Текст книги "Основы геоэкологии"
Автор книги: Геннадий Голубев
Жанр: Учебная литература, Детские книги
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 27 страниц) [доступный отрывок для чтения: 9 страниц]
Управление состоянием отдельных объектов и частей экосферы – сложный междисциплинарный процесс, неизбежно включающий, наряду с компонентами естественных наук, элементы экономики, права, администрации и политики.
Существуют три основные группы методов управления в сфере природопользования: административное регулирование, система экономических рычагов и использование рыночных отношений.
Административное регулирование, в свою очередь, состоит из двух групп методов: а) установление и соблюдение нормативных стандартов и ограничений, за пределы которых не разрешается выходить, и б) осуществление непосредственных мер административного воздействия.
Стандарты качества окружающей среды регламентируют состояние отдельных ее составляющих (воды, воздуха, почв и т. д.). В российской практике обычно для каждого загрязнителя установлена его предельно допустимая концентрация (ПДК). При этом считается, что при уровне концентрации, равном или меньшем ПДК, загрязняющее вещество не оказывает неблагоприятного действия на здоровье человека и состояние экосистем. Нормативы ПДК бывают среднесуточные и максимально разовые, устанавливающие предел концентрации загрязнителя.
На всей территории, подверженной воздействию загрязнителей от ряда предприятий, уровень загрязнения не должен превышать ПДК. Чтобы не превысить этот уровень, для каждого предприятия устанавливаются предполагаемые уровни сбросов (для воды) или выбросов (для воздуха) «на конце трубы», то есть в точке сброса (выброса), и производятся расчеты ожидаемого перемешивания воды (воздуха) с определением ПДК в контрольных точках в приземном слое воздуха на всей территории. Если концентрация загрязнителя даже в одной контрольной точке оказывается выше ПДК, то предполагаемые величины сбросов (выбросов) уменьшаются. Такие циклы расчета продолжаются до тех пор, пока не достигается желаемая концентрация. Определенные таким образом приемлемые величины сбросов (выбросов) для каждого предприятия называются предельно допустимыми выбросами (ПДВ) для воздуха или предельно допустимыми сбросами (ПДС) для воды.
Если предприятие не в состоянии обеспечить требуемые ПДВ или ПДС, то ему устанавливаются нормативы временно согласованных выбросов (ВСВ) для воздуха или временно согласованных сбросов (ВСС) для воды. Это делается в ожидании того, что предприятие будет осуществлять долгосрочную программу снижения выбросов и постепенно достигнет уровня ПДВ (ПДС). Здесь, по-видимому, кроется лазейка для многолетнего загрязнения среды, превышающего установленные нормативы.
Технологические стандарты предопределяют требования к модернизации процессов производства, приводящие к желаемому состоянию окружающей среды. В американской практике это требование к внедрению в промышленности так называемой наилучшей из имеющихся технологий (best available technology), а в сельском хозяйстве – наилучших приемов управления (best management practices).
Стандарты качества продукции регламентируют содержание в ней вредных веществ.
Прямые административные запреты применяются, когда нежелательные последствия могут регулироваться только таким жестким способом. Например, ряд заводов в СССР и Центральной Европе был закрыт в 1989–1990 гг. потому, что было невозможно снизить загрязнение от них экономически целесообразным и технологически возможным путем. Ранее был введен запрет на производство и использование пестицида ДДТ, отличающегося высокой степенью токсичности и чрезвычайно продолжительным временем распада. Постепенно, в соответствии с международными соглашениями, снижается производство хлорфторуглеродов (ХФУ), разрушающих озоновый слой. В случае ХФУ действуют квоты, определяющие объем их производства и употребления в стране. За несколько лет до полного прекращения охоты на китов в мире СССР использовал ежегодный лимит на количество добываемых животных, устанавливавшийся для нашей страны.
Сертификаты на пользование землей и водой свидетельствуют о постоянном или временном праве пользования ресурсом и определяют его пределы. Разрешения и лицензии выдаются на определенный срок для деятельности, которая может оказаться экологически опасной.
Экологическая экспертиза направлена на анализ последствий как намечаемого проекта, так и уже функционирующего. Оценка воздействия на окружающую среду (ОВОС) является частью экологической экспертизы.
Система экономических методов отличается от административной тем, что предприятие-загрязнитель не сковано стандартами и может выбирать свою стратегию, исходя из затрат и результатов, но оно не может влиять на централизованно регулируемые экономические параметры, определяющие экологические расходы предприятия.
Среди экономических рычагов наиболее распространены платежи и налоги за загрязнение, которые фактически представляют собой плату за пользование ассимиляционным потенциалом окружающей среды. Предполагается, что предприятие заинтересовано в сокращении платежей и налогов и потому стремится к сокращению выбросов. Налоги идут в бюджет, в то время как платежи по большей части направляются в экологический фонд и используются для решения экологических проблем.
Субсидии представляют собой специальные выплаты предприятиям-загрязнителям для финансирования мероприятий по сокращению сбросов.
Рыночные методы управления состоянием окружающей среды направлены на более гибкие отношения между пользователями ресурсов и органами управления. Общество определяет допустимые масштабы загрязнения, после чего разрешения на выброс распределяются (распродаются) между отдельными предприятиями. Фирма либо достигает установленного стандарта загрязнения, вводя технологические новшества и ограничивая свои сбросы в пределах установленного разрешения, либо приобретает дополнительно часть разрешения на выброс, выданного другому предприятию. Тем самым фактически создается рынок прав на загрязнение и соответствующие банки и биржи прав на загрязнение.
В практике управления состоянием окружающей среды используется комплекс методов, потому что каждый из них имеет свои положительные и отрицательные стороны.
Часть III
Геосферы земли и деятельность человека
В этой части мы рассмотрим основные геоэкологические проблемы, развивающиеся в отдельных геосферах Земли. В то же время все крупные проблемы геоэкологии выходят далеко за рамки одной геосферы, и распределение материала по геосферам в значительной степени вызвано удобством изложения.
V. Атмосфера. Влияние деятельности человека на атмосферу и климат
V.I. Основные особенности атмосферы и климата Земли[3]3Для более углубленного изучения этих вопросов рекомендуется учебник С. П. Хромова и М. А. Петросянца «Метеорология и климатология», 4-е изд. М.: Изд-во МГУ, 1994. 520 с.
[Закрыть]
Атмосфера – это газовая оболочка Земли с содержащимися в ней аэрозольными частицами. Она движется вместе с твердой Землей как единое целое и одновременно принимает участие во вращении Земли. Газы сжимаемы, и потому плотность воздуха наибольшая у земной поверхности, убывая кверху. Половина всей массы атмосферы сосредоточена в нижних 5 км, а три четверти – в нижних 10 км.
Атмосфера состоит из концентрических слоев, отличающихся своими характеристиками, – тропосферы, стратосферы, мезосферы, термосферы, экзосферы и магнитосферы. В нижнем из слоев, тропосфере, температура воздуха убывает с высотой: средняя величина вертикального градиента температуры составляет 0,6 °C/100 м. Выше тропосферы падение температуры с высотой в конце концов сменяется ее ростом. В тропиках толщина тропосферы в среднем составляет 15–17 км, в умеренных широтах – 10–12 км, над полюсами – до 8–9 км. В тропосфере сосредоточено 4/5 всей массы воздуха атмосферы и почти весь водяной пар. Она взаимодействует с нижележащими оболочками Земли. Большая часть геоэкологических проблем, относящихся преимущественно к атмосфере, сосредоточена в тропосфере и в особенности на нижней ее границе.
Физическое состояние атмосферы в данной точке в данный момент времени называется погодой. В свою очередь, совокупность атмосферных условий (то есть погод) данной местности за многолетний период называют локальным климатом. Конкретные типы локальных климатов определяются такими географическими факторами, как широта места, распределение суши и моря, положение места по отношению к океанам, а также его положение в системе общей циркуляции атмосферы, крупномасштабные особенности рельефа, растительный покров, снежный покров и морские льды, океанические течения. Из локальных климатов складываются географически обусловленные климаты на территориях более высоких рангов, вплоть до континентов, океанов и Земли в целом.
В формировании погоды и климата участвуют три основных взаимосвязанных и взаимообусловленных группы атмосферных процессов, называемых климатообразующими: теплооборот, влагооборот и атмосферная циркуляция.
Под термином теплооборот понимается сумма процессов получения, преобразования, переноса и потери тепла в системе земля – атмосфера. О нем уже вкратце говорилось в главе 1. Теплооборот предопределяет важнейшую климатологическую характеристику – температурный режим того или иного места. Распределение температуры воздуха зависит от общих условий притока солнечной радиации в зависимости от широты, от расположения суши и моря, по-разному аккумулирующих тепло, и от воздушных течений, переносящих тепловую энергию от одних областей к другим.
Атмосферный воздух у земной поверхности содержит существенное количество влаги, в среднем от 0,2 % в полярных районах до 2,5 % у экватора. Соответственно, под термином влагооборот понимается сумма процессов накопления, отдачи и переноса влаги, определяющих особенности увлажнения данного места. Большую роль играют процессы фазовых переходов (испарение или конденсация, таяние или замерзание) влаги в атмосфере и в слое взаимодействия между земной поверхностью и атмосферой. Благодаря этим процессам осуществляется взаимосвязь между тепловым и водным режимами географической оболочки.
Неравномерное распределение тепла в атмосфере приводит к неравномерному распределению атмосферного давления, а от распределения давления зависят воздушные течения. Ряд факторов предопределяет закономерное распределение на Земле основных барических центров (то есть центров повышенного или пониженного атмосферного давления) и его изменения по сезонам года. Они и формируют столь же закономерную систему крупномасштабных воздушных течений на Земле, называемую общей циркуляцией атмосферы. Общая циркуляция атмосферы – одна из характернейших особенностей экосферы.
Вследствие большой подвижности атмосферы и, соответственно, относительно быстрого ее перемешивания, в нижних 100 км процентное соотношение содержащихся в ней газов постоянно (в %% по объему):
На долю остальных нескольких десятков и даже сотен газов приходится всего лишь 0,01 %, но многие из этих газов, как мы увидим далее, играют значительную роль в состоянии экосферы.
Процессы и особенности атмосферы изменяются под воздействием деятельности человека. Локальные изменения состояния природно-территориальных комплексов (ландшафтов), такие как возникновение и развитие городов, оросительных и других земледельческих систем, антропогенные преобразования пастбищ, возникновение водохранилищ и пр., ведут к локальным изменениям климата. Крупномасштабные антропогенные изменения поверхности Земли (например, обезлесение, опустынивание, деградация внутренних морей и озер и др.) также обусловливают изменения особенностей теплового и водного режима на больших территориях и акваториях, хотя и пока еще менее заметные.
Наряду с изменениями физических особенностей атмосферы с вытекающими отсюда последствиями, происходят антропогенные изменения ее газового состава. По-видимому, в настоящее время роль человека проявляется сильнее в этой области, и химические трансформации в атмосфере создают ряд серьезных геоэкологических проблем. К их числу надо отнести антропогенное изменение климата и его последствия, нарушение естественного состояния озонового слоя, асидификация, включая кислотные осадки, и локальное загрязнение атмосферы.
V.2. Антропогенное изменение климата и его последствияИсточником энергии погодных и климатических процессов является солнечная радиация. К земной поверхности приходит коротковолновая радиация, в то время как нагреваемая таким образом Земля испускает в атмосферу и далее за ее пределы энергию в виде длинноволнового (инфракрасного, или теплового) излучения.
Некоторые газы в атмосфере, включая водяной пар, отличаются парниковым эффектом, то есть способностью в большей степени пропускать к поверхности Земли солнечную радиацию по сравнению с тепловым излучением, испускаемым нагретой Солнцем Землей. В результате температура поверхности Земли и приземного слоя воздуха выше, чем она была бы при отсутствии парникового эффекта. Средняя температура поверхности Земли равна плюс 15 °C, а без парникового эффекта она была бы минус 18°! Eстественный парниковый эффект – один из механизмов жизнеобеспечения на Земле.
Ведущую роль в парниковом эффекте играет водяной пар, находящийся в атмосфере. Удивительно, что большую роль играют также газы, не отличающиеся высокой концентрацией в атмосфере. К основным парниковым газам относятся: углекислый газ (диоксид углерода) (СО2), метан (СН4), оксиды азота, в особенности N2O, и озон (О3). В эту же категорию следует включить не встречающуюся в природе группу газов, синтезируемых человеком, под общим названием хлорфторуглероды.
Если баланс на верхней границе тропосферы между приходящей коротковолновой и отраженной длинноволновой радиацией не равен нулю, то возникает дополнительный эффект радиационного воздействия на атмосферу, приводящий либо к нагреванию (при перевесе приходящей радиации), либо к охлаждению тропосферы. Атмосфера реагирует на эти изменения, постепенно устанавливая новый радиационный баланс посредством соответствующего повышения или понижения температуры тропосферы и поверхности Земли.
Например, при удвоенной концентрации углекислого газа, по сравнению с концентрацией в начале промышленной революции (1750–1800 гг.), и при отсутствии других факторов эффект радиационного воздействия составил бы 4 вт/м2, а компенсационное повышение температуры было бы около 1°. При более полном учете факторов и обратных связей между ними оказывается, что удвоение концентрации углекислого газа привело бы к повышению температуры на 2,5°. Эффект радиационного воздействия при удвоенной концентрации СО2, равный 4 вт/м2, составляет 1,7 % от величины коротковолновой солнечной радиации, поглощаемой атмосферой и поверхностью Земли и равной в среднем 240 вт/м2. Нарушение баланса приходящей и уходящей радиации всего лишь на 1,7 % приводит, как видим, к очень серьезным изменениям климата! Это также еще один пример высокой степени сбалансированности механизмов жизнеобеспечения экосферы, обеспечивающих ее устойчивость.
Установлено, что многие действия человека за последние 200 лет, и в особенности после 1950 г., привели к продолжающемуся и в настоящее время повышению концентрации в атмосфере газов, обладающих парниковым эффектом (рис. 9). Неизбежно последовавшая за этим реакция атмосферы заключается в антропогенном усилении естественного парникового эффекта. Суммарное антропогенное усиление парникового эффекта оценивается, по состоянию на 1995 г., величиной +2,45 ватт/м2 (Международный Комитет по изменению климата – IPCC).
Парниковый эффект каждого из таких газов зависит от трех основных факторов:
а) ожидаемого парникового эффекта на протяжении ближайших десятилетий или веков (например, 20, 100 или 500 лет), вызываемого единичным объемом газа, уже поступившим в атмосферу, по сравнению с эффектом от углекислого газа, принимаемым за единицу;
б) типичной продолжительности его пребывания в атмосфере;
в) объема эмиссии газа.
Комбинация первых двух факторов носит название «Относительный парниковый потенциал» и выражается в единицах от потенциала СО2. Она является удобным показателем текущего состояния парникового эффекта и используется в международных дипломатических переговорах. Относительная роль каждого из парниковых газов весьма чувствительна к изменению каждого фактора и к их взаимозависимости и потому определяется весьма приближенно.
Рис. 9. Средняя месячная концентрация углекислого газа в атмосфере за 1957–1993 гг. на Гавайских островах (Мауна Лоа) и Южном полюсе
Основные особенности газов с парниковым эффектом в атмосфере по состоянию в основном на 1994 г. приведены в табл. 7.
Таблица 7
Основные особенности газов с парниковым эффектом
* Данные взяты для наиболее типичных для 1995 г. хлорфторуглеродов, как используемых, так и запрещенных к использованию, но еще находящихся в атмосфере.
Для понимания глобального парникового эффекта необходимо понять роль каждого из газов. Как видим, картина отличается большой сложностью и изменчивостью во времени.
Роль водяного пара, содержащегося в атмосфере, в общемировом парниковом эффекте велика, но трудно определима однозначно. Режим водяного пара в атмосфере – главный источник неопределенности изменения климата. При потеплении климата содержание водяного пара в атмосфере будет увеличиваться, тем самым усиливая парниковый эффект.
Диоксид углерода, или углекислый газ (СО2), отличается, по сравнению с другими парниковыми газами, относительно низким потенциалом парникового эффекта, но довольно значительной продолжительностью существования в атмосфере, порядка 50—200 лет, и сравнительно высокой концентрацией. Доля диоксида углерода в парниковом эффекте составляет в настоящее время около 64 %, но эта относительная величина неустойчива, поскольку зависит от изменяющейся роли других парниковых газов.
Концентрация углекислого газа в атмосфере в период с 1000 по 1800 гг. составляла 270–290 частей на миллион по объему (ppmv). Затем она стала неуклонно увеличиваться, с соответствующим возрастанием парникового эффекта. В 1958 г., когда начались постоянные инструментальные наблюдения, она была 315 ppmv, а к концу XX в. она примерно равна 360 ppmv и продолжает расти (рис. 9). Расчеты показывают, что при современном уровне эмиссии углекислого газа концентрация его в атмосфере будет неуклонно увеличиваться, достигнув 500 ppmv к концу XXI в. Стабилизация концентрации может быть достигнута только при значительном сокращении объема выбросов.
Рассмотрим причины наблюдаемого роста концентрации, основываясь на антропогенной части глобального биогеохимического цикла углерода.
Основной источник поступления углекислого газа в атмосферу – сжигание горючих ископаемых (угля, нефти, газа) для производства энергии. Около 80 % всей энергии в мире производится за счет тепловой энергетики. Поступление углекислого газа в атмосферу за период с 1860 по 1990 гг. увеличивалось в среднем на 0,4 % в год. В течение 1980-х гг. она составляла 5,5±0,5 млрд т (гигатонн) углерода в год.
Сокращение лесов тропического и экваториального пояса, деградация почв, другие антропогенные трансформации ландшафтов приводят в основном к высвобождению углерода, которое сопровождается его окислением, то есть образованием СО2. В целом эмиссия в атмосферу за счет преобразования тропических ландшафтов составляет 1,6± 1,0 млрд т углерода в год. С другой стороны, в умеренных и высоких широтах Северного полушария отмечается в целом преобладание восстановления лесов над их исчезновением. Для построения органического вещества лесов в процессе фотосинтеза углекислый газ забирается из атмосферы. Это количество, в пересчете на углерод, равно 0,5±0,5 млрд т. Пределы точности, равные самой величине, указывают нам также на все еще весьма низкий уровень понимания антропогенной роли в некоторых звеньях глобального биогеохимического цикла углерода.
В атмосфере в результате деятельности человека ежегодно дополнительно накапливается 3,3±0,2 млрд т углерода в виде углекислого газа.
Мировой океан поглощает из атмосферы (растворяет, химически и биологически связывает) около 2,0±0,8 млрд тонн углерода в виде углекислого газа. Суммарные величины поглощения углекислого газа океаном пока непосредственно не измеряются. Они рассчитываются на основе моделей, описывающих обмен между атмосферой, поверхностным и глубинным слоями океана.
Таблица 8
Глобальный баланс антропогенного углерода, млрд т за год
Увеличение концентрации диоксида углерода в атмосфере должно стимулировать процесс фотосинтеза. Это так называемая фертилизация, благодаря которой продукция органического вещества, по некоторым оценкам, может возрасти на 20–40 % при удвоенной, по сравнению с современной, концентрацией углекислого газа. Исследования процесса фертилизации проводились пока только в лабораторных условиях. Глобальная оценка поглощения углекислого газа растительностью мира вследствие ее фертилизации на 1980-е гг. составляет 0,5–2,0 млрд т за год. В балансе антропогенных потоков углерода все пока еще плохо понимаемые процессы, протекающие в экосистемах суши, включая фертилизацию, оцениваются в 1,3±1,5 млрд т.
Баланс антропогенного углерода за 1980–1989 гг., связанный с эмиссией, поглощением и изменением запасов углекислого газа, в млрд т за год представлен в табл. 8.
Как видим, невязка баланса значительна, и более глубокое ее объяснение – один из крупнейших, пока недостаточно решенных вопросов. По-видимому, необходимо более углубленное изучение режима антропогенного углерода как в Мировом океане и отдельных его частях, так и в экосистемах суши.
Метан (СН4) также играет заметную роль в парниковом эффекте, составляющую приблизительно 19 % (на 1995 г.). Метан образуется в анаэробных условиях, таких как естественные болота разного типа, толща сезонной и вечной мерзлоты, рисовые плантации, свалки, а также в результате жизнедеятельности жвачных животных и термитов. Оценки показывают, что около 20 % суммарной эмиссии метана связаны с технологией использования горючих ископаемых (сжигание топлива, эмиссии из угольных шахт, добыча и распределение природного газа, переработка нефти). Всего антропогенная деятельность обеспечивает 60–80 % суммарной эмиссии метана в атмосферу.
В атмосфере метан неустойчив. Он удаляется из нее вследствие взаимодействия с ионом гидроксила (ОН) в тропосфере. Несмотря на этот процесс, концентрация метана в атмосфере увеличилась примерно вдвое по сравнению с доиндустриальным временем и продолжает расти со скоростью около 0,8 % в год.
Эмиссия метана с болот зоны избыточного увлажнения Северного полушария и из районов вечной мерзлоты весьма чувствительна к изменениям температуры и осадков. Измерения показывают, что рост температуры и увеличение увлажненности (то есть продолжительности нахождения территории в анаэробных условиях) еще более усиливают эмиссию метана. Это, между прочим, характерный пример положительной обратной связи. Наоборот, снижение уровня грунтовых вод из-за пониженной увлажненности должно приводить к уменьшению эмиссии метана (отрицительная обратная связь).
Текущая роль оксида азота (N2O) в суммарном парниковом эффекте составляет всего около 6 %. Концентрация оксида азота в атмосфере также увеличивается. Предполагается, что его антропогенные источники приблизительно вдвое меньше естественных. Источниками антропогенного оксида азота является сельское хозяйство (в особенности пастбища в тропиках), сжигание биомассы и промышленность азотсодержащих веществ. Его относительный парниковый потенциал (в 290 раз выше потенциала угдекислого газа) и типичная продолжительность существования в атмосфере (120 лет) значительны, компенсируя его невысокую концентрацию.
Хлорфторуглероды (ХФУ) – это вещества, синтезируемые человеком и содержащие хлор, фтор и бром. Они обладают очень сильным относительным парниковым потенциалом и значительной продолжительностью жизни в атмосфере. Производство хлорфторуглеродов в мире в настоящее время контролируется международными соглашениями по защите озонового слоя, включающими и положение о постепенном снижении производства этих веществ, замене их на менее озоноразрушающие, с последующим полным его прекращением. В результате скорость накопления ХФУ в атмосфере замедлилась. ХФУ разрушают озон в тропосфере, и их итоговая роль в парниковом эффекте составляет, на середину 1990-х гг., приблизительно 7 %.
Озон (О3) – важный парниковый газ, находящийся как в стратосфере, так и в тропосфере. Он влияет как на коротковолновую, так и на длинноволновую радиацию, и потому итоговые направление и величина его вклада в радиационный баланс в сильной степени зависят от вертикального распределения содержания озона, в особенности на уровне тропопаузы, где надежных наблюдений пока недостаточно. Поэтому определение вклада озона в парниковый эффект сложнее по сравнению с хорошо перемешиваемыми газами. Оценки указывают на положительную результирующую (приблизительно +0,4 ватт/м2).
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?