Электронная библиотека » Кит Йейтс » » онлайн чтение - страница 8


  • Текст добавлен: 8 декабря 2021, 14:09


Автор книги: Кит Йейтс


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Дело Дрейфуса

Математика в зале суда имеет долгую и не самую славную историю. Первое примечательное злоупотребление математикой произошло в связи с политическим скандалом, который разделил Французскую Республику на два лагеря и прогремел по всему миру как «дело Дрейфуса». В 1894 году французская уборщица – она же сотрудник контрразведки, работавшая под прикрытием в немецком посольстве в Париже, – нашла выброшенную записку. Ее автор предлагал немцам купить французские военные секреты по сходной цене. Находка спровоцировала лихорадочный поиск «крота» среди высшего офицерства французской армии. Французская «охота на ведьм» окончилась арестом артиллерийского офицера, эльзасского еврея, капитана Альфреда Дрейфуса.

В процессе военного трибунала, отмахнувшись от вердикта эксперта-почерковеда [83]83
  Один из главных аргументов защиты Дрейфуса строился на том, что записка была написана не Дрейфусом, а кем-то, кто пытался имитировать его почерк (позже выяснилось, что так оно и было). – Прим. пер.


[Закрыть]
, усомнившегося в виновности Дрейфуса, французские власти обратились к главе парижского «Бюро по установлению личности» Альфонсу Бертильону [84]84
  Альфонсо Бертильон – создатель системы идентификации преступников по их антропометрическим данным («бертильонаж»), один из предтеч научной криминалистики и несомненный эксперт в своей области в описываемый период – и совершеннейший дилетант в области почерковедения. – Прим. пер.


[Закрыть]
, который никогда не был специалистом по почерковедению. Бертильон в довольно невнятном заключении путано утверждал, что Дрейфус намеренно исказил свой почерк, дабы создать ложное впечатление, что кто-то попытался подделать записку. В доказательство Бертильон представил замысловатый математический анализ, основанный на ряде сходств отдельных штрихов пера в повторяющихся многосложных словах в записке. Он утверждал, что вероятность сходства между штрихами в начале или в конце любой пары повторяющихся слов составляет 1/5. Далее он подсчитал, что вероятность четырех совпадений, обнаруженных им среди двадцати шести начал и окончаний тринадцати повторяющихся многосложных слов, составляла 1/5 в кубе, что давало ничтожное соотношение 16 к 10 000, и сделал вывод, что случайное появление таких сходств было крайне маловероятным. Бертильон предположил, что это сходство «вероятнее всего, стало результатом тщательных и целенаправленных действий, что выдает преднамеренность – возможно, шифр»[85]85
  Schneps, L., & Colmez, C. (2013). Math on trial: how numbers get used and abused in the courtroom, Basic Books (New York).


[Закрыть]
. Его аргументации было достаточно, чтобы убедить или, по крайней мере, озадачить семь присяжных. Дрейфус был осужден и приговорен к пожизненному заключению в одиночной камере в пустынной исправительной колонии на острове Дьявола, в нескольких милях от побережья Французской Гвианы.

Математические выкладки Бертильона были настолько туманны, что ни команда защиты Дрейфуса, ни присутствующий в суде правительственный комиссар не поняли ни одного из его аргументов. Скорее всего, судьи пребывали в таком же замешательстве, но псевдоматематическая риторика настолько их запугала, что они не решились ничего возразить. Лишь Анри Пуанкаре, один из самых выдающихся математиков XIX века (с ним мы снова встретимся в шестой главе, когда столкнемся с его «задачей на миллион долларов»), удалось разобраться в хитросплетениях бертильоновских формул. Через десять с лишним лет после того, как Дрейфусу был вынесен приговор, Пуанкаре привлекли к делу, и он быстро обнаружил ошибку в расчетах Бертильона. Вместо того чтобы вычислить вероятность четырех совпадений в списке из 26 начал и окончаний в тринадцати повторяющихся словах, Бертильон вычислил вероятность четырех совпадений в четырех словах, что, естественно, гораздо менее вероятно.

По аналогии представьте себе проверку результатов стрельбы по ростовым мишеням в тире. Следы десяти попаданий в голову или грудь мишени могут «подсказать», что огонь вел меткий стрелок. Однако те же десять попаданий по результатам серии в сто или – тем более – тысячу выстрелов производят уже совсем иное впечатление. То же самое было и с анализом Бертильона. Четыре совпадения из четырех вариантов действительно очень маловероятны, но в случае корректной выборки из 26 начал и концов слов, которые анализировал Бертильон, общее количество разных комбинаций составит уже 14 950 вариантов. Реальная вероятность тех четырех совпадений, которые выделил Бертильон, составляет примерно 18 к 100, что в 100 с лишним раз больше числа, которое он предъявил суду. Учитывая, что Бертильон с таким же успехом нашел бы пять, шесть, семь и более совпадений, пересчитанная вероятность нахождения четырех и более совпадений составит примерно восемь к десяти. Выходит, что найти совпадения, число которых Бертильон посчитал «необычным», можно с гораздо большей вероятностью, чем не найти их. Продемонстрировав ошибочность вычислений Бертильона и утверждая, что даже попытка применить теорию вероятности к такому вопросу была неправомерной, Пуанкаре смог опровергнуть некорректные результаты почерковедческого анализа и тем самым оправдать Дрейфуса [86]86
  Jean Mawhin. (2005). Henri Poincare. A life in the service of science. Notices of the American Mathematical Society, 52 (9), 1036–44.


[Закрыть]
. После четырех лет невыносимых страданий на острове Дьявола и еще семи лет жизни в позоре во Франции Дрейфус наконец был освобожден в 1906 году и повышен в звании до майора французской армии. Его честь была восстановлена, и он продолжил благородную службу своей стране на полях Первой мировой войны, отличившись на передовой в Вердене.

Дело Дрейфуса демонстрирует как силу математически подкрепленных аргументов, так и легкость, с которой ими можно злоупотреблять. Мы вернемся к этой теме несколько раз в следующих главах: люди склонны принимать математические формулировки на веру, с умным видом соглашаясь с ними и не требуя дальнейших объяснений из почтения к их мудрому автору. Флер тайны, окружающий многие математические выкладки, делает их порой загадочно непонятными и – зачастую незаслуженно – невероятно убедительными. Их очень редко пытаются оспорить. Математическая формула создает иллюзию достоверности (мы сталкивались с этим явлением в предыдущей главе, обсуждая причины, по которым люди принимают результаты медицинских тестов безоговорочно), обезоруживающую потенциальных скептиков. Но мы так и не извлекли уроков ни из дела Дрейфуса, ни и из многих других математических ошибок правосудия, накопившихся на протяжении всей истории. И в этом состоит трагедия – в результате невинные жертвы вновь и вновь попадают в тот же порочный круг.

Виновен, пока не доказано обратное?

Так же, как и в случае с медицинскими тестами, который мы рассматривали в прошлой главе, закон часто заставляет выбирать одно из двух: прав человек или нет; истина это или ложь; виновен подозреваемый или не виновен. Суды многих западных демократий придерживаются принципа презумпции невиновности – бремя доказывания должно лежать на обвинителе, а не на обвиняемом. От презумпции виновности отказались почти все страны, поскольку эта практика неизбежно производит больше ложноположительных и меньше ложноотрицательных результатов. Однако и сегодня в некоторых странах юридические практики склоняются скорее к презумпции виновности, чем невиновности. В японской системе уголовного правосудия, например, доля обвинительных приговоров составляет 99,9 %, причем большинство из них подтверждаются признанием вины [87]87
  Ramseyer, J. M., & Rasmusen, E. B. (2001). Why is the Japanese conviction rate so high? The Journal of Legal Studies, 30 (1), 53–88. https://doi.org/10.1086/468111


[Закрыть]
. Для сравнения: в 2017–2018 годах в уголовном суде Великобритании доля обвинительных приговоров составляла 80 %. Высокая доля обвинительных приговоров в Японии впечатляет – как и эффективность полиции, ведь арестованный оказывается виновным в 999 с лишним случаях из 1000. Но насколько это вероятно?

Такой высокий процент обвинительных приговоров частично объясняется жесткими методами допроса, которые практикуют японские следователи. Им разрешено задерживать подозреваемых на срок до трех дней без предъявления обвинения, они могут допрашивать подозреваемых в отсутствие адвоката и не обязаны записывать допросы. Такое в порядке вещей. Эти жесткие методы обусловлены спецификой японской правовой системы, в которой установление мотива через признание вины служит одной из важнейших предпосылок вынесения обвинительного приговора. Ситуацию усугубляет давление, которое начальство оказывает на следователей, требуя от них сначала получить признательные показания, а улики и прочие доказательства расследования – уже потом. Задача дознавателя облегчается тем, что многие подозреваемые-японцы, похоже, готовы давать признательные показания, чтобы избежать позора, который навлечет на их близких громкое судебное разбирательство. О том, насколько широко распространена в японской системе правосудия практика самооговоров, свидетельствуют недавний пример ареста по подозрению в злонамеренных интернет-угрозах четверых невиновных. Прежде чем в своих злодеяниях сознался подлинный преступник, двоих из подозреваемых вынудили свидетельствовать против себя.

Но Япония в своей приверженности к репрессивно-обвинительным практикам правосудия остается заметным исключением. В большинстве стран мира принцип презумпции невиновности укоренился настолько, что он зафиксирован во Всеобщей декларации прав человека Организации Объединенных Наций в качестве одной из международных правовых норм. Английский судья и политик XVIII века Уильям Блэкстоун даже дошел до количественной оценки этого принципа, заявив: «Лучше десять виновных избегнут наказания, чем пострадает один невиновный». Такая точка зрения ставит нас на сторону ложноотрицательных результатов, и мы готовы оправдать по суду тех, кто вполне мог совершить преступление, но чья вина не доказана. И даже если свидетельства вины есть, если они не могут в полной мере (на юридическом языке – «до отсутствия обоснованных сомнений») убедить присяжных или судей в виновности подсудимого, тот часто покидает зал суда безнаказанным. В шотландских судах существует третий тип приговора, снижающий долю ложноотрицательных вердиктов – хотя бы номинально. Когда судья или присяжные недостаточно убеждены в невиновности обвиняемого, чтобы объявить его невиновным, они оправдывают его «за недоказанностью обвинения». И этот формально оправдательный приговор нельзя назвать некорректным.

73 миллиона к одному

Во время суда над Салли Кларк противоречивые доказательства мешали присяжным принять однозначное решение. Салли твердила, что она не убивала своих детей. Патологоанатом Министерства внутренних дел и свидетель-эксперт обвинения, доктор Алан Уильямс, утверждал обратное. Медицинская экспертиза, которую он представил, была запутанной и слишком сложной для присяжных. Во время подготовки к судебному процессу независимые эксперты легко дискредитировали разрывы в тканях мозга, повреждения позвоночника и кровоизлияния в сетчатку, которые Уильямс первоначально «обнаружил» при вскрытии Гарри. В результате обвинение изменило позицию и попыталось убедить присяжных в том, что Гарри задушили, а не затрясли до смерти, как утверждалось первоначально. Даже Уильямс передумал. Экспертно-медицинские заключения были исключительно туманны и неоднозначны.

Ожесточенная борьба между защитой и обвинением вокруг косвенных улик, связанных с этими двумя смертями, запутала ситуацию еще сильнее. Обвинение изображало Салли тщеславной и эгоистичной карьеристкой, раздраженной тем, как изменились ее образ жизни и ее тело после рождения детей. Женщиной, которая так отчаянно стремилась вернуться к своей прежней, бездетной жизни, что убила своих малышей. Почему же тогда, возражала защита, она так быстро родила второго ребенка? И почему она вновь забеременела и родила третьего, пока шла подготовка к суду? Защита утверждала, что Салли была явно опечалена смертью своего первого сына. Сторона обвинения пыталась использовать аргумент в свою пользу, намекая, что в таком демонстративном горе было что-то подозрительное. Врач, впервые увидевший Кристофера, когда тот приехал в больницу, возразил, что в отчаянии Салли не было ничего необычного – это естественная реакция на потерю первенца. Стороны перебрасывались аргументами, как воланчиком в бадминтоне, и у присяжных голова шла кругом.

Среди этой путаницы в дело вступил свидетель-эксперт, профессор сэр Рой Мидоу. В то время как патологи спорили о степени «легочного кровотечения» и «субдуральных гематом», Мидоу вел присяжных от подводных скал замешательства к спокойным водам вердикта, на яркий свет маяка статистики. Он оперировал единственным показателем, постулировавшим, что вероятность синдрома внезапной детской смерти (СВДС, который также часто называют смертью в колыбели) у двух подряд детей из обеспеченной семьи составляет 1 на 73 миллиона. Для многих присяжных это оказалась самая важная информация, которую они извлекли из процесса: 73 миллиона было слишком большим числом, чтобы его игнорировать.

В 1989 году под редакцией Мидоу, уже тогда известного британского педиатра, вышла книга «Азбука жестокого обращения с детьми». В ней был постулат, который позже назвали «законом Мидоу»: «Одна внезапная детская смерть – трагедия, две – уже повод для подозрений, а три – убийство, пока не будет доказано обратное»[88]88
  Meadow, R. (Ed.) (1989). ABC of Child Abuse (First edition). British Medical Journal Publishing Group.


[Закрыть]
. Однако эта бойкая сентенция основана на фундаментальном непонимании природы вероятности. С помощью такого же ложного представления о вероятности – разнице между зависимыми и независимыми событиями – Мидоу ввел в заблуждение и присяжных в случае с Салли Кларк.

Ошибка независимости

Два события считаются зависимыми, если знание о том, что произошло одно из них, влияет на вероятность происхождения другого. В противном случае они независимы. Для расчета вероятности того, что произойдет комбинация нескольких событий, обычно перемножают вероятности происхождения каждого из них. Так, шанс, что случайно выбранный из населения человек является женщиной, составляет ½. Как показано в табл. 3, из 1000 человек в среднем 500 будут женщинами. Вероятность того, что у случайно выбранного человека из числа всего населения коэффициент IQ будет больше 110 баллов, составляет ¼ (таким образом, из 1000 человек такой результат покажут 250 – см. таблицу 3). Чтобы выяснить вероятность того, что произвольно выбранная женщина обладает IQ выше 110, мы перемножаем вероятности ½ и ¼, что дает вероятность 1/8 (и соответствует количеству 125 (1000/8) человек в подгруппе женщин с высоким IQ в табл. 3). Это прекрасный пример такой методологии, поскольку показатель IQ и половая принадлежность абсолютно независимы: наличие определенного IQ ничего не говорит о вашем поле, а принадлежность к определенному полу ничего не говорит о вашем IQ.


Табл. 3. Распределение 1000 человек по показателю IQ и половой принадлежности


Распространенность аутизма в Великобритании составляет примерно 1 на 100[89]89
  Brugha, T., Cooper, S., McManus, S., Purdon, S., Smith, J., Scott, F., Tyrer, F. (2012). Estimating the Prevalence of Autism Spectrum Conditions in Adults – Extending the 2007 Adult Psychiatric Morbidity Survey – NHS Digital.


[Закрыть]
, или, соответственно, 10 на 1000. Действуя по описанной выше логике, можно предположить, что для определения вероятности того, что произвольно взятая женщина будет страдать аутизмом, надо просто перемножить две вероятности (1/2 и 1/100), что в итоге даст 1/200, то есть распространенность составит 5 случаев на 1000 человек. Однако аутизм и пол не являются независимыми вероятностями. При анализе 1000 случайно выбранных людей в популяции, как показано в табл. 4, мы увидим, что вероятность аутизма у мужчин в четыре раза выше (8 на 500), чем у женщин (2 на 500). Только 1 из 5 человек, страдающих аутизмом, будет женщиной [90]90
  Ehlers, S., & Gillberg, C. (1993). The Epidemiology of Asperger Syndrome. Journal of Child Psychology and Psychiatry, 34 (8), 1327–50. https://doi.org/10.1111/j.1469–7610.1993.tb02094.x


[Закрыть]
. Нам нужна эта дополнительная информация, чтобы корректно вычислить вероятность того, что случайно выбранный человек в популяции будет и женщиной, и аутистом одновременно. Верное значение этой вероятности составит 2/1000, а не 5/1000, что мы получили бы, ошибочно предположив независимость отдельных вероятностей. Пример демонстрирует, как легко совершить серьезные ошибки, опираясь на неверные предположения о независимости событий.


Табл. 4. Распределение 1000 человек по половой принадлежности и наличию аутизма


В своих показаниях Мидоу рассматривал смерти детей Салли Кларк в результате СВДС как отдельные вероятностные события. В вычислениях он опирался на данные тогда еще не опубликованного доклада о синдроме внезапной детской смерти, для которого ему предложили написать предисловие[91]91
  Fleming, P. J., Blair, P. S. P., Bacon, C., & Berry, P. J. (2000). Sudden unexpected deaths in infancy: the CESDI SUDI studies 1993–1996. The Stationery Office. Leach, C. E. A., Blair, P. S., Fleming, P. J., Smith, I. J., Platt, M. W., Berry, P. J., Group, the C. S. R. (1999). Epidemiology of SIDS and explained sudden infant deaths. Pediatrics, 104 (4), e43.


[Закрыть]
. В докладе на материале английской статистики было изучено 363 случая СВДС, пришедшихся на общее число в 473 родившихся живыми младенцев за трехлетний период. Наряду с общей частотой внезапной детской смертности по всему населению доклад представил распределение данных по возрасту матерей, доходам домохозяйств, а также по тому, курил ли кто-либо из членов семьи. В обеспеченных некурящих семьях с матерью старше 26 лет – таких как семья Кларк – на каждые 8543 живорожденных приходился всего один случай СВДС.

Первой ошибкой Мидоу было предположение, что случаи синдрома внезапной детской смерти являются полностью независимыми событиями. Эта ложная посылка позволила ему при расчете вероятности того, что смерть двух детей в одной семье будет вызвана СВДС, просто перемножить число 8543 на самое себя. В результате он получил, что вероятность такого события составит примерно 1 на каждые 73 миллиона удачных родов. Пытаясь обосновать свои предположения, он даже заявил: «Нет никаких доказательств того, что “смерти в колыбели” происходят в семьях серийно, зато серийному жестокому обращению с детьми доказательств множество». С этой цифрой на руках он предположил, что при уровне рождаемости в Великобритании, составляющем около 700 тысяч человек в год, две подряд «смерти в колыбели» можно было бы ожидать примерно раз в 100 лет.

Его допущение было исключительно некорректным. Известно много факторов повышения риска СВДС. В их число входят курение, преждевременные роды и даже сон в одной постели с родителями. В 2001 году исследователи Манчестерского университета выделили генетические маркеры, связанные с регулированием иммунной системы, которые также повышают риск СВДС[92]92
  Summers, A. M., Summers, C. W., Drucker, D. B., Hajeer, A. H., Barson, A., & Hutchinson, I. V. (2000). Association of IL-10 genotype with sudden infant death syndrome. Human Immunology, 61 (12), 1270–73. https://doi.org/10.1016/S0198–8859 (00) 00183-X


[Закрыть]
. С тех пор обнаружили множество других генетических факторов, также увеличивающих вероятность СВДС[93]93
  Brownstein, C. A., Poduri, A., Goldstein, R. D., & Holm, I. A. (2018). The genetics of Sudden Infant Death Syndrome. In SIDS: Sudden Infant and Early Childhood Death: The Past, the Present and the Future. Dashash, M., Pravica, V., Hutchinson, I. V., Barson, A. J., & Drucker, D. B. (2006). Association of Sudden Infant Death Syndrome with VEGF and IL-6 Gene polymorphisms. Human Immunology, 67 (8), 627–33. https://doi.org/10.1016/J.HUMIMM.2006.05.002


[Закрыть]
. У родных братьев и сестер много общих генов – соответственно, риск развития СВДС у них выше. Если от СВДС умирает один ребенок, то вполне вероятно, что в семье действуют какие-то сопутствующие факторы риска. Следовательно, вероятность второй смерти в такой семье будет выше, чем в среднем по населению. В действительности считается, что в Великобритании ежегодно происходит хотя бы один случай СВДС у второго ребенка.


Рис. 9. Древо решений для поиска вероятности выбора черных или белых шариков. Для вычисления вероятности выбора черного или белого шарика при каждой попытке следуйте за соответствующими ветвями древа и умножайте вероятности на каждом шаге. Так, вероятность вытащить черный шарик с первой попытки составляет 1/100. При второй попытке мы выбираем из того же мешка, который мы выбрали при первой попытке. Вероятности каждой комбинации из двух вариантов показаны справа от пунктирной линии


Давайте смоделируем ситуацию, в которой мы сможем вычислить аналог вероятности смерти от СВДС. Возьмем десять мешочков с мраморными шариками. В девяти таких мешочках по десять белых шариков. В десятом же – девять белых и один черный. Эти стартовые условия представлены слева на рис. 9. На первом шаге вы выбираете произвольный мешок, а в нем – произвольный шарик. Поскольку шариков всего 100 и выбор любого из них одинаково возможен, вероятность выбора черного шарика на первом шаге составляет 1 из 100. На втором шаге вы возвращаете шарик обратно в тот же мешочек и вытаскиваете из него же еще один, игнорируя остальные мешочки. Если на первом шаге вы вытянули черный шарик, то вы знаете, что и во второй раз выбираете из набора, в котором этот шарик точно есть. Это значительно повышает вероятность выбора черного шарика – до 1 из 10, а не 1 из 100. В этом сценарии выбор двух черных шариков подряд (с вероятностью 1 к 1000) намного более вероятен, чем при простом перемножении исходной вероятности выбора одного черного шарика на саму себя (что даст вероятность удачного исхода в 1 к 10 000). В случае с вероятностью смерти второго ребенка от СВДС, если первый умер от этого синдрома, математика аналогична – вероятность растет.

При реальном расчете угрозы СВДС факторы риска для каждой семьи не выбираются случайным образом из всего их многообразия; они уже заданы заранее – можно утверждать, что с самого начала вы либо выбираете из мешочка с черным шариком в нем, либо из другого, в котором черного шарика заведомо нет. Эта альтернативная интерпретация проиллюстрирована в виде двух деревьев принятия решений на рис. 10. Если вам достался мешочек с черным шариком в обоих случаях, то вероятность выбора двух черных шариков возрастает до 1 к 100. Таким образом очевидно, что простое перемножение общепопуляционного фактора фонового риска развития СВДС на самого себя при вычислении вероятности развития СВДС для конкретного случая – некорректный прием.


Рис. 10. Два альтернативных древа принятия решений, где мешочек, из которого вы выбираете, жестко задан заранее для обеих попыток выбора. Для каждого древа вероятность выпадения каждой из двухвариантных комбинаций выбора показаны справа от пунктирной линии. Очевидно, что если мы выбираем из мешочка, где черного шарика нет, то единственная возможность – это выпадение двух белых шариков

Тенденциозный подход Мидоу, опиравшегося на общий показатель 1 случай смерти от СВДС на 8543 случая живорождения, имел и другие слабые места. Отчет, из которого он выбрал этот показатель, предлагал и другую, гораздо более высокую общепопуляционную оценку риска – 1 к 1303 (этот показатель был рассчитан без разделения данных по социально-экономическим факторам). Мидоу решил не использовать эту альтернативную оценку. Вместо того, сделав особый акцент на условиях жизни семьи Кларк, Мидоу вывел значение, согласно которому вероятность даже одного случая СВДС выглядела гораздо ниже (а поскольку он безосновательно проигнорировал зависимость между серийными смертями от СВДС, повторная смерть от этого синдрома выглядела еще менее вероятной), пренебрегая теми факторами, которые делали его гораздо более вероятным. Так, он проигнорировал тот факт, что оба ребенка Салли были мальчиками и что СВДС у мальчиков развивается почти в два раза чаще, чем у девочек. Учет этого фактора подорвал бы позиции обвинения, показав более высокую вероятность серийной смерти от СВДС. В этом свете шанс, что Салли убила двух своих детей, представляется соразмерно ниже.

Хотя тенденциозный подбор стороной обвинения статистических данных сам по себе мог бы считаться неэтичным или даже заведомо ложным, подобная практика порождает куда более серьезную проблему. Классификация данных в докладе, на который опирался Мидоу, была проведена, чтобы выявить категории населения, наиболее подверженные высоким рискам и более эффективно использовать ограниченные ресурсы системы здравоохранения. Она никогда не предназначалась для того, чтобы делать выводы о риске развития СВДС в каждом конкретном случае – даже в этих группах повышенного риска. Доклад представлял собой самое общее исследование почти полумиллиона родов в Великобритании, а при таком исследовании индивидуальные обстоятельства каждых родов детально изучить невозможно (да и цели такой обычно не ставится). Дело же Салли Кларк, напротив, было чрезвычайно подробным расследованием конкретного случая. Обвинение выбрало только те аспекты биографии Салли и Стива, которые подходили под нарисованную в отчете картину, и, без учета других факторов, решило использовать эту конструкцию для определения степени риска развития СВДС у детей четы Кларк. Однако такой подход основан на ложном допущении о том, что индивидуальные характеристики тождественны характеристикам населения. Это классический пример так называемой экологической ошибки.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации