК из испытательной пробирки, насекомых, идей или машин. Аппаратные средства, разработанные для охлаждения, отличаются от средств, разработанных для транспортировки, потому что холодильники очень плохо служат в качестве автомобилей. В общем случае репликаторы, появившиеся для А, отличаются от таковых, появившихся для В. Мимы – не исключение.
Вообще говоря, идеи могут в процессе эволюции научаться выглядеть истинными или даже превращаются в истинные (выглядя истинными для людей, которые проверяют идеи тщательно). Антропологи и историки описали, что случается, когда идеи научаются в ходе эволюции казаться истинными среди людей, у которых нет научного метода; результаты (теория заболеваний "вселился злой дух", теория звёзд "огни на куполе" и т. п.) достаточно хорошо согласовались по всему миру. Психологи, испытывая человеческие наивные заблуждения о том, как объекты падают, обнаружили взгляды, подобные тем, которые развились в формальные «научные» системы на протяжение средних веков до работ Галилея и Ньютона.
Галилей и Ньютон использовали эксперименты и наблюдения для проверки идей об объектах и движении, открывая эру поразительного научного прогресса: Ньютон разработал теорию, которая выдержала все испытания, доступные на тот день. Их метод специально произведённого испытания уничтожил идеи, которые отклонялись слишком далеко от правды, включая идеи, которые появились, чтобы апеллировать к наивному человеческому уму.
Эта тенденция продолжилась. Дальнейшее варьирование и испытания побудили дальнейшее развитие научных идей, при этом получались некоторые, выглядящие столь же причудливо как изменяющееся время и изогнутое пространство относительности, или вероятностные волновые функции квантовой механики. Даже биология отбросила особую жизненную силу, которая предполагалась ранними биологами, открывая вместо неё тщательно устроенные системы невидимо маленьких молекулярных машин. Идеи, казавшиеся истинными (или близкими к истине) снова и снова оказывались ложными или не всеобъемлющими. Истинные и выглядящие истинными оказывались также различными как автомобили и холодильники.
В физических науках идеи развивались при нескольких основных правилах отбора. Сначала, ученые отбрасывают идеи, у которых нет проверяемых последствий; таким образом они предохраняют свои головы от засорения бесполезными паразитами. Во-вторых, ученые ищут замену идеям, которые не подтверждаются испытаниями. Наконец, ученые ищут идеи, которые создают возможно самый широкий диапазон точных предсказаний. Закон гравитации, например, описывает падение камня, орбиты планет, и завихрения галактик и делает точные предсказания, которые делают его широко открытым для опровержения. Его широта и точность аналогично дают ему широкую полезность, помогая инженерам и конструировать мосты, и планировать космические полёты.
Научное сообщество обеспечивает среду, в которой мимы распространяются, подталкиваемые конкуренцией и проверяемые на то, чтобы они развивались в направлении увеличения возможностей и точности. Согласие о важности проверки теорий объединяет научное сообщество при жестоких противоречиях между самими теориями.
Неточное, ограниченное свидетельство никогда не может доказывать точную, общую теорию (как это показал Хьюм), но оно может опровергать некоторые теории, помогая тем самым ученым среди них выбирать. Подобно другим эволюционным процессам, наука создает нечто положительное (увеличивающиеся запасы полезных теорий) посредством двойного отрицания (опровержения неправильных теорий). Центральная роль отрицательного свидетельства отвечает за некоторые умственные расстройства, вызванные наукой: как средство опровержения, оно может искоренить любимые убеждения, оставляя психологический вакуум, который оно не обязательно заполняет.
По практическим меркам, конечно, много научного знания – твердое как скала, уроненная вам на ногу. Мы знаем, что Земля крутится вокруг Солнцем (хотя наши чувства подсказывают иное), потому что теория соответствует огромному количеству наблюдений, и потому что мы знаем, почему наши чувства нас обманывают. У нас есть больше, чем просто теория, что атомы существуют: мы связываем их и образуем молекулы, получаем из них свет, мы их видели под микроскопом (отчётливо), и разбивали их на куски. У нас есть больше, чем просто теория эволюции: мы наблюдали мутации и селекцию, наблюдали эволюцию в лаборатории. Мы нашли следы прошлой эволюции в камнях нашей планеты, и мы наблюдали эволюцию, которая формировала наши инструменты, наш, и идеи, содержащиеся в наших умах, включая саму идею эволюции. Научный процесс выковал универсальное объяснение многих фактов, включая факты о том, почему появились сами люди и наука.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.