Электронная библиотека » Хаим Шапира » » онлайн чтение - страница 3


  • Текст добавлен: 8 мая 2021, 03:28


Автор книги: Хаим Шапира


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
О музыке и числах

В то время как Пифагор и его ученики исследовали законы Вселенной, они изучали и законы музыки. Вы, конечно, помните, что Пифагор обожал распевать песни Гомера и Гесиода («Величайшие хиты Древней Греции»), бренча на своей лире. Пифагор полагал, что музыка оказывает огромное влияние на душу и может вызывать чрезвычайно сильные эмоции. Если вы в этом сомневаетесь, прочтите «Крейцерову сонату» Льва Толстого. Сейчас нам ясно, что открытое Пифагором наличие у музыкальных гамм численной основы сильнейшим образом повлияло на пифагорейцев. Можно привести множество разных примеров проявления этой численной основы. Например, Пифагор установил, что длины струн двух нот, отстоящих друг от друга в точности на одну октаву (например, от до – до – до), соотносятся как 1:2. Струны двух нот, отстоящих на квинту (например, до – соль), находятся в соотношении длин 2:3, а струны двух нот, отстоящих на кварту (например, до – фа) – в соотношении 3:4.

Музыка есть удовольствие, которое человеческий разум испытывает от счета, не сознавая, что он считает.

Готфрид Лейбниц

Открытие Пифагора – что музыку можно преобразовывать в математические выражения – было важным шагом на его пути к сенсационному выводу, что и весь мир в целом так или иначе основан на числах. Более того, Аристотель отмечает в «Метафизике», что пифагорейцы первыми стали изучать математику и пришли к заключению, что законы математики управляют законами всего сущего.

Какие научные законы гарантируют, что должны существовать научные законы?

Мартин Гарднер

Математика управляет и изобразительным искусством. Перспектива основана на геометрии и пропорциональности (размеры предметов, изображенных на двумерной поверхности, уменьшаются пропорционально увеличению расстояния от зрителя), а принципы композиции основываются на свойствах геометрических фигур.

Геометрия есть основа всей живописи.

Альбрехт Дюрер

Но Пифагор пошел на шаг дальше. Он также использовал язык геометрии для определения хорошего и дурного, правильного и неправильного. Например, вместо терминов «хороший» и «дурной» он употреблял слова «прямой» и «искривленный» (по-гречески, разумеется). Мы и сейчас иногда называем нечестное «кривым», а ложь «кривдой». Прямая линия казалась ему благородной, искривленная – неблаговидной. Возможно, отголоски этой концепции до сих пор можно найти в выражении «прямой человек», так как никакой связи между осанкой человека и его искренностью или добросовестностью, разумеется, нет.

Начало прекрасной дружбы – дружественные числа

Аристотель сказал однажды, что истинные друзья – это два тела с одной общей душой. А как определял дружбу Пифагор? Тут нас ожидает сюрприз.

По словам ученого-неоплатоника Ямвлиха (ок. 245 – ок. 325), автора еще одной биографии Пифагора, пифагорейское определение дружбы выражается двумя числами – 284 и 220.

Что?! Почему?!

Чтобы понять, откуда взялась эта идея, сложите все делители числа 220 (числа, на которые 220 делится без остатка), а затем сложите все делители числа 284. Сами эти числа включать в суммы не нужно.

Делители 220 – 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, а их сумма равна 284.

Делители 284 – 1, 2, 4, 71 и 142, а их сумма равна (чему бы вы думали?) 220!

Пифагорейцы считали, что близкие друзья подобны паре чисел, сумма делителей каждого из которых равна второму числу. В математике такую пару чисел называют дружественными числами.

Другие пары дружественных чисел можно найти при помощи компьютера. Помимо пары (220, 284) есть еще (1184 и 1210), (2620 и 2924), (5020 и 5564) и (6232 и 6368). Кроме этих пяти, других таких пар среди чисел до 10 000 нет. Если вам совсем нечего делать, попробуйте проверить, действительно ли эти пары – пары дружественных чисел. Другими словами, сложите собственные делители каждого числа (без самого этого числа) и посмотрите, равна ли их сумма второму числу пары.

Если хотите, вы можете взяться и за еще более трудную задачу – попытаться найти другие пары дружественных чисел. Для этого вы, вероятно, захотите прибегнуть к помощи компьютера, но имейте в виду, что в 1636 г. французский математик-любитель Пьер Ферма установил, что числа 17 296 и 18 416 образуют пару дружественных чисел, а два года спустя знаменитый французский философ и математик Рене Декарт открыл еще одну такую пару – 9 363 584 и 9 437 056.

ДЕКАРТ, БЕСКОНЕЧНОСТЬ И БОГ

На Декарта произвела глубокое впечатление концепция «бесконечности». В книге «Рассуждения о первой философии» он даже использует эту концепцию для «доказательства» существования Бога. Рассуждает он при этом приблизительно следующим образом:

«Поскольку сам я – существо конечное, я, очевидно, не могу изобрести концепцию бесконечности, так как по-настоящему охватить в своих мыслях понятие бесконечности может лишь нечто, само бесконечное. Следовательно, создателем концепции бесконечности может быть только Бог. Поскольку я могу осознать бесконечного Бога, а Бог – единственный, кто мог создать эту идею, значит, справедливо утверждение, что Бог существует!»

В XVII в. компьютеров не было – не говоря уже об интернете и социальных сетях, – что делает достижения Ферма и Декарта еще более поразительными. Как же они открыли эти огромные дружественные числа? Читайте дальше. По мнению некоторых историков математики, Декарт добился этого не вполне самостоятельно. На самом деле ту пару дружественных чисел, которую он опубликовал, нашел еще в XVI в. персидский математик Бакир Язди! Хорошо известно, что арабские математики знали довольно много пар дружественных чисел задолго до того, как их заново обнаружили математики Запада.

Более того, еще в IX столетии иракский математик, астроном и врач Сабит ибн Курра (826–901) сформулировал достаточное условие{7}7
  Условие это очень сложно, так что я не буду подробно описывать его.


[Закрыть]
дружественности двух чисел{8}8
  Кроме того, Сабит ибн Курра одним из первых распространил теорему Пифагора для прямоугольных треугольников на случай произвольного треугольника.


[Закрыть]
. Много веков спустя Декарт и Ферма нашли его формулу и использовали ее для своих «открытий».

Интересно отметить, что вторая по порядку возрастания пара дружественных чисел (1184 и 1210) не была открыта до 1866 г. Ее открыл итальянский мальчик по имени Б. Николо И. Паганини (не знаменитый скрипач и композитор!). Непонятно, как все до единого математики со времен Пифагора умудрились не заметить эту прекрасную пару. Одной из причин этого может быть то обстоятельство, что к ней неприменим критерий, который разработал Сабит ибн Курра. Но может быть, дело просто в том, что «если ищешь ничто, то ничего и не найдешь».

К 2007 г. было открыто около 12 000 000 пар дружественных чисел. Как это ни странно, мы, по-видимому, живем в очень дружелюбном мире.

Числа женские и числа мужские

У Пифагора было много разных концепций относительно чисел: в частности, он верил, что у чисел бывают женские и мужские черты. Например, нечетные числа можно считать числами женского пола, а четные – мужского. Заметим теперь, что во все упомянутые до сих пор пары дружественных чисел входят только мужские (четные) числа.

Это, естественно, заставляет спросить: существуют ли и пары дружественных женских чисел? Оказывается, существуют. Вот несколько таких примеров: (11 285 и 14 595), (67 095 и 71 145) и (522 405 и 525 915).

А это подводит нас к самому главному вопросу: возможна ли «дружба» между числом мужским и числом женским? Другими словами, может ли быть так, чтобы суммы делителей нечетного и четного числа были равны этим числам?

На время написания этой книги никто еще не нашел ответа на этот вопрос. С одной стороны, до сих пор не найдено ни одной такой пары; с другой – невозможность ее существования тоже пока что никем не доказана.

На этом я временно оставлю Пифагора (я еще вернусь к нему в этой главе), потому что разговор о дружественных числах навел меня на мысль о некоторых других антропоморфных характеристиках чисел, о которых интересно сделать несколько отступлений.

Самовлюбленные числа

У меня нет почти ничего общего с самим собой.

Франц Кафка

Я вполне уверен, что существуют такие люди, про которых можно сказать, что у них установились глубокие дружеские отношения с самими собой. Но давайте попытаемся мыслить так, как мог мыслить Пифагор, и поинтересуемся не ими, а числами: существуют ли такие числа, суммы собственных{9}9
  Слово «собственные» означает здесь, что в множество этих делителей не включается само делимое число.


[Закрыть]
делителей которых равны самим этим числам?

Числа, обладающие этим свойством, называют совершенными числами. Сразу (то есть, разумеется, после некоторого размышления) становится ясно, что первые два совершенных числа – это 6 и 28. Здесь я сделаю небольшую паузу, чтобы мой умудренный читатель смог самостоятельно убедиться в том, что 6 и 28 – действительно совершенные числа.

Ответ: 1 + 2 + 3 = 6, 1 + 2 + 4 + 7 + 14 = 28.

Что касается числа 6, вот что писал в книге «О граде Божьем» (De Civitate Dei) Блаженный Августин Иппонийский (354–430): «Не потому шестеричное число совершенно, что Бог создал все дела Свои в шесть дней, а потому Он и создал Свои дела в шесть дней, что шестеричное число совершенно».

Следующее после 28 совершенное число – 496, а следующее за ним – 8128. Русский писатель Лев Толстой любил хвастаться, что родился в «почти совершенном» году – 1828-м. Вот если бы он родился 28 июня, тогда ему действительно было бы чем гордиться (не говоря уже о том, что число 6,28 к тому же близко к 2π)[10]10
  Имеется в виду американский формат записи дат, в котором месяц идет перед числом и 28 июня записывается в виде «6.28».


[Закрыть]
.

Возможно, вы заметили в этой последовательности – 6, 28, 496, 8128… – некую закономерность. Любители выдвигать гипотезы могут сделать следующее предположение: последняя цифра совершенного числа бывает поочередно равна 6 и 8.

Однако эта гипотеза оказывается ошибочной. Пятое совершенное число равно 33 550 336, то есть вписывается в эту тенденцию. Но уже шестое – 8 589 869 056 – тоже заканчивается на шестерку и тем самым нарушает закономерность. Может быть, гипотезу можно слегка подправить и предположить, что все совершенные числа заканчиваются либо на 6, либо на 8.

Посмотрим на первые девять совершенных чисел:


6

28

496

8128

33 550 336

8 589 869 056

137 438 691 328

2 305 843 008 139 952 128

2 658 455 991 569 831 744 654 692 615 953 842 176


В последнем из них 37 знаков (а сумма всех его собственных делителей равна самому этому числу!).

В десятом числе 54 знака, а в одиннадцатом – 65, и заканчивается оно цифрами 8128, то есть в точности четвертым совершенным числом. Кстати говоря, найдены совершенные числа с миллионом (!) знаков. Не стесняйтесь – выдвигайте свои гипотезы.

Головоломка для сильных учеников

Докажите, что любое четное совершенное число заканчивается либо на 6, либо на 8. В этом вам могут помочь приведенные ниже равенства.

6 = 1 + 2 + 3.

28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 1³ + 3³.

496 = 1 + 2 + 3 + 4 + … + 31 = 1³ + 3³ + 5³ + 7³.

8128 = 1 + 2 + 3 + 4 + … + 127 = 1³ + 3³ + 5³ + … + 15³.

Более того, французский математик Эдуард Люка (1842–1891) доказал даже, что любое четное совершенное число должно заканчиваться на 16, 28, 36, 56, 76 или 96. Как ему это удалось? Не без труда!

Пока что мы видели только семь совершенных чисел, и все они четные. Естественно, хочется спросить: а бывают ли нечетные совершенные числа?

В конце XIX в. британский математик Джеймс Сильвестр писал, что открытие нечетного совершенного числа было бы настоящим чудом. Даже теперь многие математики склонны полагать, что ответ на этот вопрос должен быть отрицательным. Тем не менее доказать это пока что никто не смог. Вот вам еще одна «открытая проблема» – и еще одна возможность добиться славы и успеха!

Нет ответа и на другой интересный вопрос: бесконечно ли множество совершенных чисел? Можно ли продолжать находить совершенные числа, как бы далеко мы ни продвигались по множеству натуральных чисел? Или же где-то существует самое большое совершенное число?

Эта задача еще не решена и тесно связана с числами Мерсенна, к которым мы еще вернемся.

Сколько весит число? Числа совершенные, «толстые» и «тонкие»

Раз уж мы живем в эпоху диет, можно сказать, что натуральные числа делятся на три категории: совершенные, «толстые» и «тонкие». У «толстого» числа сумма собственных делителей больше самого числа, а сумма собственных делителей «тонкого» числа (вы, наверное, уже догадались…) меньше самого этого числа[11]11
  Такие числа чаще называют соответственно избыточными и недостаточными.


[Закрыть]
. Например, 12 – число упитанное, потому что сумма его делителей (1, 2, 3, 4 и 6) равна 16. А вот 10 – число худощавое, так как 1 + 2 + 5 = 8.

А как обстоит дело с женскими числами? То есть нечетными? Бывает ли и у них лишний вес? Существуют ли такие нечетные числа, суммы собственных делителей которых больше самих этих чисел? Если немного поэкспериментировать, может показаться, что сложение собственных делителей нечетного числа всегда дает значение, меньшее самого числа (проверьте несколько чисел и убедитесь в этом сами). Если брать только числа меньше 900, можно прийти к убеждению, что нечетные числа никогда не бывают «толстыми». Но пусть это вас не обманывает! Исследование конечного количества чисел, каким бы большим оно ни было, не означает, что следующее число не окажется исключением из правила. На самом деле нечетные числа бывают «толстыми»: сумма собственных делителей 945 (сложите 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189 и 315) равна… 975. Таким образом, мы открыли число 945 – наименьшее «толстое» нечетное число. И все же избыточный вес встречается у нечетных чисел довольно редко.

Мы еще вернемся в этой книге к теме совершенных чисел.

Интересные и скучные люди, интересные и скучные числа

Попытки создания «окончательных» списков иногда приводят к возникновению парадоксов следующего типа: из самого определения немедленно следует, что объект, задаваемый этим определением, должен быть исключен из списка. Что это значит?

Представим себе, что мы составляем два списка. Один из них – это список имен всех интересных людей на свете в порядке их интересности. Второй – список всех остальных. Он тоже будет упорядоченным: от самого скучного человека на свете до «слегка» неинтересного.

Вот как выглядят верхние части обоих списков.

Интересные люди: Пифагор, Леонардо да Винчи, Клеопатра, Моцарт, Эйнштейн, Мэрилин Монро, Сократ, Мессалина, Байрон, Наполеон, Будда, Жанна д’Арк, Александр Македонский…

Неинтересные люди: Реджинальд Зевокк, Брунгильда Дремотная, Якоб Снотвор, Владимир Сиестин, Билл Занудинг, Найлз Коматоз, Бернард Нуичтович, Карл Спячкин, Гарри Тоскливер, Тим Тупп…

Однако не все так просто. Вот, например, Реджинальд Зевокк. Если верить нашему списку, он самый скучный человек на свете. Но сам этот факт делает его человеком интересным. Ну в самом деле представьте себе титул САМОГО скучного человека в мире! Поэтому мы должны перенести его в список интересных людей. Разумеется, он не попадет даже близко к вершине этого списка, но тем не менее должен оказаться в нем, причем, вероятно, на каком-нибудь вполне достойном месте.

А теперь посмотрите, что происходит дальше. Поскольку мы убрали Реджинальда из скучного списка, теперь самым скучным человеком на свете стала Брунгильда Дремотная. Но это, в свою очередь, делает несколько интересной ее, что означает, что и ее следует перенести в первый список. Если мы продолжим этот процесс, мы неизбежно придем к выводу, что в мире вообще нет – и никогда не было – ни одного неинтересного человека. Я уверен, что вы давно уже обнаружили ошибку этого рассуждения.

В мире математики существует своя популярная версия парадокса скучных людей: в ней речь идет о множестве натуральных чисел, которые невозможно описать, используя менее 1000 слов. Отметим, что количество слов конечно (например, двадцатое издание «Оксфордского словаря английского языка» содержит ровно 171 476 слов), а в нашем распоряжении ограниченное число слов (1000), следовательно, и количество таких чисел конечно. Тем не менее существует наименьшее натуральное число, которое невозможно описать, используя менее 1000 слов. Обозначим его n и определим его следующим образом: «Наименьшее число, описание которого требует не менее одной тысячи слов».

Но что это?! Мы только что описали число n десятью словами (убедитесь сами), а следовательно, число n попадает в список чисел, которые можно описать, используя менее 1000 слов, что противоречит нашему определению этого числа.

Число n и Реджинальд Зевокк оказываются в этих двух парадоксах в одном и том же положении. Оба они определены как элементы некоторого списка, но затем их приходится исключать из этого списка в силу самого этого определения.

В чем проблема с этими двумя парадоксами? Математики терпеть не могут парадоксов и всегда ищут какое-нибудь объяснение, которое помогло бы им сохранить душевное спокойствие. Однако в этих случаях необходимо отметить, что мы использовали нематематическое свойство «можно описать», так и не дав его смыслу точного определения.

Это подводит нас к следующей теме нашего разговора.

Бывают ли вообще скучные числа?

Можно ли сказать, что некоторые числа более или менее интересны, чем другие?

Пифагор считал, что скучных чисел вообще не существует, что любое и каждое число чем-нибудь да интересно, что каждое число имеет по меньшей мере одно свойство, делающее его уникальным, или таит в себе нечто красивое или особенное.

А поскольку Пифагор придавал числам огромное значение, он стремился не только понять их с математической точки зрения, но и разглядеть в каждом из них красоту, загадку или тайну.

Какие именно характеристики числа делают его особенным или привлекательным? Это, по-моему, вопрос вкуса. «Привлекательна» ли принадлежность к совершенным числам? На мой взгляд, привлекательна. Мне также кажутся интересными пары дружественных чисел – эти числа по-настоящему умеют дружить. Было бы желание, а красоту можно найти в чем угодно – недаром говорят, что красота в глазу смотрящего.

Посмотрим, например, на число 64. В том факте, что 64 – квадрат 8 (8² = 64), нет ничего особенно выдающегося: многие другие числа тоже являются полными квадратами. Но число 64 может быть выражено и следующим образом: 64 = 26 = 4³.

Это уже гораздо интереснее. Оказывается (и это очень легко проверить), 64 – первое число (не считая 1), которое является не только квадратом (то есть второй степенью некоторого числа), но и третьей и шестой степенями.

Так что же, можем ли мы назвать 64 особенным числом? Поможет ли делу тот факт, что ему равно число клеток на шахматной доске? А еще в Камасутре описаны 64 позиции, а в «И цзин», китайской «Книге перемен», – 64 гексаграммы. Делает ли это число 64 хоть сколько-нибудь более выдающимся? Не знаю – решайте сами. А еще вы можете попробовать найти другие свойства, которые делают число 64 уникальным.

Предположим, нечто интересное есть в любом числе, и рассмотрим число 65, идущее сразу после 64. Можно ли найти что-нибудь замечательное в нем?

Разумеется, можно! Это число – второе в множестве натуральных чисел (после 50), выражаемое двумя разными суммами двух квадратов: 65 = 8² + 1² = 7² + 4². Кроме того, его еще можно выразить суммой двух кубов! 65 = 1³ + 4³. Более того, 65 – первое число, которое может быть выражено как суммой двух квадратов (причем двумя разными способами!), так и суммой двух кубов. Поразительно!

Сам Пифагор считал самым интересным число 36. Он полагал, что это идеальный возраст для мужчины (было ли у него какое-нибудь мнение об идеальном возрасте для женщины, я не знаю).

Математические свойства числа 36 впечатляли Пифагора, потому что:

36 = (1 + 2 + 3)² = 1³ + 2³ + 3³.

Когда я был моложе, я был согласен с Пифагором (и относительно вариантов выражения числа 36, и в том, что 36 лет – очень приятный возраст), но теперь я придерживаюсь более оптимистической точки зрения и считаю «идеальным возрастом» – как для мужчин, так и для женщин – 100 лет:

100 = (1 + 2 + 3 + 4)² = 1³ + 2³ + 3³ + 4³.

Те равенства, о которых мы только что говорили, далеко не случайны. Возможно, вы уже догадались, что квадрат суммы любого количества последовательных чисел равен сумме кубов всех этих чисел:



Мы обнаружили некоторые весьма интересные свойства некоторых чисел. Но наверняка существуют какие-то числа, в которых нет ничего по-настоящему уникального. Однако, если применить к числам парадокс «самого скучного человека на свете», то, может быть, число, не имеющее никаких особенных свойств, можно считать «интересным» именно этой особенностью.

2
Рамануджан и камешки Пифагора

I. Человек, познавший бесконечность
ПУТЕШЕСТВИЕ В ИНДИЮ: ХАРДИ ЗНАКОМИТСЯ С РАМАНУДЖАНОМ

Сриниваса Рамануджан был математическим гением. Он родился в 1887 г. в Ироду, в индийской провинции Мадрас, и уже в детстве проявил необычайные математические способности.

Однако там, где он жил, ему было не у кого учиться, и даже не было никого, кто смог бы посоветовать, чему учиться. Можно сказать, что Рамануджан был самоучкой. Хотя он не получил никакого формального образования, он добился беспрецедентных достижений в нескольких математических дисциплинах. Главной областью его работы была теория чисел, и, подобно Пифагору, Рамануджан поддерживал с числами близкие личные отношения.

В 1913 г. Рамануджан отправил несколько своих математических результатов (равенств, или тождеств) трем известным британским математикам, но лишь один из них, Годфри Гарольд Харди, сумел понять, насколько блестящим человеком был автор этих результатов. Хотя эти результаты во многом были подобны неотшлифованным алмазам, они все равно были прекрасны. Харди приложил все усилия, чтобы перевезти Рамануджана в Лондон, а затем, во время Первой мировой войны, – в Кембридж. Впоследствии Рамануджан стал первым индийцем, избранным членом кембриджского Тринити-колледжа.

Ниже представлены два из тех самых результатов (равенств), которые так поразили Харди. Когда я впервые увидел эти равенства, я был третьекурсником математического факультета, и они были настолько прекрасны, что я сразу же подумал о музыке. Они казались мне нотами прекрасной симфонии. Эти равенства кажутся очень сложными, и они действительно сложны, но вам необязательно понимать их. Вам даже необязательно рассматривать их как математические выражения. Просто посмотрите на великолепную красоту, заключенную в этих численных узорах.

ПЕРВАЯ СИМФОНИЯ РАМАНУДЖАНА



Какое великолепие!


Формула не имеет для меня смысла, если она не выражает мысли божества.

Рамануджан

Хотя можно просто любоваться эстетическими аспектами математических формул Рамануджана, нам, возможно, захочется проявить некоторый педантизм и проверить, действительно ли его результаты верны.

Посмотрим на первое равенство.

У нас есть бесконечный ряд слагаемых, разделенных поочередно плюсами и минусами. Первое слагаемое – единица, но каждое следующее после него – произведение целого числа и дроби. Целое число каждый раз увеличивается на 4. Числитель дроби равен степени произведения нечетных чисел, а ее знаменатель – степени произведения четных чисел, причем количество множителей каждый раз увеличивается на единицу. Рамануджан утверждает, что чем больше в этой формуле сомножителей, тем ближе ее результат становится к двойке, деленной на π (отношение длины окружности к ее диаметру)! При бесконечном числе сомножителей результат будет в точности равен отношению двойки к π.

Откуда взялось это равенство? У Рамануджана были тысячи (!) таких формул (точнее, почти 3900). Вы, вероятно, не поверите, но те, что приведены выше, относятся к числу самых простых из них!

Чтобы быть до конца честным, я должен сказать, что некоторые из формул Рамануджана не были стопроцентно точными, но я твердо придерживаюсь того мнения, что из ошибок великого человека можно узнать гораздо больше, чем из истинных утверждений посредственности.

Харди и Рамануджан

Харди и Рамануджан разительно отличались характерами. Харди был атеистом (и считал Бога своим злейшим врагом) и отличался исключительным педантизмом во всем, что касается математики: он хотел видеть доказательство каждой формулы. Рамануджан же был человеком во всех отношениях глубоко религиозным, а в отношении математики больше полагался на интуицию. Он не только видел в своих уравнениях и тождествах проявление божества, но и не любил рассказывать, как именно он к ним пришел, опасаясь, что его могут признать сумасшедшим. Это напоминает мне одну сцену из фильма «Амадей» Милоша Формана: Сальери читает ноты Gran Partita[12]12
  Серенада № 10 си-бемоль мажор для духовых, KV361 (370A).


[Закрыть]
Моцарта и приходит к уверенности, что ее продиктовал Моцарту сам Бог. Потом Сальери разглагольствует о том, почему Бог не выбрал его самого, чтобы продиктовать ему столь возвышенное сочинение. Видимо, некоторые считают, что гений может даваться только Богом.

Следующее равенство, на мой взгляд, – самая странная из формул Рамануджана:

1 + 2 + 3 + 4 + ··· = –1/12.

Что???

Она кажется совершенно неверной! Бесконечная сумма, которая стоит в левой части, должна быть равна бесконечности; из нее никак не может получиться отрицательного числа! Но, можете быть уверены, Рамануджан понимал, что он делает, и эта запись отнюдь не бессмысленна: он работал с очень важной дзета-функцией Римана – Эйлера (это функция комплексного переменного, рассмотрение которой выходит за рамки этой книги). Рамануджан писал в письме к Харди: «Согласно моей теории, сумма бесконечного числа членов ряда 1 + 2 + 3 + 4 + … = –1/12. Если я скажу Вам об этом, Вы сразу же ответите, что мне прямая дорога в сумасшедший дом».

Несмотря на всю строгость Харди в вопросах, касавшихся математики (во всем остальном он пользовался репутацией человека исключительно мягкосердечного), он не мог устоять перед очарованием прекрасных уравнений индийского гения.

Формулы Рамануджана должны быть верными, потому что, если бы они не были верными, ни у кого не хватило бы воображения их выдумать.

Г. Г. Харди

Харди показал работы Рамануджана одному из своих коллег, с которым он часто работал вместе, Джону Литлвуду (мы уже встречались с ним раньше, когда говорили о парадоксе с теннисными мячами). Литлвуд тоже был поражен явной гениальностью Рамануджана. Он говорил, что не знает математиков, которых можно было бы сравнить с Рамануджаном: он превосходил всех их.

Чтобы проиллюстрировать, до какой степени Харди и Литлвуд с течением времени стали считаться лидерами современных математических исследований в Англии, я могу сообщить, что один из моих превосходных коллег сказал однажды в шутку: «В наше время есть всего три по-настоящему великих английских математика: Харди, Литлвуд и Харди – Литлвуд»{10}10
  Математик Харальд Бор был братом великого датского физика Нильса Бора. Кроме того, он играл в футбольной сборной Дании, завоевал в ее составе серебряную медаль Олимпийских игр 1908 г. Эта цитата позаимствована из его лекции «Оглядываясь назад» (Et tilbageblik // Mat. Tidsskr. A (1947). P. 1–27).


[Закрыть]
.

Харальд Бор

Харди был просто замечательным математиком. Но когда Пал Эрдёш (которого мы тоже уже встречали) спросил Харди, что, по его мнению, было его величайшим вкладом в математику, Харди ответил: «Открытие Рамануджана».

К этому я добавлю только одно: у Харди была привычка классифицировать математиков по шкале от 0 до 100. Самому себе он поставил 25, своему коллеге Литлвуду – 30, а великому немецкому математику Давиду Гильберту (в честь которого названа целая область математики – «гильбертовы пространства») – 85. Рамануджану он поставил высочайшую оценку из возможных – ровно 100!

Еще о Харди и математическом мышлении

Одна из моих любимых книг – «Апология математика» Харди. Он рассуждает в ней об эстетике математики и дает нам редкую возможность увидеть изнутри методы мышления тех, кто занимается этой наукой. Харди любил чистую (теоретическую) математику и как-то хвастался даже, что ничто из того, что он сделал, не имеет практического применения. В этом, однако, он сильно ошибался. Например, всякому, кто хоть немного занимался популяционной генетикой, знаком закон Харди – Вайнберга. Кроме того, Харди считал, что не имеет практического значения и теория чисел, которую он страстно любил. Сегодня теория чисел тесно связана с шифрами и кодами. Харди думал даже, что у теории относительности тоже не может быть никакого практического применения. Действительно, очень трудно – может быть, даже невозможно – предсказать, какие из математических открытий окажутся практически полезными, а какие послужат «только лишь» для поддержания славы человеческого разума, очень трудно – может быть, даже невозможно.

В своей книге Харди описывает самым увлекательным образом, что́ в математике он находит прекрасным, а что́ – нет. Впоследствии мы еще поговорим об этом.

ПРЕМИЯ РАМАНУДЖАНА

Со здоровьем у Рамануджана дела обстояли далеко не так блестяще, как с математикой. В 1920 г., вскоре после возвращения в Индию, он умер в возрасте всего 32 лет.

Начиная с 2005 г. за открытия, сделанные на основе его работ, ежегодно присуждается премия имени Рамануджана, учрежденная университетом SASTRA[13]13
  Shanmugha Arts, Science, Technology & Research Academy – университет, расположенный близ индийского города Кумбаконама, родины Рамануджана.


[Закрыть]
. Ее могут получить только математики не старше 32 лет – того возраста, в котором сам Рамануджан расстался не только с жизнью, но и с числами, которые он так любил.

В 2009 г. (в котором было подготовлено первое издание этой книги) премию получила немецкий математик Катрин Брингман. Последняя на момент написания этого текста премия была присуждена украинскому математику Марине Вязовской, которая решает задачи в 8– и 24-мерном пространствах!

Вернемся, однако, к интересным числам, о которых мы говорили в предыдущей главе.

Такси № 1729

Однажды Харди навещал болевшего Рамануджана. Харди упомянул, что приехал в такси, на котором стоял номер 1729. «Какое необычайно скучное число!» – воскликнул Харди. «Ничего подобного! – пылко возразил Рамануджан. – На самом деле 1729 – число чрезвычайно интересное! Неужели вы не понимаете, что это самое малое число, которое можно выразить в виде суммы кубов двух положительных целых чисел двумя разными способами? Первый – 1 в кубе плюс 12 в кубе. Второй – сумма 10 в кубе и 9 в кубе». Вот как это можно записать:

1729 = 12³ + 1³ = 10³ + 9³.

Когда я рассказываю эту историю своим друзьям, их обычно поражает тот факт, что кто-то сумел моментально вычислить, что число 1729 можно представить в виде суммы двух кубических чисел. Меня же, честно говоря, поражает тот факт, что Рамануджан знал, что 1729 – наименьшее число, обладающее этим свойством. Откуда он мог это знать? Понятия не имею!

Разумеется, мы говорим здесь только о положительных числах. Если бы можно было использовать и отрицательные, мы могли бы найти величину, меньшую 1729. Например, 91 = 6³ + (–5)³ = 4³ + 3³.

Любое целое положительное число было одним из личных друзей Рамануджана.

Джон Литлвуд

Я хотел бы отметить, что у числа 1729 есть еще несколько интересных свойств. Больше всего мне нравится то из них, которое обнаружил японский математик и писатель Масахико Фудзивара (р. 1943){11}11
  Фудзивара весьма известен в Японии своими популярными книгами по математике. Одна из этих книг посвящена красоте теорем, которые он делит на красивые и уродливые.


[Закрыть]
. Он показал, что 1729 – одно из всего лишь трех чисел, обладающих следующим свойством: сумма его цифр, умноженная на число, симметричное этой сумме, дает исходное число.

1 + 7 + 2 + 9 = 19.

19 × 91 = 1729.

Головоломка

Найдите другие два числа (этим свойством также обладает число 1, но этот ответ слишком очевиден и потому не считается). Подсказка: одно из этих чисел двузначное, и его не слишком трудно найти. Второе число четырехзначное{12}12
  Первое число – 81. Второе… барабанная дробь! – 1458. Удалось ли вам его найти?


[Закрыть]
.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации