Электронная библиотека » Генрих Эрлих » » онлайн чтение - страница 5


  • Текст добавлен: 2 декабря 2020, 09:40


Автор книги: Генрих Эрлих


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Почему птицы «любят» одни статуи и «не любят» другие?

Порой за разгадками волнующих тайн необходимо в буквальном смысле слова забраться в мозг другого существа и попытаться понять, как оно, обладая другими органами чувств, воспринимает окружающий мир. Если же это не удается, загадка так и остается до конца не разгаданной. Вот одна из них. Каждый, кто гулял по площадям любимого города и внимательно рассматривал статуи, замечал интересную закономерность: у некоторых на голове и плечах находится толстый слой птичьего помета, а другие стоят как будто только что из мастерской. Профан скажет, что тот, чья статуя засижена птицами, при жизни был нехорошим человеком, вот птицы ее и метят. Но не таков искушенный в познании премудростей исследователь. Он глубоко задумается и составит план, который поможет ему максимально близко приблизиться к непостижимой истине, как это сделал лауреат Игнобелевской премии 2003 года по химии Юкио Хироси. Он пытался понять, отчего статую в городе Канадзава голуби облетают стороной.

Принц Ямато Такэру, что означает "силач из дома Ямато", жил, согласно преданию, в I–II веках н. э., был сыном двенадцатого правителя Японии Кейко-тэнно и отцом четырнадцатого правителя Тюай-тэнно, прославился многими победами, объединил страну под властью ныне правящего дома и стал в конце концов божеством синтоистского пантеона. Его статуи стоят во многих уголках Японии. Одна из них и послужила объектом игнобелевского исследования.

Статую принца воздвигли в 1880 году в парке Кенроку-эн, одном из старейших парков страны, который создавался с XVII века трудами даймё из дома Маэда, владевших Канадзавой при власти сёгунов. В 1874 году, во время Реставрации Мэйдзи, когда была восстановлена власть императора и начались буржуазно-демократические реформы, парк открыли для публичного доступа, и вскоре жители города полюбили проводить там время. Вот и Юкио Хироси в детстве не раз бывал в этом парке, а зоркий глаз будущего исследователя приметил интересную особенность: в отличие от многих других памятников, статуя Ямато Такэру не была испачкана пометом – птицы сидели на всех окрестных деревьях, а этот памятник избегали. Лет в восемнадцать Юкио Хироси задался вопросом: отгоняет ли птиц магическая сила божественного принца или есть материальная причина? Ответ на него он нашел спустя 45 лет.

За это время Юкио Хироси успел стать металловедом в университете родного города, где изучал разрушение металлических сплавов. В 1989 году его лаборатория приняла участие в реставрации статуи принца. Обследовав ее, Юкио Хироси в очередной раз отметил, что никаких следов птичьего помета на ней нет. А затем занялся своим основным делом – изучением химического состава. Тут его ждал сюрприз: статуя была отлита не из оловянистой или свинцовистой бронзы, а из мышьяковистой, которую из-за вредности легирующего элемента давным-давно перестали использовать.

Содержание мышьяка в статуе принца оказалось высоким: 10 % в среднем. При этом – видимо, из-за ликвации, то есть расслоения, которое случается при затвердевании больших отливок из легированных сплавов, – в ногах мышьяка было 15 %, а в голове – 2 %. Получается, что статуя, ныне позеленевшая от патины, сразу после изготовления была разноцветной, ведь при малом содержании мышьяка бронза имеет красный цвет, а при большом – серебристый. Впрочем, скорее всего, мышьяк добавляли не для декоративных эффектов, а для повышения прочности сплава и снижения температуры плавления – у мышьяковистой бронзы она ниже, чем у оловянистой, делать из нее отливки проще.

Узнав состав сплава, Юкио Хироси вспомнил книгу по древней технологии обработки металла, в переводе которой он недавно участвовал. По удивительному совпадению доставшаяся ему глава как раз была посвящена сурьме и мышьяку, и там было сказано, что мышьяк ядовит для птиц. Это позволило исследователю предположить: именно высокое содержание мышьяка отпугивает пернатых вандалов.

Для проверки гипотезы Юкио Хироси отыскал составы сплавов, из которых сделаны некоторые другие памятники, и выяснил, что мышьяка в них мало, не более 2 %. Тогда он провел эксперимент: отлил, соблюдая меры предосторожности, образцы мышьяковистой бронзы и окружил ими кормушку для птиц. И точно, птицы пугались и к корму близко не подлетали – что вороны, что голуби.

Об этом исследовании прознали корреспонденты местной газеты, и публикация о его результатах вызвала бурный интерес. Еще бы! Ведь птицы – это не только сладкоголосое пение или борьба с насекомыми-вредителями, но и помет, загрязняющий улицы, дома, машины и одежду прохожих. А в аэропортах птицы – источник серьезной опасности: попав в двигатель, они могут вызвать авиакатастрофу. Чтобы прогнать их, используют разного рода отпугиватели, в том числе покрывают специальными веществами крыши и подоконники, и заграждения, например лес из шипов на горизонтальных поверхностях. Некоторые аэропорты даже заводят с этой целью хищных птиц, а вот в аэропорту Пизы применяют еще и административные меры к птицелюбам: за кормление голубей там выписывают штраф.

Поэтому все пострадавшие от птиц и потянулись в лабораторию Юкио Хироси. Особенно ему запомнилось, как пришел знакомый предприниматель, плечи которого были покрыты птичьими испражнениями – очень уж много голубей поселилось возле офиса. Чтобы помочь всем этим людям, Юкио Хироси предложил было использовать мышьяковистую бронзу для отделки мест на зданиях, которые полюбились птицам. Увы, эта затея провалилась. Как только пожарные услышали, что мышьяк при нагревании выше 1000° C быстро улетучивается из сплава, они наложили свой запрет. Видимо, дурная слава мышьяка оказалась слишком сильна и никто не задумался о том, что этот элемент широко распространен в природе: он содержится в любой питьевой воде, придает особый аромат армянскому коньяку, он же входил в состав средств от прыщей и по сей день используется в стоматологии. То небольшое количество мышьяка, что могло бы улететь в атмосферу из бронзовых пластинок при пожаре, вряд ли было бы сильной добавкой к имеющемуся фону.

Сам Хироси пытался убедить оппонентов в безопасности предлагаемого решения: он бросил бруски выплавленной им бронзы в аквариум с рыбками данио и доказал, что спустя месяц те ничуть не пострадали и содержание мышьяка в воде не увеличилось. Это не помогло – интересный способ устрашения птиц не прошел.

Впрочем, возможно, дело было все-таки не только в мышьяке. В 2011 году Хироси подал заявку на изобретение материала для отпугивания птиц – покрытие из мышьяковистой бронзы с добавками радия. Про то, есть ли радий в статуе принца, Хироси ранее не рассказывал, однако при поиске ответа на вторую часть вопроса – отчего же птицы боятся металла с мышьяком – он больше апеллировал не к их чутью, а к гипотетической способности видеть в другом диапазоне, и в частности фиксировать потоки ионов.

В принципе, независимо от того, нашел ли Хироси радий в статуе принца или нет, ход его мысли понятен: для металловеда сама по себе постановка вопроса – испаряется ли мышьяк из бронзы – кажется абсурдной. Конечно, термодинамика предписывает выравнивание концентраций вещества, но металл – это такая энергетически выгодная система при нормальных условиях, что мышьяк если и испаряется из него, то в ничтожном, пренебрежимо малом количестве. Более того, если бы такое испарение было хоть сколько-нибудь значимым, за тысячелетия мышьяк исчез бы из любой бронзы, однако археологи находят бронзовые предметы с высоким содержанием мышьяка, выплавленные 10 000 лет тому назад. А если испарение несильное, то с какой стати птицам бояться памятника? Кроме того, есть данные в пользу того, что мышьяк им, скорее всего, безразличен.

Бóльшая проблема – мышьяк в дичи, то есть в птицах, которых добывают охотники. Источник его прекрасно известен: это пестициды, содержащие, скажем, метаарсенат натрия, ими опрыскивают леса для борьбы с короедом. Очевидно, что остаточного мышьяка в таком препарате заведомо больше, чем может испариться из памятника. Исследования показывают, что, например, дятлы хотя и без особого аппетита, но поедают личинок короеда, в тканях которых содержится этот элемент. И в организмы дятлов порой попадает столько мышьяка, что орнитологи даже опасаются за их здоровье. Странно получается: птицы не очень-то переживают, если полакомились личинками с мышьяком, а вот призрачного запаха от памятника пугаются. С другой стороны, известно, что мышьяк может воздействовать на электрические свойства; его способность менять цвет меди видна невооруженным глазом. А если еще предположить, что от принца исходят потоки ионов, то кто знает, что может померещиться птицам, смотрящим на статую? Ответ на этот вопрос могли бы дать только специалисты по физиологии птичьих органов чувств.

Статую принца металловеды исследовали давно, в конце 1990-х годов. Казалось бы, при решении важной народно-хозяйственной задачи (поиск материала для кровли, который отпугивает птиц) возникла интереснейшая научная тема – как птицы чувствуют мышьяк в бронзе и почему он для них неприятен. И что же? Орнитологов совершенно не заинтересовала находка металловеда. Анализ базы данных научных публикаций на связь "птицы + мышьяк" выявил лишь огромный массив информации по накоплению мышьяка в тканях птиц, никаких исследований по раскрытию загадки статуи Ямато Такэру проведено не было. За четверть века существования загадки! Почему так?

Ответ на этот вопрос можно почерпнуть из книги профессора Шеффилдского университета Тима Беркхеда "Удивительный мир. Легко ли быть птицей?" (What It's Like to Be a Bird, 2012). Вот что он пишет:

"История изучения чувств, в особенности птичьих, была богатой событиями и непростой. Несмотря на обилие описательных сведений, собранных за последние несколько столетий, сенсорная биология птиц никогда не входила в категорию ключевых и актуальных проблем. ‹…›

В процессе работы над книгой я связался с несколькими специалистами в области сенсорной биологии, уже вышедшими на пенсию, и с удивлением обнаружил, что все они рассказывают почти одно и то же: «Когда я занимался подобными исследованиями, они никого не интересовали, или же нашим результатам не верили». Один ученый сообщил мне, что всю свою жизнь посвятил сенсорной биологии птиц, но, если не считать того, что его попросили написать главу для энциклопедии, его заслуги практически не получили признания. После выхода на пенсию он сжег все свои бумаги, а потом вдруг, к его одновременному огорчению и удовольствию, я начал расспрашивать о его исследованиях.

Другие рассказывали мне, как когда-то собирались написать учебник по сенсорной биологии птиц, но так и не нашли достаточно заинтересованное издательство. Представить себе не могу, что значит посвятить свою жизнь сфере исследований, которая очень мало кого интересует".

Непонимание того, что и как чувствуют другие существа, может привести к серьезным ошибкам. Например, экологи, занимающиеся изучением поведения, также предположили, что степень полового диморфизма у птиц – то есть различия по внешним признакам между самцами и самками одного вида – может быть связана с их моногамностью или полигамностью. Для проверки этого предположения они оценивали виды в зависимости от яркости оперения самцов и самок – на основе человеческого зрительного восприятия. Теперь мы уже понимаем, насколько наивен такой подход, ведь зрительная система птиц отличается от нашей, поскольку они видят и в ультрафиолетовом диапазоне. Изучение тех же птиц в ультрафиолете показало, что у многих видов – в том числе лазоревки и некоторых попугаев, – которые раньше считались не обладающими половым диморфизмом, самцы на самом деле заметно отличаются от самок, если смотреть на них так, как их видят самки, в УФ-спектре.

В своей знаменитой статье «Каково быть летучей мышью?» (What is like to be a bat?), опубликованной в 1973 году, философ Томас Нагель утверждал, что нам никогда не узнать, каково быть другим существом. Чувства и сознание – субъективный опыт, поэтому их не в состоянии разделить или вообразить кто-то другой. Нагель выбрал для примера летучую мышь, потому что у нее, как у млекопитающего, много общих чувств с нами, и в то же время она обладает эхолокацией, отсутствующей у нас, следовательно, мы не в силах понять, каково быть ею.

Каково это – быть киви? Блуждать в густом подлеске почти в полной темноте, практически без зрения, зато с обонянием и осязанием, значительно превосходящими человеческие? Ричард Оуэн исследовал киви в 1830 году, и при виде ее крошечных глазок и огромной обонятельной области мозга предположил – почти не имея сведений о поведении этой птицы, – что она полагается скорее на обоняние, чем на зрение. Гипотезы Оуэна, мастерски увязавшего строение с функциями, были элегантным образом подтверждены сто лет спустя, когда поведенческие тесты выявили, что киви обнаруживают добычу под землей с лазерной точностью. Киви чуют запах дождевых червей сквозь 15-сантиметровый слой почвы!"[34]34
  Беркхед Т. Удивительный мир птиц. Легко ли быть птицей? – М.: КоЛибри, 2019.


[Закрыть]

При таком положении дел неудивительно, что окончательная разгадка тайны статуи принца еще ждет своих исследователей, способных перешагнуть междисциплинарные барьеры и посмотреть широко открытыми глазами на мир во всем его многообразии.

Почему бутерброд падает маслом вниз?

Каждый из нас хоть раз в жизни ронял бутерброд на пол и на собственном опыте убедился, что таки да – бутерброд всегда падает маслом вниз. Многие усматривают в этом проявление закона Мерфи: «Если что-то может пойти не так, то это непременно случится». А сам закон приписывают имманентной зловредности Природы – так она мстит нам, людям, за многовековые издевательства над ней.

Закон Мерфи, конечно, правильный, это подтверждает вся история человечества, но механизмы его проявления непонятны. Прямо скажем, они отдают мистикой, а мистику ученые ненавидят больше всего на свете. Поэтому закону бутерброда – точнее говоря, попыткам его опровержения – посвящено огромное количество исследований.

Экспериментальной проверкой закона бутерброда занимаются любопытствующие обыватели у себя на кухне, школьники посвящают ему свои проекты, иногда в лаборатории переоборудуют студии крупных телекомпаний типа Би-би-си. И все экспериментаторы увлеченно роняют бутерброды на пол, скрупулезно подсчитывая число падений маслом вверх и маслом вниз. Практически все приходят к тому, что вероятность обоих событий одинакова, 50/50, как при подбрасывании монетки. Таким образом, закон бутерброда имеет не физические, а психологические основания. Люди запоминают только неприятный исход, когда же бутерброд падает маслом вверх, они автоматически поднимают его и съедают, руководствуясь эмпирическим правилом пяти секунд: "То, что лежало на полу меньше пяти секунд, не считается упавшим".

Впрочем, сторонники закона бутерброда с легкостью отметают эти инсинуации. По их мнению, результаты эксперимента служат дополнительным подтверждением закона Мерфи: Природа, глядя на потуги горе-экспериментаторов, нарочно выдает ложный результат, чтобы лишний раз посмеяться над ними. Не ускользают от внимания сторонников закона и методические ошибки при постановке эксперимента: бессмысленно ронять бутерброд на кафельный пол кухни или лаборатории, эксперимент надо проводить в гостиной, устланной ковром, причем дорогим. Чем дороже ковер, тем с большей вероятностью бутерброд упадет маслом вниз. Это надежно установленный экспериментальный факт, добавляют они.

Еще один подход к решению проблемы – сугубо теоретический. Физики анализируют динамику падения бутерброда, включая такие варианты, как падение маслом вверх, упругое отражение от пола, переворот в воздухе на 180° и повторное падение, уже маслом вниз. Существенно, что в качестве модели используют бутерброд в западном стиле: никакой колбасы сверху, слой же масла настолько тонок, что выдает свое присутствие только бóльшим блеском намазанной маслом стороны. Показано, что слой масла вносит вклад в изменение момента инерции бутерброда, а также в асимметрию аэродинамических характеристик двух сторон бутерброда, однако все эти факторы несущественно влияют на вероятность падения маслом вверх или маслом вниз, которая остается примерно 50/50.

Все перевернула статья британского физика-теоретика Роберта Мэтьюса "Падающий тост, закон Мерфи и фундаментальные константы"[35]35
  R. Matthews. Tumbling toast, Murphy's Law and the fundamental constants. European Journal of Physics, 1995, 16 (4): 172–176.


[Закрыть]
. Изюминкой работы стало то, что Мэтьюс рассмотрел падение тоста без масла, то есть изначально исключил любую асимметрию, которую привносит в объект слой масла, а также неопределенности, связанные с распределением масла в поверхностном слое тоста. Переводя на физический язык, Мэтьюс описал поведение жесткой, изотропной прямоугольной пластины с массой m, падающей с устойчивой горизонтальной плоскости, находящейся на высоте h. Для инициации падения пластину (тост) медленно сдвигают к краю плоскости (стола), когда центр тяжести пластины выдвигается за край плоскости, пластина заваливается вниз и падает на пол. Для простоты описания Мэтьюс исключил вторичные эффекты типа упругого отражения от пола – как упало, так и упало.

Анализ уравнений движения показал: при таком падении пластина вращается вокруг своей оси, что полностью соответствует нашему житейскому опыту. При высоте падения в 90–150 см пластина успевает осуществить оборот на 180°, то есть бутерброд, который, естественно, лежит на столе маслом вверх, при падении с неизбежностью переворачивается маслом вниз. Результат падения сильно зависит от скорости движения пластины по плоскости перед падением. Если эта скорость достаточно высока, то пластина отрывается от стола, как прыгун с трамплина, и планирует вниз, практически не переворачиваясь. То есть все зависит от начальных условий – от высоты стола и скорости движения по плоскости.

Возможно, это объясняет обескураживающие результаты экспериментальной проверки закона бутерброда. Все дело в методике! Если подбрасывать бутерброд как монетку или просто выпускать его из рук, то падение маслом вверх или маслом вниз становится равновероятным. Но ведь в реальности дело обстоит обычно не так. Бутерброд медленно соскальзывает со стола после чьего-то неловкого движения или с блюда зазевавшегося официанта, и вот тут-то он, скорее всего, упадет маслом вниз.

Через несколько лет после выхода статьи Мэтьюс проверил свои теоретические построения в трех сериях прямых экспериментов, которые выполнили тысячи британских школьников в различных регионах Великобритании. Школьники все делали правильно, как доктор Мэтьюс прописал: медленно сдвигали бутерброды к краю стола и наблюдали за их падением. В итоге 62 % попыток закончилось падением бутерброда маслом вниз, 38 % – маслом вверх. Разница в полтора раза – при такой большой статистике это значимый результат. Тут есть о чем задуматься. Но вернемся к основополагающей статье. Для того чтобы бутерброд упал маслом вниз, высота падения должна составлять 0,9–1,5 м. Эти величины коррелируют с ростом человека, который определяет комфортную высоту обеденного стола или высоту, на которой находится блюдо с бутербродами в руках официанта. Но почему рост человека именно такой, какой он есть? Почему для подавляющего большинства людей он укладывается в интервал 1,5–2 м? И может ли человек быть ростом со слона или, бери выше, с жирафа?

В 1980 году американский астрофизик Уильям Пресс опубликовал статью "Размеры человека в свете фундаментальных констант"[36]36
  W. Press. Man's size in terms of fundamental constants. American Journal of Physics, 1980, 48 (8): 597. https://doi.org/10.1119/1.12326


[Закрыть]
, где все разложил по полочкам. Двуногие существа (люди) менее устойчивы, чем четвероногие (слон, жираф) и тем более сороконогие. Люди слишком легко падают и при этом больно ударяются головой о землю, камень, асфальт и прочие твердые объекты. Пресс рассчитал силу удара, связал ее с прочностью черепа и получил результат: человек ростом три метра, упав на твердую поверхность, обязательно размозжит голову и умрет. «Фатальная» формула включает основные фундаментальные константы: константу электромагнитного взаимодействия, гравитационную постоянную и радиус Бора. Именно они ставят предел физическому росту человека.

Следуя этой логике, Роберт Мэтьюс сделал вывод: закон бутерброда напрямую вытекает из фундаментальных констант и его можно с полным правом называть законом Природы. Особо радует в этом выводе то, что гипотетическая зловредность Природы, на которую мы намекали в самом начале, никак не связана с человеком, просто она такой уродилась.

Мы подозреваем, что именно глобальность вывода склонила чашу весов Игнобелевского комитета в пользу работы Роберта Мэтьюса, что принесло ему премию по физике за 1996 год.

Лишь один момент в этой истории остался для нас непроясненным. Статья Мэтьюса поступила в редакцию журнала 31 марта, накануне международного Дня дураков. Это случайно или как?

Другое направление человеческой мысли, связанное с падающими бутербродами, посвящено изучению правила пяти секунд. Оно гласит: если упавшая на пол еда пролежала там менее пяти секунд, то есть ее безопасно. Одно из первых исследований, посвященных проверке этого правила, даже принесло своему автору – Джилиан Кларк, студентке Чикагской высшей школы сельскохозяйственных исследований – Игнобелевскую премию 2004 года в области общественного здоровья.

Экспериментальной проверке правила пяти секунд она посвятила свою летнюю практику. Сама же идея, что можно употреблять в пищу еду, пролежавшую на полу какое-то время, известна очень давно. По мнению самой Джилиан Кларк, она восходит к Великой ясе Чингисхана, который определил этот срок аж в двенадцать часов.

Готовясь к проведению задуманного эксперимента, Кларк для начала проверила наличие микрофлоры на полу в студенческом общежитии. И тут ее ждало фиаско: как ни странно, бактерий на сухом полу практически не оказалось. Более того, там даже спор не было. Судя по всему, в студенческом общежитии выживают только сами студенты. Так что прямой эксперимент с едой, упавшей на пол, поставить не удалось и пришлось, как это принято при основании научного направления, обойтись модельными опытами. Кларк купила в магазине кафельные плитки, заселила их кишечной палочкой и уже на такую подготовленную поверхность роняла выпечку и сладости, через пять секунд поднимала образцы и затем исследовала под электронным микроскопом. Оказалось, что кишечным палочкам вполне достаточно этого времени для освоения поверхности продуктов. При этом с гладкой плитки их переселялось больше, чем с шершавой. То есть правило пяти секунд было опровергнуто.

Следующим был коллектив авторов из Университета Клемсона в Северной Каролине в 2006 году. Они капали на пол, предварительно обработанный препаратом с сальмонеллой, соус для спагетти болоньезе и спустя пять секунд выдержки смотрели, сколько бактерий в нем оказалось. Плитка была наименее дружественной к еде: с нее в соус переползло 99 % бактерий, с ковра – менее 0,5 %, с деревянного же паркета – 5–68 %. Авторы отмечают, что даже месячное пребывание на сухом полу не убило всех сальмонелл, намекая, что пищу с пола есть ни в коем случае нельзя. В отличие от первозакрывательницы эффекта Джилиан Кларк, им удалось опубликовать статью в рецензируемом "Журнале прикладной микробиологии"[37]37
  Dawson P., Han I., Cox M., Black C., Simmons L. Residence time and food contact time effects on transfer of Salmonella Typhimurium from tile, wood and carpet: testing the five-second rule. Journal of Applied Microbiology, 2007, 102, 4, 945–953. doi: 10.1111/j.1365–2672.2006.03171.x


[Закрыть]
.

В том же году двое студентов Коннектикутского колледжа решили рискнуть и перейти от моделей к практике: они кидали конфеты и ломтики яблока на пол непосредственно в студенческой столовой и в закусочной. Результаты расходились с модельными данными: бактерии в заметном количестве появлялись на еде лишь спустя полминуты. Видимо, полы в их колледже столь же чисты, как и в общежитии, где свои исследования проводила Кларк.

О самом свежем из известных нам исследований в этой области рассказало агентство AlphaGalileo 10 марта 2014 года: молодые британские ученые из Астонского университета кидали на пол бутерброды, пиццу, печенье и леденцы, а затем смотрели, сколько на них оказалось кишечных палочек и золотистых стафилококков. В целом их результаты совпали с данными северокаролинских исследователей: бактерии с коврового покрытия проникали на еду хуже всего. Но даже с ламината или плитки и даже на влажную еду бактерии перебирались более пяти секунд.

Конечно, отмечают авторы исследования, всегда надо помнить, что на любом подобранном с пола куске будет сколько-то бактерий. Но поговорка "быстро поднятое не считается упавшим" все-таки имеет научное обоснование, полученное опытными бутербродоведами.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации