Автор книги: Генрих Эрлих
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]
Зачем нужны поцелуи?
Зачатие зачатием, а каково место поцелуев в жизни человека? Из серии работ Киматы Хаджиме[21]21
H. Kimata. Kissing reduces allergic skin wheal responses and plasma neurotrophin levels. Physiology and Behavior, 2003, 80 (2–3): 395–398. DOI: 10.1016/j.physbeh.2003.09.004; H. Kimata. Kissing selectively decreases allergen-specific IgE production in atopic patients. Journal of Psychosomatic Research, 2006, 60 (5): 545–547. https://doi.org/10.1016/j.jpsychores.2005.09.007
[Закрыть] из отделения аллергологии киотского госпиталя Удзитакеда, ставшего лауреатом Игнобелевской премии по медицине за 2015 год, следует однозначный вывод: поцелуи помогают человеку улучшать статус своей иммунной системы. Стало быть, они представляют собой не пустую забаву – или, как некоторые говорят, никчемное слюнокачание, – а жизненную необходимость.
В поисках ответа на вопрос "Зачем же нужны поцелуи?" доктор Кимата изучил их влияние на кожную аллергию. Видимо, по долгу службы ему не раз приходилось лечить людей от этой неприятной болезни, и целью исследования был поиск нетривиального способа облегчить их страдания. Еще в 2001 году Кимата обнаружил, что симптомы аллергии уменьшаются после просмотра кинокомедий. И вот в 2003 году он пришел к мысли изучить поцелуи как более мощный генератор положительных эмоций.
Для этого доктор Кимата подобрал три группы из добровольцев как с разными типами кожной аллергии, вызываемой пыльцой растений или пылевыми клещами, так и здоровых, затем разбил их на пары, и те, уединившись за закрытыми дверями, полчаса обнимались и целовались под расслабляющую музыку. А в ходе эксперимента у них брали пробы крови и измеряли в них уровень веществ, свидетельствующих о степени аллергической реакции. Спустя две недели опыт повторили, но теперь участникам под ту же музыку можно было только обниматься, а целоваться – ни-ни.
И оказалось – да, действительно, положительные эмоции, связанные именно с поцелуями, у пациентов с аллергией снижали уровень соответствующих веществ в крови, а у здоровых состав крови никак не менялся. Это лишний раз подчеркнуло: дело вовсе не в том, что в организм попала слюна другого человека со своими специфическими, присущими только ему веществами, а в том, что на такое проникновение иммунная система дала бы достойный аллергический ответ.
На этом достижении Кимата не остановился и в 2004 году продолжил опыты, изучая влияние на аллергию и более близких, нежели поцелуи, человеческих отношений. Пары из добровольцев опять на полчаса уединялись за закрытыми дверями, где совершали таинство любви, медики же до и сразу после брали у них пробы крови и проводили тест на аллергию. И опять положительные эмоции от такого времяпрепровождения снижали у страдающих от аллергии пациентов реакцию на пыльцу или пыль, а у здоровых никаких изменений в работе иммунной системы замечено не было. В общем, похоже, что благодаря исследованиям доктора Киматы под известное прозрение Лолиты из одноименного романа В. В. Набокова "хорошо против прыщиков на лице" подведена совершенно новая научная база.
А может быть, загадочное отсутствие при поцелуях иммунной реакции на чужеродные белки, да и генетический материал, всегда присутствующий в слюне, связано с тем, что слюна – очень едкая жидкость и всякие признаки чужой жизни в ней очень быстро исчезают? Такая точка зрения существовала достаточно долго и сильно огорчала судмедэкспертов. Ведь для них порой лишь наличие чужого генетического материала во рту жертвы могло бы свидетельствовать о том, что несостоявшаяся попытка изнасилования действительно имела место быть, что речь об оговоре не идет. Поиском ответа на вопрос "Сколько времени генетический материал из слюны одного человека может после поцелуя сохраняться во рту другого человека?" занимались коллеги доктора Киматы – словацкий коллектив во главе с Натальей Комодьевой[22]22
N. Kamodyová, J. Durdiaková, P. Celecr … T. Sedláčková, G. Repiská, B. Sviežená, G. Minárik. Prevalence and persistence of male DNA identified in mixed saliva samples after intense kissing. FSI Genetics, 2013, 7 (1): 124–8. DOI: 10.1016/j.fsigen.2012.07.007
[Закрыть] из братиславского Университета Коменского, разделивший с ним честь быть удостоенными Игнобелевской премии по медицине за 2015 год.
В их исследовании участвовали 12 мужчин, которые в течение двух минут интенсивно целовались с женщинами, чью слюну, отобранную спустя одну, пять, десять, тридцать и шестьдесят минут, и проверяли на наличие мужской ДНК. Как оказалось, дела судмедэкспертов обстоят не то чтобы блестяще, но и не безнадежно. Действительно, прямой анализ показал, что спустя пять минут в большинстве – восьми – образцах слюны мужской ДНК уже не было, а спустя полчаса – ее не было ни в одном из них.
Но вот применили современный метод полимеразной цепной реакции (ПЦР), который способен даже из единичной молекулы синтезировать вполне достаточное для анализа количество вещества. И оказалось, что эти следы есть. Через пять минут после поцелуев лишь один мужчина ускользнул от потенциальной ответственности – его следы полностью исчезли из слюны партнерши. Спустя полчаса выбыл еще один участник. Однако и через час – время, за которое при благоприятном стечении обстоятельств можно успеть начать расследование, – пропали следы лишь четырех мужчин из двенадцати. При этом из оставшихся лишь в одном случае идентификацию этого следа провести не удалось. То есть, если бы проходило настоящее расследование, семь человек были бы сразу уличены в совершении преступления, а пятерых ожидало продолжение следственных действий.
Эта интереснейшая работа тянет за собой шлейф новых вопросов, дающих возможность для настоящих ученых продолжить свою деятельность по разгадыванию головоломок. Например, в чем же отличие того единственного мужчины, слюна которого уже через пять минут не оставила никаких следов? Ну да его решением, видимо, придется заняться какому-то сыщику, у которого из-за данных ДНК-экспертизы не будут сходиться концы с концами. А судмедэкспертам теперь, после работы игнобелевских лауреатов, стало ясно: совершенствуя методы, можно найти и не такую иголку в стоге сена.
Как живые существа ориентируются в пространстве?
В заголовок вынесен типичный вопрос на засыпку. Тут только с человеком все более-менее понятно: любой школьник вам скажет, что люди ориентируются в пространстве по GPS-навигатору. А как выкручиваются насекомые, рыбы, птицы и млекопитающие, братья наши меньшие, у которых нет не то что вышеозначенного навигатора, но даже завалящего компаса?
Возьмем жука-навозника, обитающего в африканских пустынях, – скарабея. Это неутомимое существо катает по песку шарики из навоза. Цель же – найти укромное местечко, где можно шарик спрятать и, отложив туда яйцо, быть спокойным за судьбу потомства, обеспеченного запасом питательного корма.
Однако есть у скарабея очевидная проблема. Как и все живые существа, он несимметричен. Эта асимметрия способна сыграть с ним злую шутку, как с заблудившимся в лесу человеком, лишенным навигатора: из-за того что у человека длина ног разная, он, не имея ориентиров, будет упорно и строго идти только вперед, но траектория его движения окажется дугообразной и в конце концов сомкнется в окружность.
Аналогично и скарабей – если он не будет ориентироваться, то станет двигаться по окружности, то есть по многу раз проходить уже осмотренные, не подошедшие для закладки катышка навоза места, и никогда не размножится. Однако размножается! Значит, у него есть какой-то ориентир среди бескрайних однообразных песков, где даже глазу человека-то не за что зацепиться, не то что фасеткам маленького жука.
Удивительно, но это существо показало себя подлинным обитателем Вселенной (недаром древние египтяне боготворили скарабея), ведь ориентиром для него оказалась сама по себе Галактика – Млечный Путь.
Это интересное обстоятельство выяснил творческий коллектив из шведских и южноафриканских исследователей во главе с Марией Даке (Лундский и Витватерсрандский университеты), получив за работу заслуженную объединенную Игнобелевскую премию по биологии и астрономии за 2013 год.
Для исследования они построили полигон – арену двухметрового диаметра с непрозрачными темными стенками высотой в метр. В центр арены аккуратно сажали жука с навозным шариком и измеряли, за какое время он под ночными небесами доберется до стенки: если путь проходит по прямой, то время окажется минимальным. Конечно, Луна служила самым лучшим ориентиром, и в полнолуние жуки демонстрировали рекордные результаты – около 21 секунды. Звездное небо без Луны, впрочем, также было неплохо – 41 секунда. А вот если неба не было видно, то жук блуждал в два-четыре раза дольше – от 90 до 150 секунд. То есть жуку для ориентировки явно нужны звезды. Но какие? Что он такого важного видит на небе, где не всякий человек сможет найти нужную звезду несмотря на советы "Гугла"?
Для выяснения подробностей арену с жуками перебазировали в планетарий Йоханнесбурга, на куполе которого можно зажечь до 4000 звезд. Там жукам включали и полное небо, и только Млечный Путь, и 18 самых ярких звезд, и их же в окружении слабых – в общем, перебрали все пришедшие в голову комбинации небесных светил. И оказалось, что Млечный Путь и есть самый главный ориентир в отсутствие Луны – вся Галактика целиком, именно в этом случае жук добирался до края арены за 40–50 секунд. А вот только яркие звезды заставляли его блуждать по полторы минуты. Контрольной группой послужили другие южноафриканские жуки-навозники, за которыми наблюдали в природе. Дело в том, что осенью на юге континента Млечный Путь едва виден над горизонтом. И если в это время не было Луны, то свободно живущие жуки теряли ориентацию.
Как же видит жук нашу Галактику? Скорее всего, как яркое пятно на небе: фасетки его глаза не способны различать отдельные звезды. Кстати, авторы исследования отмечают, что аналогично ориентироваться по Галактике должны и другие ночные насекомые и даже земноводные. Правда, пока что только с навозниками удалось поставить столь тщательной опыт с привлечением передовой техники вроде планетария.
Звезды звездами, но что у нас с магнитным полем? Есть ли какая-то ясность, используют его разные живые создания для ориентации или нет? Многие пытались найти ответ на этот вопрос, но поиски скорее порождают новые проблемы, чем дают ответы. Например, австралийский ихтиолог Грэхем Хейс из Университета Суонси проанализировал канадскую статистику, посвященную изучению путей возвращения атлантических лососей в родную реку в районе Ванкувера. И статистику немалую – полвека наблюдений. Суть же их такова.
Перед устьем реки в океане лежит остров, обходить который можно как с севера, так и с юга. Однако год от года большинство рыб выбирают только один из этих путей. С чем же это связано? Ведь считается, что рыбы, как и птицы, и черепахи – в общем, все, кто совершает дальние путешествия, запоминают некую магнитную карту. Она-то и приводит их к цели. Почему же в один год карта ведет их в обход острова сверху, а в другой – снизу? "Эврика!" – воскликнул Грэхем Хейс, разобравшись в физике явления: карта-то не постоянна. Магнитное поле Земли весьма переменчиво. Мало того что его полюса скользят со скоростью в несколько десятков километров в год, так ведь еще имеются как кратковременные, так и долговременные, вековые, изменения его напряженности и склонения. Очевидно, что карта, запомненная рыбой одного года рождения, будет отличаться от той, что возникнет в голове рыбы другого года. Вот они и обходят остров с разных сторон, пользуясь картой, которая уже не соответствует магнитному рельефу.
Ну вот, решение найдено, все отлично, ориентация по магнитному полю доказана. Как бы не так! Ведь есть существа, которые находят дорогу к месту рождения спустя десятилетия, как те же черепахи. За 20 лет магнитный полюс уползет на многие сотни километров, и карта станет совсем иной. Как при такой путанице черепаха сможет ориентироваться? Совершенно неясно.
Трудности с пониманием механизма взаимодействия живых существ с магнитным полем порой приводят к очень остроумным экспериментам, а их авторы получают заслуженную награду. Например, исследование ориентации тел собак относительно геомагнитного поля во время испражнения Игнобелевский комитет удостоил премии по биологии в 2014 году. Получил ее большой творческий коллектив – двенадцать чешских зоологов и физиков во главе с Хайнеком Бурдой, работающим в пражском Чешском университете наук о жизни и Университете Дуйсбурга – Эссена[23]23
V. Hart, P. Nováková, E. P. Malkemper, et al. Dogs are sensitive to small variations of the Earth's magnetic field. Front Zool, 2013, 10: 80. https://doi.org/10.1186/1742-9994-10-80
[Закрыть]. Ранее этот же коллектив изучал магнитное упорядочение коров, стоящих и лежащих на пастбище, оленей в лесу и охотящихся лис.
Казалось бы, изучить упорядочение испражняющихся собак несложно. Собери добровольцев, вручи каждому компас, и пусть они во время прогулок с питомцами фиксируют ориентацию тела собаки относительно стрелки компаса в момент освобождения от продуктов жизнедеятельности. Остается проанализировать данные и убедиться, что собаки не хуже лис или коров ощущают магнитное поле. Прелесть методики в том, что какое-либо неосознанное влияние человека на выбор ориентации невозможно – она определена процессами, протекающими в собаке.
Но не тут-то было. Проведя по полторы тысячи измерений ориентации во время дефекации и мочеиспускания для собак обоих полов (в эксперименте принимали участие 42 суки и 28 кобелей), авторы работы оказались у разбитого корыта. Никаких явных следов магнитного упорядочения собак замечено не было: точки вполне равномерно распределились по окружности компаса.
Однако настоящий ученый тем и отличается от дилетанта, что никогда не останавливается перед трудностями. Отсутствие яркого эффекта в данном, да и во многих других случаях совсем не показалось удивительным. В конце концов ведь очевидно, что все яркие эффекты естествоиспытатели обнаружили в XIX веке, самое позднее – в первой половине XX века. Тем же, кто стоит на плечах гигантов прошлого, осталось искать эффекты, невидимые невооруженным глазом. Впрочем, от этого ничуть не менее значимые.
Как выделить что-то внятное из безнадежно-равномерного распределения ориентаций? Правильно, нужно сделать выборку. Выборка по половой принадлежности собак ничего не дала – и кобели, и суки располагались одинаково хаотично. Может быть, солнце путает все планы и заставляет собаку сидеть так, чтобы оно не слепило ей глаза? Обстоятельство немаловажное, ведь, как отмечали классики, живое существо во время испражнения весьма беззащитно и ему приходится быть начеку, а если солнце заставляет жмуриться – можно прозевать опасность. Эту гипотезу сочли несостоятельной по двум причинам. Во-первых, зрение у собак так себе, эти животные больше полагаются на тонкий слух и прекрасное обоняние. А во-вторых, солнечный день в Чехии и Германии выпадает хорошо если через два дня на третий. Стало быть, солнце могло спутать магнитные планы собак от силы в трети случаев. Да и выборка по пасмурным дням не дала интересного результата – распределение оставалось все таким же уныло-однородным.
А что, если посмотреть на магнитную погоду? Ведь геомагнитное поле складывается из двух составляющих: статической, определяемой собственным полем Земли, а также магнитными аномалиями, которые вызваны неравномерным распределением ферромагнетиков в земной коре, и динамической, определяемой колебаниями ионосферы под действием солнечного ветра. Есть и еще один возмущающий фактор: межпланетное магнитное поле, создаваемое Солнцем. Все эти факторы учитывают при измерениях магнитного поля Земли, которые постоянно ведут в магнитных обсерваториях. Из-за динамической составляющей вектор напряженности суммарного поля постоянно меняет направление относительно того, что задано статической составляющей. И вот тут ученым улыбнулась удача: в те дни, когда поле было невозмущенным (отклонение его вектора было менее 0,1° относительно статической составляющей), собаки во время испражнения стремились ориентировать свое тело вдоль силовой линии, соединяющей северный и южный магнитные полюса Земли.
Нельзя сказать, что ориентация была строгой, статистический разброс составил примерно 50°, но это было гораздо лучше, чем в дни с сильными возмущениями. Когда же провели усреднение по одной и той же собаке – для тех, у которых было не менее пяти измерений, – разброс вообще упал до 29°. Справедливости ради стоит отметить, что, когда отклонение поля оказывалось в пределах 2°, на диаграмме появлялся некий слабый пик данных с ориентацией перпендикулярно геомагнитному полю, но статистическая значимость этого эффекта оказалась слишком мала, чтобы всерьез его обсуждать.
Однако какого же результата добились игнобелевские лауреаты, потратившие немало времени на свою работу? Неужели столь уж важно, как ориентируют свое тело собаки во время очистительной процедуры? Выводов можно сделать два.
Самый главный: при проведении работ по изучению влияния магнитного поля на живых существ нельзя не учитывать магнитную погоду. Вот цитата из статьи: "В частности, важен тот факт, что даже малые флуктуации магнитного поля Земли могут изменять поведение и что нормальные магнитные условия, при которых собаки демонстрируют свое особое поведение, присутствовали всего в 30 % случаев. Если экстраполировать это на других животных и на другие опыты по магниторецепции, то появляется объяснение плохой воспроизводимости результатов одних опытов и большого разброса данных других. Ученые, исследующие поведение животных, должны пересмотреть свои эксперименты и наблюдения с учетом этих фактов, а также учитывать их при планировании будущих работ"[24]24
V. Hart, P. Nováková, E. P. Malkemper, et al. Dogs are sensitive to small variations of the Earth's magnetic field. Front Zool, 2013, 10: 80. https://doi.org/10.1186/1742-9994-10-80
[Закрыть].
Ну а второй вывод: да, собаки чувствуют магнитное поле Земли, и с помощью достаточно простой методики можно тщательно изучать этот феномен. Тем более что собаки – вполне традиционные лабораторные животные, с ними легко и просто работать. Не то что с волками, лисами, черепахами, ящерицами, омарами, ласточками, крачками, малиновками, тритонами, пчелами, шмелями, муравьями, бабочками и прочими видами, у которых обнаружена склонность к взаимодействию с магнитным полем Земли.
А как они это делают? Как чувствуют ничтожное магнитное поле? Это – предмет длительной научной дискуссии, итоги которой до сих пор не подведены. Существование магниторецепции – восприятия магнитного поля, – по крайней мере у некоторых видов животных, не вызывает сомнений, при этом поиски механизма порой кажутся столь бесперспективными, что авторы одного из свежих обзоров проблемы назвали его "чувство без органа чувств"[25]25
G. C. Nordmann, T. Hochstoeger, D. A. Keays Magnetoreception – A sense without a receptor. PLoS Biol, 2017, 15 (10): e2003234. https://doi.org/10.1371/journal.pbio.2003234
[Закрыть].
Сама по себе идея магниторецепции появилась давно. В 1855 году русский зоолог Александр Миддендорф писал о перелетных птицах: "…подобно тому, как на корабле есть магнитная стрелка, эти моряки, бороздящие воздушный океан, имеют внутреннее магнитное чувство, которое может быть связано с гальванически-магнитными токами". Спустя сто лет, когда техника эксперимента существенно продвинулась вперед, зоологи Фридрих Меркель и Вольфганг Вильчко из Франкфуртского университета, поставив опыт с малиновками, доказали, что те ориентируются в полете по направлению магнитного поля[26]26
F. W. Merkel, W. Wiltschko. Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula)Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula). Vogelwarte – Zeitschrift für Vogelkunde, 19651965, 23 (1): 71–77.
[Закрыть].
После решения принципиального вопроса – да, явление существует – оставалось найти сам магниточувствительный орган или хотя бы магниторецептор, и проблема оказалась бы решена. Исследователям отчасти посчастливилось – они нашли намеки на целых два механизма, однако доказать, что именно с их помощью животные чувствуют магнитное поле, пока не удается. Какие же это намеки? Современная наука не приветствует и подробно не рассматривает идею Миддендорфа о гальванических токах, а они неизбежно, в силу закона электромагнитной индукции Фарадея, должны возникать при движении сквозь магнитное поле проводника, то есть насыщенного ионами тела птицы или пчелы. Вместо этого задействованы, так сказать, статические идеи.
Согласно первой, внутри некоего органа животного или непосредственно внутри его клеток находятся магнитные частички. Желательно, чтобы они были неравноосными (вытянутыми) и монокристаллическими. Их размер не велик и не мал, а как раз такой, чтобы в каждой частице размещался один и только один магнитный домен (то есть область, в которой все магнитные моменты атомов направлены в одну и ту же сторону; большая частица разбивается на несколько доменов с разной ориентацией моментов, и ее суммарный магнитный момент, усредняясь, снижается), но в то же время, чтобы тепловые флуктуации не нарушали магнитный порядок слишком малого числа атомов. При изменении направления магнитного поля частичка должна повернуться – разместить свой магнитный момент по полю, а это вызывает механические искажения вмещающей ее клетки. Если же частичка не одна, тогда должны возникать цепочки намагниченных частиц, и поле станет менять конфигурацию уже этих цепочек, что опять-таки меняет форму клетки и растягивает мембрану так, что открывается какой-то ионный канал.
Для подтверждения этой гипотезы нужно найти магнитные частицы минерала магнетита (смесь оксидов двух– и трехвалентного железа) с подобными характеристиками и содержащие их клетки, связанные с нервной системой. И действительно, магнетит в теле обнаружен у многих животных и даже у людей, хотя последние в магниторецепции не замечены. Например, Джозеф Киршвинк и его коллеги из Калифорнийского технологического института выяснили[27]27
J. L. Kirschvink, A. Kobayashi-Kirschvink, and B. J. Woodford Magnetite biomineralization in the human brain. Proceedings of the National Academy of Science, 1992, 89 (16): 7683–7687. https://doi.org/10.1073/pnas.89.16.7683
[Закрыть], что в одном грамме человеческого мозга содержится не менее пяти миллионов однодоменных магнитных частиц – примерно четыре нанограмма. При этом большинство их имеет размер в 10–70 нм, а небольшая доля – существенно крупнее, под полмикрона. В мягких же оболочках мозга магнитных частиц примерно в 20 раз больше. Современные данные, впрочем, дают более высокие значения. В тканях жителей таких загрязненных городов, как Мехико или Манчестер, находят до 12 мкг/г подобных частиц, то есть в тысячи раз больше, чем в Калифорнии начала 1990-х[28]28
R. Gieré Magnetite in the human body: Biogenic vs. anthropogenic. Proceedings of the National Academy of Science, 2016, 113 (43): 11986–11987. https://doi.org/10.1073/pnas.1613349113
[Закрыть]. Возникает мысль, что частицы магнетита не синтезируются в организмах городских млекопитающих, а проникают извне, например при вдыхании выхлопных газов дизельных двигателей. Хотя наличие больших и малых частиц при отсутствии средних подсказывает, что происхождение у тех и других может быть разным. Ну а пришедшие извне частицы вряд ли могут отвечать за какой-то орган чувств – очень уж это выходит ненадежно.
Где именно, в каких клетках мозга человека расположены магнитные частицы, выяснить пока что не удалось, равно как и не удалось найти "магнитные" клетки у животных, исследовать которых гораздо проще. Зато в межклеточном пространстве и в клетках иммунной системы – макрофагах, которые предназначены как раз для того, чтобы удалять из организма всякую крупную дрянь, – магнетитовые частицы имеются. Однако ни там, ни там они не могут передавать информацию нервной системе, а без этого какой может быть орган чувств? Да и скопления частиц во многих случаях находят вовсе не в мозге. Вот у пчел они сосредоточены в брюшке, и это, как показал опыт, ничуть не мешает магниторецепции[29]29
C. Liang, C. Chuang, J. Jiang, et al. Magnetic Sensing through the Abdomen of the Honey bee. Scientific Reports, 2016, 6: 23657. https://doi.org/10.1038/srep23657
[Закрыть].
Сначала пчел приучали брать мед из кормушки с магнитным полем. Через пару дней они так к этому привыкали, что искали мед именно там, где было магнитное поле. Затем пчелам перерезали нерв, который соединяет брюшко с грудью, то есть лишили магнитики из брюшка возможности передавать информацию с помощью нервной системы. Магнитное чувство у пчел пропадало, но мед они прекрасно забирали из кормушки, видимо, ориентируясь уже только на запахи. То есть магнетитовая система вполне работала, но, как именно магнитики в брюшке сообщали насекомому о присутствии поля, осталось загадкой. Авторы так и пишут: "Наши данные доказали, что магнетит играет важную роль в магниторецепции пчел. Однако связь железосодержащих клеток с нервной системой не установлена".
Зато у муравьев магнитики нашли у основания усиков – все-таки поближе к прочим органам чувств. Есть мнение, что усики общественных насекомых должны стать объектом пристального внимания исследователей магниторецепции.
В общем, замечательная магнетитовая гипотеза, казалось бы подтвержденная находками магнитных частиц в самых разных частях тела живых существ, благополучно разваливается при внимательном рассмотрении: нет ни чувствительных клеток, ни механизма измерения поля, ни способа передачи информации в мозг, ни понимания, какую информацию надо передавать – о напряженности поля, о его широтном или долготном склонении и т. п. В поисках выхода приходится пускаться в фантазии.
Например, предполагать, что такая частичка служит в качестве крышечки ионного канала: приоткрываясь под действием поля, она освобождает путь движению ионов сквозь мембрану чувствительной клетки, и та передает возбуждение в нервную систему[30]30
I. Goychuk. Sensing Magnetic Fields with Magnetosensitive Ion Channels. Sensors, 2018, 18 (3): 728. https://doi.org/10.3390/s18030728
[Закрыть]. Расчет показывает, что изменений магнитного поля Земли вполне хватает для перемещения такой крышечки, а силы белка-пружинки, приделывающего ее к мембране, – для последующего закрывания канала. На логичный вопрос: «Что же никто таких крышечек не видел?» – следует ответ: «Надо тщательнее смотреть, все-таки частички очень маленькие, увидеть их непросто». Тем более когда неясно, какие именно клетки требуют столь тщательного осмотра – клетки мозга или брюшка.
Альтернативный механизм связан со спиновой химией и основан на еще одном твердо установленном факте: у птиц, насекомых, земноводных способность чувствовать магнитное поле зависит от освещения – если его нет или если фильтром вырезана сине-зеленая область, то никакой магниторецепции не будет. Наверное, одними из первых соответствующие эксперименты провели уже упомянутые Вольфганг Вильчко и Росвита Вильчко с малиновками, благо методика изучения их магниторецепции была хорошо отработана. В новых опытах птиц освещали монохроматическим светом с разной длиной волны, и по мере отхода от синей области они теряли способность ориентироваться по магнитному полю[31]31
W. Wiltschko, R. Wiltschko. Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. Journal of Experimental Biology, 2001, 204 (19): 3295–3302.
[Закрыть]. Позднее подобные опыты проводили с огромным числом птиц, животных и насекомых. Важная роль света подсказывает, что чувствительный орган находится где-то в глазу, но там никакого магнетита пока что найдено не было. Зато там есть белки-фоторецепторы. На один из них, реагирующий на синюю и ультрафиолетовую часть спектра, – криптохром – и обратили внимание исследователи.
Этот белок знаменит тем, что он – одна из "шестеренок" циркадных часов и отвечает за их подстройку по солнцу. Однако криптохром еще и фоторецептор, причем единственный, способный давать долгоживущую пару радикалов. Время ее жизни, как и способность к образованию связей с другими молекулами, зависит от спинового состояния образовавшихся неспаренных электронов. Магнитное же поле способно это состояние менять. Поэтому изменения в поведении криптохрома могут лежать в основе магниторецепции. В таком случае обладающие этой способностью животные и насекомые непосредственно видят магнитное поле. Нам – существам, лишенным такого чувства, – понять, как все это выглядит, невозможно. Но можно пофантазировать примерно так. При повороте головы меняется ориентация молекул криптохрома относительно геомагнитного поля. Тогда, согласно базовой гипотезе радикальной магниторецепции, меняется действие этого рецептора: пары радикалов схлопываются либо какой-то белок отцепляется от него. Коль скоро криптохром связан с восприятием синего и ультрафиолетового света, то формируемая им картинка в мозгу становится более или менее синей в зависимости от того, как изменилось положение глаза относительно магнитного поля. Птица фиксирует это изменение и выправляет курс.
Проверяется световая гипотеза просто. Птиц или дрозофил приучают реагировать на магнитное поле, затем выключают синий свет, и сразу вся выучка пропадает, когда его снова включают – возвращается. Другой способ: взять нормальных дрозофил и дрозофил с дефектным геном, кодирующим криптохром, и посмотреть, как магнитное поле влияет на их поведение – например, способность к ухаживанию за самками[32]32
Chia-Lin Wu et al. Magnetoreception Regulates Male Courtship Activity in Drosophila. PLoS ONE, 2016, 11 (5): e0155942. DOI: 10.1371/journal.pone.0155942
[Закрыть]. У нормальных дрозофил сильное поле резко усиливает любвеобильность самцов, а на дефектных никак не сказывается. Вывод: дефектные не обладают магниточувствительностью.
Казалось бы, это доказывает неопровержимость радикальной гипотезы, и она оказывается прекрасной теорией, неплохо вписывающейся в экспериментальные данные. Однако есть серьезные возражения. Самое главное – предполагаемый механизм спиновой химии для слабого магнитного поля Земли до сих пор не продемонстрирован, его работоспособность зафиксирована для гораздо больших напряженностей магнитного поля.
Усложняют картину и животные, выпадающие из необходимых теоретикам закономерностей. Скажем, восточноамериканский краснопятнистый тритон обладает магниторецепцией не в одном, а в двух световых диапазонах – сине-ультрафиолетовом и близком к инфракрасному. Чтобы вписать его в концепцию, приходится придумывать весьма замысловатые превращения все того же криптохрома.
Наконец, многие магниточувствительные существа обходятся без света, например те же шмели, которые прекрасно ориентируются ночью. Есть данные, что некоторым птицам достаточно лунного света, но вот полярная крачка целый месяц летит из Арктики в Антарктику, не прекращая полет на ночь, то есть по меньшей мере четверть срока такого полета она почти лишена света Луны. А ведь если именно магниторецепция отвечает за прокладывание маршрута, но в темноте она не работает, то ночной безлунный полет точно собьет птиц с цели. Ну, разве что они используют Млечный Путь подобно жукам-навозникам.
Для выхода из этой тупиковой ситуации некоторые исследователи допускают одновременное существование разных механизмов. Например, Вольфганг и Росвита Вильчко уверены, что у птиц правый глаз с помощью радикального механизма определяет направление движения, а расположенные в спине частички магнетита помогают распознать местоположение[33]33
W. Wiltschko & R. Wiltschko. Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A, 2005, 191 (8): 675–693. https://doi.org/10.1007/s00359-005-0627-7
[Закрыть].
В общем, как видно, до разгадки тайны магнитного чувства пока что очень далеко. Может быть, простые и надежные опыты вроде наблюдений за упорядочением псов во время дефекации помогут найти путь к научной истине или хотя бы к непротиворечивой рабочей модели.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?