Электронная библиотека » Иван Жмыхов » » онлайн чтение - страница 13

Текст книги "Основы экологии"


  • Текст добавлен: 14 июня 2016, 01:00


Автор книги: Иван Жмыхов


Жанр: Учебная литература, Детские книги


сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 39 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:
- 100% +

Однако не вся свободная энергия проходит через организм подобным путем. Часть энергии используется на организацию ряда эндотермических реакций, т. е. связывается в сложных молекулярных структурах. В первую очередь это реакции синтеза необходимых белков, нуклеиновых кислот и т. п. В данном случае эта доля свободной энергии идет на упорядочение внутренней структуры организма. Эта энергия, накопленная в веществе организма, называется продукцией.

Некоторая доля пищи не усваивается организмом, следовательно, из нее не высвобождается энергия. Она выводится из организма вместе с экскрементами и впоследствии высвобождается из них уже другими организмами.

Ввиду наличия в своей структуре сложных молекулярных соединений, данный организм может служить пищей для другого организма. При этом его структура подвергается механическому и химическому разрушению. Высвободившаяся при этом свободная энергия используется так же, как в вышеописанном случае. Таким образом, формируется так называемая пищевая или трофическая (от греч. trophē – питание) цепь, в которой происходит перенос энергии через ряд организмов путем поедания одних организмов другими.

Трофическая цепь, как правило, иерархична, т. е. состоит из последовательности уровней, называемых трофическими. Организмы, стоящие на каждом трофическом уровне, приспособлены природой для потребления определенного вида пищи, в качестве которой выступают организмы предыдущего трофического уровня (или нескольких предыдущих уровней). В принципе, организмы с более высоких трофических уровней также могут служить пищей на данном уровне, но это не является характерным, так как каждый следующий уровень трофической цепи аккумулирует в себе более качественную энергию и поэтому выполняет регулирующую функцию по отношению к нижним уровням (об этом будет подробнее описано ниже). Другими словами, чем дальше трофический уровень от начала цепи, тем сильнее влияние организма на окружение, тем больше его возможности.

Следует отметить, что с одного трофического уровня на другой передается не вся энергия данного уровня, а только та, которая накапливается в структуре организмов данного уровня. Основная часть энергии, усвоенной консументами с пищей, тратится на их жизнеобеспечение (дыхание). В сумме с неусвоенной пищей (экскременты) это составляет в среднем порядка 90 % от потребленной энергии. Это означает, что энергия, накопленная в структурах организмов, т. е. передаваемая на следующий трофический уровень, в среднем составляет около 10 % от энергии, потребленной с пищей. Эта закономерность и называется правилом десяти процентов.

На биосферу из космоса воздействует солнечный свет с энергией 8,38 Дж/мин·см2. Проходя через атмосферу, он ослабляется, и в ясный летний день до поверхности Земли доходит не более 67 % его энергии, т. е. 5,61 Дж/мин·см2, в пасмурный день ослабление еще существенней. За день к автотрофному слою поступает в среднем 71,6–95,5 Дж/ мин·см2. Фотоактивная радиация, используемая при фотосинтезе, составляет порядка 40 % от поступившей солнечной радиации. Из нее растения связывают около 1 % энергии. Только эта энергия, накопленная в органической части растений, составляет первичную продукцию, которая затем может передаваться далее по пищевым цепям.

Из-за дефицита количества поступающей энергии и правила десяти процентов следует, что все трофические цепи могут иметь только ограниченное количество уровней, как правило, не больше четырех-пяти. Количество живого вещества на каждом следующем уровне примерно на порядок меньше, чем на предыдущем.

Существует и еще одно следствие, очень важное для нашей цивилизации: с энергетической точки зрения потребление животной продукции, особенно с дальних уровней цепей питания, нецелесообразно. Примером могут служить пруды для спортивной ловли рыбы. Рыболову интересно вылавливать достаточно крупную рыбу, например окуня, который питается более мелкой рыбой. Поэтому для разведения окуней требуется водоем с большим количеством мелкой рыбы, питающейся зоопланктоном и мотылем, которые в свою очередь питаются фитопланктоном и его детритом. Пруд только с мелкой рыбой давал бы больше рыбы по биомассе, чем пруд с окунями, но человеку мелкие рыбы просто не интересны.

Особенно велики потери энергии при переходе от растений к травоядным животным. Поэтому с точки зрения роста народонаселения планеты энергетически наиболее выгодным является вегетарианство.

При нормальном питании взрослый человек потребляет 80–100 кг мяса в год. При таком рационе уже невозможно обеспечить равноправие для нынешних 7 млрд людей планеты. При минимальном расходе мяса можно прокормить на планете только около 8 млрд людей. Переход всех людей на вегетарианство может обеспечить пищей приблизительно 15 млрд человек.

Эти цифры не зависят от успехов сельского хозяйства, а опираются только на данные энергетики экосистем. Принципиальное ограничение наложено самим Солнцем. В сельское хозяйство возможно привлечь дополнительные энергетические субсидии, в первую очередь от сжигания топлива и ядерных реакций.

Агросистемы – это яркий пример дополнительно субсидируемых экосистем. Здесь дополнительная энергия поступает в виде мышечных усилий человека и животных, работы машин, использующих горючее, орошения, внесения удобрений, пестицидов и т. п. Еще в прошлом веке Мальтус предупреждал, что уже 2 млрд людей Земля прокормить не в состоянии. Эта величина превышена только за счет энергетических субсидий в сельское хозяйство, что неумолимо приближает к себе другой аспект экологической катастрофы – тепловой, связанный с глобальным изменением климата.

Преодоление этого аспекта на современном уровне технического развития ограничено одним из фундаментальнейших законов природы: принципом роста энтропии.

Столь сложная система передачи энергии обусловлена несколькими причинами:

• во-первых, все консументы призваны вернуть вещество в круговорот. Без этого жизнь не смогла бы постоянно усложнять свои формы, т. е. рано или поздно исчерпался бы лимит возможности роста энтропии. В рамках всей Вселенной это противоречит самим принципам ее существования;

• во-вторых, чем сложнее трофическая сеть данной экосистемы, тем интенсивней круговорот вещества. Это облегчает поток энергии через экосистему;

• в-третьих, консументы – это не просто «пассивные едоки». Удовлетворяя свои потребности в энергии, они регулируют всю деятельность экосистемы, т. е. являются основными звеньями механизмов гомеостаза экосистем. Причем реализуемые ими обратные связи могут быть не только отрицательными (выедание, т. е. уменьшение биомассы предыдущего уровня трофической цепи), но и положительными. Многие животные разными способами «ухаживают» за своими кормовыми растениями или как-то иначе способствуют их росту. Например, злаки, листья которых объедают кузнечики, быстрее восстанавливаются, чем злаки с обрезанными листьями.

При движении вдоль пастбищной пищевой цепи от одного уровня к другому вместе с уменьшением количества живого вещества на каждом уровне увеличивается качество энергии, запасенной в этом веществе.

Для того чтобы образовать 1 кДж биомассы[4]4
  Под биомассой понимают живое вещество, выраженное в сухой массе или энергетическом эквиваленте.


[Закрыть]
хищника, требуется около 10 000 кДж энергии солнечного света, или 10 кДж биомассы травоядных животных. Соответственно качество энергии, накопленной в биомассе хищников, в 10 раз выше, чем в биомассе травоядных. Это более высокое качество проявляется в управляющем воздействии, которое оказывают организмы данного трофического уровня на организмы предыдущего уровня. Хищники регулируют жизнь травоядных, в свою очередь травоядные регулируют фитоценоз.

Рассмотренный принцип характерен не только для биосистем, но является общим для всех процессов преобразования энергии. Любым потоком энергии можно управлять только с помощью энергии более высокого качества. Например, с помощью электроэнергии достаточно просто управлять потоками тепловой энергии, но вот добиться обратного можно только, если предварительно повысить качество тепловой энергии, например существенно увеличив ее температуру. Электроэнергия имеет достаточно высокое качество по сравнению с другими видами энергии, поэтому именно она наиболее часто используется.

Для того чтобы получить энергию более высокого качества, требуется пройти цепь превращений энергии, аналогичную пищевой цепи экосистемы. С каждым звеном этой цепи качество энергии будет повышаться, но только за счет уменьшения того количества энергии, которое удалось сконцентрировать в данном преобразовании. Например, возможно получить электроэнергию, сжигая уголь. Но на каждые 500 кДж энергии, выделившейся при сжигании угля, можно получить только 125 кДж электроэнергии. Остальная энергия будет рассеяна как плата за увеличение качества отдельной порции энергии. Это прямое следствие принципа Онзагера: можно добиться уменьшения энтропии (повышения качества энергии) в одном из процессов только за счет еще большего увеличения энтропии в других процессах, сопряженных с ним.

На формирование 500 кДж, полученных при сжигании угля, затрачивается около 1 000 000 кДж солнечной энергии, т. е. солнечная энергия обладает сравнительно низким качеством. Для того чтобы солнечный свет выполнял ту же работу, которая производится сейчас углем или нефтью, нужно сконцентрировать его в 2000 раз. Поэтому надежды человека на непосредственное использование солнечной энергии связаны со значительными затратами на создание соответствующих технических устройств.

Таким образом, с каждым шагом вдоль трофической цепи возрастает степень управляющего воздействия организмов на природу. Внешне это выражается в усложнении и совершенствовании структуры организмов по ходу трофической цепи. В не которых случаях это можно наблюдать путем простого сравнения анатомии животных, например птицы и гусеницы. Но если, например, сравнить анатомию волка и овцы, то особых различий, говорящих о более сложном и совершенном строении волка, найти непросто. Здесь определяющее значение имеют не столько особенности строения тела, сколько различия в сложности мозговых структур. Другими словами, по мере повышения качества энергии с каждым трофическим уровнем, это качество реализуется не только в усложняющейся с каждым шагом физиологии организмов, но и во все более усложняющемся поведении, во все более развитой психике, вплоть до возникновения сознания у человека.

Длительное существование жизни на Земле, которое невозможно без непрерывного использования минеральных веществ, обязано описанному выше процессу круговорота вещества и движению энергии. Если бы в биосфере не было биотического круговорота, и абиотические (минеральные) продукты расходовались бы только на восполнение и поддержание жизни, то в силу их конечности рано или поздно они бы исчерпались, и жизнь прекратилась как планетарное явление.

Однако в природе наблюдается непрерывный процесс создания и разрушения органического вещества с возвращением полученных простых минеральных соединений в следующие циклы использования (биотический круговорот), которые протекают непрерывно. Как показали ориентировочные расчеты, весь кислород атмосферы проходит через живые организмы за 2 тыс. лет, диоксид углерода – за 300 лет, а весь запас воды распадается и восстанавливается за 2 млн лет.

Иными словами, все вещества в порядке циркуляции прошли через живое вещество за время существования биосферы тысячи, даже миллионы раз.

Описанные биогеохимические явления круговорота вещества и движения энергии свидетельствуют об исключительной роли зеленых растений – основных продуцентов органического вещества и организмов-деструкторов, или биоредуцентов. Их функция трансформации органических веществ в доступную для продуцентов форму столь же важна, как и созидающая деятельность последних. При этом интенсивность жизнедеятельности всех трех основных слагаемых органического мира (продуцентов, консументов (потребителей) и редуцентов) обязательно находится во взаимном равновесии, которое устанавливалось миллионами лет эволюции биосферы. Подобное равновесие было неизменным условием существования биосферы и основным ее свойством, несмотря на глобальные, зачастую катастрофические геологические, географические или космические преобразования, происходившие на Земле на протяжении ее длительной истории. Это позволяет рассматривать биосферу как саморегулирующуюся систему, если, конечно, она не подвергается несбалансированному и эволюционно незакрепленному воздействию каких-то иных факторов и прежде всего антропогенного происхождения.

3.5. Техносфера, ноосфера, техносферогенез
3.5.1. Техносфера и техногенез

Исторически сложившаяся биосфера с момента появления человека как Homo sapiens (человек разумный) стала все сильнее подвергаться негативному влиянию его хозяйственной деятельности. С целью обеспечения своему виду максимального выживания и распространения человек был вынужден пойти по пути техногенного развития, который давал ему неоспоримые преимущества перед любым другим видом живых организмов, не наделенных такой высокой степенью организации нервной системы и, прежде всего, головного мозга. Особенно жесткому воздействию со стороны человеческой деятельности природные комплексы стали подвергаться в последние 200 лет, причем степень воздействия на них возрастает с каждым десятилетием.

Для преобразованного человеческой деятельностью мира предложен термин техносфера, которая может быть определена как область проявления технической деятельности человека. Техносфера возникла в процессе нескольких тысячелетий техногенеза, выступающего как материальное воплощение истории человечества. Главными слагаемыми техногенеза являются технический прогресс и экономический рост. В ХХ в. техногенез приобрел глобальный характер, способствуя повсеместному преобразованию биосферы в техносферу.

Наиболее характерные черты глобального техногенеза в ХХ в.:

• за 100 лет мировое потребление энергии увеличилось в 14 раз. Суммарное потребление первичных энергоресурсов превысило 380 млрд т условного топлива, т. е. более 1022 Дж. С 1953 по 1972 г. ежегодный прирост энергопотребления был равен приросту валового мирового продукта и составлял 4,5 %. С 1950 по 1985 г. среднее душевое потребление энергоресурсов удвоилось и достигло 68 ГДж/год. Это значит, что мировая энергетика росла вдвое быстрее, чем численность населения. На протяжении следующих 10 лет душевое потребление росло медленнее – до 71 ГДж в 1995 г.;

• в структуре топливного баланса большинства стран мира произошел переход от преимущественного использования угля и дров к преобладающему использованию углеводородного сырья – нефти и газа (до 65 %), а также к заметному вкладу гидро– и ядерной энергетики (суммарно до 9 %). С 1950 по 1995 г. в 2 раза возросло преобразование топлива в электроэнергию. Среднее душевое потребление электроэнергии достигло 2400 кВт·ч/год;

• многократно увеличилась добыча и переработка минеральных ресурсов – руд и нерудных материалов. Производство черных металлов возросло за столетие в 8 раз. Еще интенсивнее был рост производства цветных металлов, в основном за счет быстрого наращивания выплавки алюминия. С 1940 г. началась и стремительно выросла промышленная добыча урана. Производство цемента за 90 лет ХХ в. выросло практически с нуля до 1 млрд т/год;

• в ХХ в. значительно возрос объем и изменилась структура машиностроения. Очень весомую долю ее составила военная техника. Появились и получили быстрое развитие такие отрасли, как производство средств связи, приборостроение, радиотехника, электроника, вычислительная техника и др. По сравнению с началом века тысячекратно увеличилось количество выпускаемых самодвижущихся транспортных средств;

• значительно интенсифицировалась химизация всех отраслей хозяйственной деятельности. За последние 50 лет выпущено более 6 млрд т минеральных удобрений, во много раз выросло производство пластмасс, синтетических волокон, моющих и иных синтетических средств, в том числе эффективных взрывчатых и отравляющих веществ, пестицидов, лекарственных препаратов;

• развитие военной промышленности практически устранило географические ограничения в применении военной техники. Космос, атмосфера, вода и подводное пространство, земная поверхность от Северного до Южного полюса стали доступными для ведения боевых действий. Появились принципиально новые виды оружия массового поражения на качественно иных физических принципах, которые создают непосредственную угрозу выживанию человека в термоядерную эпоху;

• появление нового, несвойственного биосфере элемента – техновещества. На суше техновещество соотносится с биовеществом следующим образом:



Техновещество обладает огромной геологической активностью и очень быстро изменяет облик планеты, расходует потенциальную энергию ныне существующей биосферы примерно в 10 раз быстрее, чем она может быть аккумулирована всем современным живым веществом. Поэтому разрушительная функция техновещества намного превосходит все его созидательные качества.

За год мировой экономикой изымается из природной среды 120 Гт минерального сырья, ископаемого топлива и биомассы, из которых только 9 Гт (7,5 %) преобразуется в материальную продукцию в процессе производства. Более 80 % этого количества природных ресурсов вновь возвращается в основные фонды производства. Только 1,6 Гт составляют личное потребление человечества, причем 2/3 этой массы относится к общему потреблению продуктов питания. Из окружающей среды человечество потребляет 3,6 Гт питьевой воды и 1,2 Гт кислорода в год. В атмосферу возвращается 1,6 Гт выдыхаемых углекислого газа и паров воды, при этом выделяется порядка 18 ЭДж теплоты. В водоемы и земную поверхность от жизнедеятельности людей поступает 4 Гт жидких и 0,8 Гт твердых отходов. Материальный нетто-баланс человечества как биологического вида невероятно велик, но в целом почти вписывается в глобальный биотический круговорот и определяет лишь часть современных экологических проблем (рис. 3.9).


Рис. 3.9. Схема глобального антропогенного материального баланса: потоки потребления, Гт/год; потоки отходов, Гт/год


Наиболее серьезные проблемы связаны с потреблением биоресурсов, технической энергетикой и промышленным производством. Ежегодное изъятие не менее 10 Гт сухого вещества биомассы в виде сельскохозяйственной продукции, древесины и морепродуктов составляет более 7 % продукции фотосинтеза на суше. Но, кроме этого, за счет антропогенного уменьшения биомассы и продуктивности естественных экосистем, замещения их агроценозами, вырубки лесов, опустынивания, техногенной деградации и человек косвенно переводит в антропогенный канал еще 27–30 % первичной продукции экосистем суши, в целом снижая продуктивность земной биосферы примерно на 12 %. Именно этот факт расценивается как самое главное вмешательство человечества в природные процессы.

В добывающей и перерабатывающей промышленности мира за год образуется более 100 Гт твердых и жидких отходов; из них около 15 Гт попадает со стоками в водоемы, а остальное количество – 90 Гт/год добавляется к отвалам пустой породы, золо– и шлакоотвалам, к другим хранилищам и захоронениям промышленных отходов, к свалкам.

Сжигание 12 Гт ископаемого топлива, сжигание и биологическое окисление более 7 Гт изымаемой растительной биомассы и другие производственные окислительные процессы отнесены в балансе к массообмену в атмосфере. Они сопряжены с потреблением 40 Гт кислорода и возвращением в атмосферу 52 Гт углекислого газа и других оксидов. Вместе с ними в воздух попадают продукты неполного сгорания, различные аэрозоли, соли, а также значительная масса разнообразных летучих органических веществ, выделяющихся при производственных процессах и работе транспорта. Общая масса этих примесей достигает 1 Гт/год. Одновременно в среду выделяется более 530 ЭДж техногенной теплоты.

Важным отличием техногенного круговорота вещества от биотического является то, что он существенно разомкнут в количественном и качественном отношении. Своей разомкнутостью техногенный круговорот нарушает необходимую высокую степень замкнутости биотического круговорота вещества и движения энергии, которая выработана в течение длительной эволюции органического мира, и является важнейшим условием существования биосферы. Основная причина современного глобального экологического кризиса на планете – это нарушение биосферного равновесия.

О степени разомкнутости техногенного круговорота можно судить по его вмешательству в глобальный круговорот углерода (см. п. 3.4.3.1, рис. 3.4). Непосредственная техногенная эмиссия СО2 в атмосферу составляет 30 Гт/год. К этому количеству добавляется еще по меньшей мере 3,5 Гт СО2, выделяющегося в результате изъятия фитомассы и эрозии почвы. Кроме этого, судя по массе кислот, образующихся из техногенных оксидов серы и азота и выпадающих на землю в виде кислотных дождей, вытесняемый ими СО2 из карбонатов и органики почвы дает еще минимум 1,5 Гт углерода. Таким образом, в результате непосредственного и косвенного вмешательства в природный круговорот углерода общее количество СО2, ежегодно выбрасываемого в атмосферу, достигло 35 Гт и на 10 % увеличило планетарный обмен углерода.

Казалось бы, при очень высокой замкнутости биосферного круговорота углерода и огромной буферной емкости биосферы и океана по связыванию атмосферного избытка СО2 это увеличение не должно приводить к нарушению равновесия. Более того, можно было бы ожидать улучшения углеродного питания растений и повышения их продуктивности. Но в действительности содержание СО2 в атмосфере на протяжении последних десятилетий неуклонно увеличивается. Следовательно, буферные системы биосферы и океана не справляются с регулированием равновесия потоков СО2. Это можно объяснить снижением ассимиляционного потенциала земной флоры (в основном из-за быстрого сокращения площади лесов) и значительным загрязнением суши и поверхности океана.

Нарастание концентрации СО2 в атмосфере вместе с другими техногенными газами усиливает парниковый эффект, т. е. поглощение нижним слоем атмосферы инфракрасного излучения падающей на землю солнечной радиации. Это приводит к некоторому повышению средней температуры атмосферы, гидросферы и поверхности земли, так называемому глобальному потеплению[5]5
  Судя по вековым колебаниям температуры и концентрации СО2 в атмосфере, изменение концентрации СО2 на 0,01 % сопровождается изменением температуры атмосферы на 10°. Существует, однако, мнение, что техногенная эмиссия СО2 не может играть определяющую роль в подобных сдвигах (Будыко, 1991).


[Закрыть]
. За последние 30 лет для нижних слоев атмосферы и поверхности суши оно составило не менее 0,6°, что соответствует прибавке колоссального количества энергии. Повышение температуры способствует дополнительному выделению углекислого газа из воды, почвенной влаги, тающих льдов, отступающей вечной мерзлоты, поскольку растворимость СО2, в воде заметно снижается с повышением температуры. Кроме этого, техногенные кислотные осадки, помимо прямого негативного действия на биоту, вытесняют СО2 из карбонатов почвы, вод и грунтов. Возник порочный круг самоусиления парникового эффекта.

Таким образом, современная техносфера не только вытесняет и замещает биосферу, но и нарушает средорегулирующую функцию биосферы, что еще опаснее. Эта опасность усугубляется тем, что техносфера не может существовать без биосферы, так как в огромной мере пользуется ее средой и ее ресурсами.

Особенностью техносферы является то, что область жизни в ней постоянно подвергается разнообразным и порой чрезвычайным по мощности залповым воздействиям. В начале эволюции техносферы эти воздействия были направлены практически полностью на живое вещество с целью максимально возможного обеспечения человека пищевыми ресурсами, т. е. человек как бы навязывал отдельным видам особый техногенный ритм жизнедеятельности. В результате многие виды животных и растений попросту исчезли, выпали из продолжающейся эволюции биосферы. С момента перехода к искусственному воспроизведению пищевых ресурсов (скотоводству и земледелию) человек начал вовлекать в сферу своих экономических интересов другие природные ресурсы (полезные ископаемые, воду и пр.). С каждым десятилетием этот процесс все ускоряется, в связи с этим значительно изменяется интенсивность природных процессов и явлений. В результате биосфера не просто преобразовалась, она изменила свою пространственно-временную структуру и энергетическую сущность, превратившись в область активной технической деятельности, или в техносферу (табл. 3.3).


Таблица 3.3. Рост техносферы и потери биосферы в ХХ веке



Как и биосфера, техносфера функционирует по определенным законам. К наиболее общим законам техносферы относятся уравнения баланса массы, законы сохранения центра масс, количества движения, момента количества движения, энергии и другие, справедливые при определенных условиях для любых материальных тел и технологических процессов, независимо от их структуры, состояния и химического состава. Эти уравнения подтверждены огромным количеством экспериментов.

Процессы в техносфере носят автокаталитический характер: совершая небольшое воздействие на систему, можно породить цепную реакцию следствий, эффект которых будет совершенно несоизмерим с первоначальным воздействием. Кроме того, общий результат в техносфере не сводится к сумме отдельных эффектов (явление синергизма).

Другими словами, мир техники, встраиваемый в биосферу, целенаправленно создававшийся человечеством, стал проявлять себя как феномен, подчиняющийся объективным, т. е. не зависящим от воли людей, законам. Цивилизация, ставящая определенные практические цели и достигающая их за счет создания искусственного мира техники, не может предвидеть всех отдаленных последствий.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации