Автор книги: Крейг Вентер
Жанр: Биология, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 1 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]
Крейг Вентер
Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
J. Craig Venter
Life at the Speed of Light
© 2013 by J. Craig Venter
© Перевод. Н. Жукова, 2016
© Издание на русском языке AST Publishers, 2018
* * *
Команда, которая внесла свой вклад в создание первой настоящей синтетической клетки:
Миккель А. Альжир, Нина Альперович, Синтия Эндрюс-Фаннкох, Насира Асад-Гарсия, Кевин С. Аксельрод, Холли Баден-Тильсон, Гвинед А. Бендерс, Анушка Браунли, Кристофер Кэльви, Уильям Каррера, Рэйюань Чжуан, Джейнли Дай, Евгения Денисова, Том Дирник, Марк Эллисман, Нико Энрикес, Роберт Фридман, Дэниел Г. Гибсон, Джон Гласс, Джессика Хостетлер, Клайд А. Хатчисон III, Прабха Айер, Радха Кришнакумар, Кароль Лартиг, Мэтт Льюис, Ли Ма, Махир Маруф, Адмасу Меланке, Чак Мерриман, Майкл Дж. Монтегю, Монзиа М. Муди, Владимир Носков, Прашант П. Пармар, Куанг Фан, Ремберт Пипер, Чжицин Ци, Томас Х. Сегал-Шапиро, Гамильтон Смит, Тимоти В. Стокуэлл, Личжи Сан, Грейнджер Саттон, Йо Сузуки, Дэвид У. Томас, Кристофер Э. Вентер, Санджай Ваши, Шибу Йозеф, Лэй Янг и Джейшри Завери.
Глава 1. Дублин, 1943–2012
Как могут физика и химия объяснить те явления в пространстве и времени, которые имеют место внутри живого организма?.. Явная неспособность современной физики и химии объяснить такие явления совершенно не дает оснований сомневаться в том, что они могут быть объяснены этими науками в будущем.
Эрвин Шрёдингер. «Что такое жизнь?» (1944)
«Что такое жизнь?» Всего три простых слова, и однако каждое из них закручивает вселенную не менее сложных вопросов. Что именно отличает одушевленное от неодушевленного? Каковы основные ингредиенты жизни? Где впервые зашевелилась жизнь? Как эволюционировали первые организмы? Везде ли есть жизнь? Насколько жизнь рассеяна по космосу? Если на экзопланетах есть другие формы жизни, они так же умны, как мы, или еще умнее?
Сегодня эти вопросы о природе и происхождении жизни остаются важнейшими и самыми горячо обсуждаемыми во всей биологии. От них зависит вся данная дисциплина, и хотя мы поныне ищем ответы на ощупь, мы сильно продвинулись за прошедшие десятилетия в их исследовании. На самом деле мы сильнее продвинулись в этом поиске на памяти ныне живущих людей, чем за десять тысяч или более поколений, в течение которых современный человек ходит по планете{1}1
Спасибо Патрику Каннингему, главному научному консультанту правительства Ирландии, за то, что указал на это. – В дальнейшем примечания автора обозначаются в тексте цифрами и приводятся в конце книги. Примечания переводчика обозначены астериском (*) и даны внизу соответствующих страниц.
[Закрыть]. Мы теперь вошли в то, что я называю «цифровой эрой биологии», в которую начинают сливаться ранее хорошо различимые области компьютерного программирования и тех программ, что определяют жизнь, и где возникают новые сочетания, которые будут определять принципиальные направления эволюции.[1]1
Спасибо Патрику Каннингему, главному научному консультанту правительства Ирландии, за то, что указал на это. – В дальнейшем примечания автора обозначаются в тексте цифрами и приводятся в конце книги. Примечания переводчика обозначены астериском (*) и даны внизу соответствующих страниц.
[Закрыть]
Если бы мне надо было назвать место и время, когда, как я считаю, родилась современная биологическая наука, то это был бы Дублин, февраль 1943 года, когда австрийский физик Эрвин Шрёдингер (1887–1961) сосредоточился на центральной проблеме всей биологии. Шрёдингер поселился в Дублине в 1939 году, отчасти спасаясь от нацистов, отчасти вследствие здешней терпимости к его нетрадиционной личной жизни (он жил одновременно с двумя женщинами и устраивал «бурные сексуальные приключения» для вдохновения{2}2
Walter J. Moore. Schrödinger: Life and Thought (Cambridge University Press, 1989), стр. 66.
[Закрыть]), а отчасти по инициативе тогдашнего премьер-министра Ирландии Эймона де Валеры, который пригласил его туда на работу.
Шрёдингер получил Нобелевскую премию в 1933 году за создание уравнения для квантовых волн, способных объяснить поведение субатомных частиц, самой вселенной и всего, что есть между этим. Теперь, через десять лет, выступая под эгидой Дублинского института высших исследований, основанного при его и де Валеры участии, Шрёдингер прочитал серию из трех лекций в дублинском Тринити-колледже, и лекции эти цитируют по сей день. Носящие общий заголовок «Что такое жизнь? Физический аспект живой клетки», эти чтения отчасти были вдохновлены интересом его отца к биологии, а отчасти статьей 1935 года{3}3
Timofeeff-Ressovsky, Nikolai V., Karl G. Zimmer, Max Delbruck (1935). “Uber die Natur der Genmutation und der Genstruktur” [“On the Nature of Gene Mutation and Gene Structure”]. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-physikalische Klasse, Fachgruppe VI, Biologie, Neue Folge, 1, 13, стр. 189–245.
[Закрыть], ставшей результатом предшествовавших встреч физиков и биологов в довоенной Германии. Тогда немецкие физики Карл Циммер и Макс Дельбрюк вместе с русским генетиком Николаем Тимофеевым-Ресовским, используя способность рентгеновских лучей повреждать гены и вызывать мутации у дрозофил, пытались оценить размер гена («около 1000 атомов»).
Шрёдингер начал чтения в 16.30 в пятницу 5 февраля, причем в аудитории перед ним сидел премьер-министр. Репортер из журнала Time, бывший там, описал, как «от уже переполненной аудитории заворачивали толпы желающих. Министры, дипломаты, ученые и общественные деятели громко аплодировали худощавому профессору физики из Вены, превзошедшему амбиции всех прочих математиков». На следующий день в The Irish Times вышла статья «Живая клетка и атом», начинавшаяся изложением цели Шрёдингера – описать события внутри живой клетки посредством только химии и физики. Лекции были настолько популярны, что ученому пришлось повторять всю серию по понедельникам.
Шрёдингер сделал из своих лекций небольшую книгу, которая вышла в следующем году, за два года до моего рождения. Так «Что такое жизнь?» начала влиять на поколения биологов. (Через пятьдесят лет после прочтения этих замечательных лекций Майкл Мёрфи и Люк О’Нил из Тринити-колледжа отпраздновали годовщину, пригласив выдающихся ученых из разных дисциплин – в престижный список гостей вошли Джаред Даймонд, Стивен Джей Гулд, Стюарт Кауфман, Джон Мейнард Смит, Роджер Пенроуз, Льюис Вольперт и нобелевские лауреаты Кристиан де Дюв и Манфред Эйген, – чтобы предсказать, что может случиться в следующие полвека.) Я читал «Что такое жизнь?» как минимум раз пять по разным поводам, и каждый раз, в зависимости от этапа моей карьеры, ее основная идея принимала другой смысл, иные акценты и значение.
Причина, по которой эта тоненькая книжечка Шрёдингера оказалась такой влиятельной, по сути проста: он подходил к центральным проблемам биологии – наследственности и тому, как организмы управляют энергией, чтобы поддерживать порядок, – с новой, дерзкой, точки зрения. Он четко и кратко аргументировал, что жизнь должна подчиняться законам физики и что, следовательно, можно использовать физические законы, чтобы делать важные выводы о сущности жизни. Шрёдингер указал, что хромосомы должны содержать «в виде своего рода шифрованной записи весь “план” будущего развития индивидуума и его функционирования в зрелом состоянии». Он предположил, что эта запись должна представлять собой «высокоупорядоченную ассоциацию атомов, наделенную достаточной устойчивостью для длительного сохранения своей упорядоченности», и объяснил, как сумма атомов в «апериодическом кристалле» может нести достаточно информации для наследственности. Он использовал термин «кристалл», чтобы подчеркнуть стабильность, и характеризовал его как «апериодический», который, в отличие от периодического, с повторяющейся структурой (как объясняла The Irish Times, это как сравнивать сложный гобелен и рулон обычных обоев), мог бы нести большую информационную нагрузку. Шрёдингер утверждал, что для того, чтобы содержать много информации, этот кристалл не обязан быть слишком сложным и может быть таким же простым, как бинарный код вроде азбуки Морзе. Насколько я знаю, это первое упоминание того факта, что генетический код может быть простым, как бинарный.
Одно из самых примечательных свойств жизни – это ее способность создавать порядок: ваять сложное и упорядоченное тело из химического хаоса, окружающего нас. На первый взгляд эта способность кажется чудом, которое бросает вызов мрачному второму закону термодинамики, гласящему, что всё стремится соскользнуть от порядка к беспорядку. Но этот закон приложим только к закрытой системе вроде запечатанной пробирки, а живые существа – это открытые системы (или маленькие части большой закрытой системы), обменивающиеся веществом и энергией со своим окружением. Они тратят много энергии, чтобы создавать порядок и сложность в виде клеток.
Шрёдингер посвятил большую часть своей лекции термодинамике жизни – теме, в ту пору недостаточно изученной для его прозрений в генетике и молекулярной биологии. Он описывал удивительный дар живого «концентрировать на себе “поток порядка”, избегая таким образом распада в атомный хаос» и «пить упорядоченность» из подходящей среды. Он выяснил, какое отношение к этому подвигу креативности имеют «апериодические твердые тела». В кодированном тексте заложены средства, способные изменить близлежащие химические вещества таким образом, чтобы запрячь вихри в великом потоке энтропии и заставить их жить в виде клетки или организма.
Гипотеза Шрёдингера вдохновила ряд физиков и химиков обратить внимание на биологию – после того как они разочаровались во вкладе своих наук в проект «Манхэттен», создание атомной бомбы во время Второй мировой войны. Когда Шрёдингер читал свои лекции, научный мир считал, что основу генетического материала составляют не ДНК, а белки. В 1944 году появилось первое явное свидетельство того, что на самом деле носитель информации – не белок, а ДНК. Книга Шрёдингера подтолкнула американца Джеймса Уотсона и британца Фрэнсиса Крика на поиск этой «кодированной записи», что в конечном итоге привело их к открытию самой прекрасной структуры во всей биологии – двойной спирали ДНК, внутри которой лежат все тайны наследственности. Каждая цепочка двойной спирали комплементарна второй, и при этом они идут в противоположных (антипараллельных) направлениях. В результате двойная спираль способна „расстегиваться“ посередине, и каждая сторона может служить матрицей или образцом для другой, и так информация ДНК будет копироваться и передаваться потомству. В 1953 году, 12 августа, Крик послал Шрёдингеру письмо, в котором говорилось об этом, с добавлением: «Ваш термин „апериодический кристалл“, похоже, будет очень подходящим».
Детали того, как именно работает этот носитель информации, были открыты и затем подробно разобраны в 1960-х. Это привело к формулированию Криком в 1970 году «центральной догмы», определившей пути, по которым генетическая информация течет через биологические системы. В 1990-х я возглавлю группу, которая прочитает первый геном живой клетки, а потом одну из двух групп, которая прочитает человеческий геном в широко разрекламированной, часто жаркой, раздраженной и политизированной гонке с Уотсоном и другими. На рубеже тысячелетий мы на самом деле впервые увидели замечательные детали апериодического кристалла, содержащего зашифрованную запись человеческой жизни.
В мысли Шрёдингера неявно подразумевалось, что эта запись посылала свои сигналы с момента зарождения жизни, имевшего место больше четырех миллиардов лет назад. Рассмотрев эту идею подробнее, биолог и писатель Ричард Докинз предложил впечатляющий образ реки, текущей из Эдема{4}4
Dawkins, Richard (1995). River Out of Eden. New York: Basic Books. ISBN0–465–06990–8.
[Закрыть]. Эта медленная река состоит из информации, из рецептов для построения живых существ. Точность копирования ДНК не абсолютна, и случавшиеся в череде поколений повреждения, вызванные кислородом или ультрафиолетом, породили достаточно замен в ДНК, чтобы обеспечить внутривидовую изменчивость. В результате река ветвится и раздваивается, порождая бесчисленные новые виды в течение миллиардов лет.
Полвека тому назад великий эволюционный генетик Мотоо Кимура прикинул, что количество генетической информации за последние пятьсот миллионов лет возросло на сто миллионов бит{5}5
Kimura, Motoo (1961). “Natural selection as the process of accumulating genetic information in adaptive evolution.” Genetical Research, 2, стр. 127–140.
[Закрыть]. Запись в ДНК стала доминировать в биологической науке до такой степени, что в XXI веке биология стала информационной наукой. Сидней Бреннер, южноафриканский биолог, лауреат Нобелевской премии, заметил, что генетическая запись «должна сформировать ядро биологической теории»{6}6
Brenner, Sydney. “Life’s Code Script.” Nature 482, стр. 461, 23 февраля 2012.
[Закрыть]. Систематики теперь используют штрих-коды ДНК, чтобы удобнее было отличать один вид от другого{7}7
Kress, W. J., and D. L. Erickson (2008). “DNA barcodes: Genes, genomics, and bioinformatics.” PNAS105 (8), стр. 2761–2762.
[Закрыть]. Другие начали использовать ДНК для вычислений{8}8
Qian, Lulu, and Erik Winfree. “Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades.” Science, 3 июня 2011, 332 (6034), стр. 1196–1201.
[Закрыть] или как средство хранения информации{9}9
Church, George M., Yuan Gao, and Sriram Kosuri. “Next-Generation Digital Information Storage in DNA.” Science 28, сентябрь 2012, 337 (6102), стр. 1628. Опубликовано онлайн 16 августа 2012.
[Закрыть]. Я руководил попытками не только читать цифровую программу жизни, но и писать ее, имитировать на компьютере и даже переписывать ее, чтобы сформировать новые живые клетки.
Почти через семьдесят лет после исходных лекций Шрёдингера, 12 июля 2012 года, я очутился в Дублине по приглашению Тринити-колледжа. Меня попросили вернуться к великой теме Шрёдингера и попытаться рассказать о том, как сейчас понимают и дают определение жизни, основываясь на современной науке. До сих пор этот вопрос по очевидным причинам интересует всех, и у меня тоже есть свой сугубо личный интерес. Будучи молодым санитаром во Вьетнаме, я усвоил, к своему изумлению, что разница между одушевленным и неодушевленным может быть очень тонкой: маленький кусочек ткани может отделять живую дышащую личность от трупа; даже при хорошем медицинском уходе выживание может частично зависеть от позитивного настроя пациента, от того, что он весел и оптимистичен, что доказывает, что из комбинаций живых клеток может возникать сложность более высокого порядка.
В 19.30 в четверг, имея за спиной десятилетия прогресса молекулярной биологии, я вышел на ту же сцену, на которую выходил и Шрёдингер, и, как и он, увидел перед собой премьер-министра в декорациях несравненного Экзаменационного зала Тринити-колледжа. Под огромной люстрой, перед портретами Уильяма Молино, Джонатана Свифта и им подобных я смотрел в аудиторию из четырехсот запрокинутых лиц и ярких огней камер всех видов и типов. В отличие от Шрёдингера я знал, что моя лекция будет записана, передана в прямом эфире, опубликована в блогах и выложена в твиттер, так как я снова затрону тот вопрос, для ответа на который так много сделал мой предшественник.
Следующий час с лишним я объяснял, что жизнь в основном состоит из биологических машин, управляемых ДНК. Все живые клетки работают на программах, записанных в ДНК, которые управляют сотнями тысяч белковых роботов. Мы оцифровывали жизнь десятилетиями, с тех пор как впервые представили, как читать программу жизни посредством секвенирования ДНК. Теперь мы можем идти в другом направлении, начиная с компьютерной цифровой основы, создавая новую форму жизни, химически синтезируя ее ДНК, а потом доводя ее до получения настоящего организма. И поскольку информация нынче цифровая, мы можем пересылать ее куда угодно со скоростью света и снова творить ДНК и жизнь на том конце. Рядом с премьер-министром Эндой Кенни сидел мой давний самопровозглашенный соперник Джеймс Уотсон. Когда я договорил, он взобрался на сцену, пожал мне руку и любезно поздравил меня с «прекрасной лекцией»{10}10
http://edge.org/conversation/what-is-life
[Закрыть].
«Жизнь на скорости света», частично основанная на моей лекции в Тринити-колледже, задумана для того, чтобы описать наш невероятный научный прогресс. Всего за одну человеческую жизнь мы продвинулись от «апериодических кристаллов» Шрёдингера до понимания того, что если с записанного генома можно построить синтетическую хромосому и, следовательно, синтетическую клетку, то ДНК представляет собой программное обеспечение жизни. Эта работа опирается на потрясающие достижения в течение последнего полувека, которыми мы обязаны плеяде невероятно одаренных личностей в лабораториях всего мира. Я сделаю обзор этих разработок в молекулярной и синтетической биологии, отчасти чтобы отдать должное этому эпическому предприятию, отчасти чтобы признать вклады, сделанные ключевыми ведущими учеными. Я не ставил себе цели написать полную историю синтетической биологии, а только лишь пролить немного света на силу этого выдающегося совместного предприятия, которое мы называем наукой.
ДНК как оцифрованная информация не только накапливается в компьютерных базах данных, но теперь может передаваться как электромагнитная волна на скорости света или близко к ней, через биологический телепортер, чтобы заново сотворить белки, вирусы и живые клетки где-то далеко, возможно, навсегда меняя наш взгляд на жизнь. С этим новым пониманием жизни и недавними прорывами в наших способностях манипулировать ею широко раскрывается дверь, за которой появляются новые волнующие возможности. Индустриальная эпоха идет к концу, но мы становимся свидетелями начала эры биологического проектирования. Человечество вот-вот войдет в новую фазу эволюции.
Глава 2. Химический синтез как доказательство
Этот тип синтетической биологии, великая попытка сотворения искусственной жизни, также бросает вызов нашей привычной теории жизни. Если жизнь – это всего лишь самоподдерживающаяся химическая система, способная к эволюции по Дарвину, и мы действительно понимаем, как химия может поддерживать эволюцию, то мы должны быть способны синтезировать искусственную химическую систему, способную к эволюции по Дарвину. Если мы в этом преуспеем, то, значит, теории, на которых основывался наш успех, показали себя как правомочные… И напротив, если мы не сможем получить искусственную форму жизни при попытке создать химическую систему… мы должны сделать вывод, что наша теория жизни что-то упускает.
Людей издавна завораживала идея искусственной жизни. Начиная со средневекового гомункулуса Парацельса и голема из еврейского фольклора и до творения Франкенштейна Мэри Шелли и «репликантов» из «Бегущего по лезвию бритвы», мифология, легенды и популярная культура полны историями о синтетической и роботической жизни. Однако точное определение разницы между жизнью и не-жизнью или между жизнью биологической и машинной – большая и длительная задача равно для науки и философии. Веками принципиальной целью науки было, во-первых, понять жизнь на ее самом основном уровне и, во-вторых, научиться ею управлять. Американский биолог немецкого происхождения Жак Лёб (1859–1924) был, видимо, первым настоящим биологическим инженером. В своих лабораториях в Чикаго, Нью-Йорке и Вудс-Холе в Массачусетсе он конструировал то, что в своей книге 1906 года «Динамика живого вещества» назвал «долговечными машинами»{12}12
http://archive.org/stream/dynamicslivingm00loebgoog#page/n6/mode/2up
[Закрыть]. Лёб делал двухголовых червей и, что наиболее известно, заставлял яйца морского ежа начинать эмбриональное деление без оплодотворения спермой{13}13
Lemov, Rebecca. World as Laboratory (2005). Hill and Wang.
[Закрыть]. Неудивительно, что Лёб стал прототипом Макса Готлиба – персонажа романа Синклера Льюиса «Эрроусмит», вышедшего в 1925 году и получившего Пулитцеровскую премию. Это было первое произведение серьезной литературы в жанре фантастики, идеализирующее чистую науку. Кстати, в нем фигурировало антибактериальное средство на основе вирусов, называемых бактериофагами.
В книге Филипа Дж. Паули «Управление жизнью: Жак Лёб и инженерный идеал в биологии» (1987) цитируется письмо, посланное в 1890 году Лёбом венскому физику и философу Эрнсту Маху (1838–1916), в котором Лёб утверждал: «Идеал, представляющийся мне сегодня, – это человек, способный сам действовать как создатель, даже в живой природе, формируя ее наконец-то по своей воле. Человек может наконец преуспеть в технологии живого вещества [einer Technik der lebenden Wesen]». Пятнадцатью годами позже Лёб предварил том своих научных статей объяснением, что «несмотря на разнообразие тем, все статьи в этом сборнике пронизывает одна ведущая идея, а именно, что феномен жизни возможно взять под наш контроль и что такой контроль, и ничто иное, и есть цель биологии».
Впрочем, истоки механистического взгляда Лёба можно обнаружить в истории за столетия до его переписки с Махом. Некоторые из самых ранних теорий жизни были «материалистическими» по сравнению с теми, которые полагались на нефизические процессы, которые лежат за пределами материального мира, и на сверхъестественные способы творения. Эмпедокл (490–430 гг. до н. э.) говорил, что всё, включая жизнь, сделано из сочетаний четырех неизменных «элементов» или «корней всего сущего»: земли, воды, воздуха и огня. Аристотель (384–322 гг. до н. э.), один из ранних «материалистов», делил мир на три главные группы: животные, растения и минералы. Эту классификацию до сих пор учат в школах. В 1996 году моя группа секвенировала первый геном археи. Эта последовательность многими преподносилась как доказательство того, что археи, как первым предположил американский микробиолог Карл Вёзе, представляют третью ветвь жизни – наряду с бактериями и эукариотами[2]2
Эукариоты – организмы, в клетке которых есть ядро и внутренние мембранные структуры. К эукариотам относятся все многоклеточные (животные, растения и грибы), а также протисты: амебы, инфузории, жгутиковые и др.
[Закрыть]. Когда это попало в новости, телеведущий Том Брокау риторически вопросил: «У нас есть животные, растения и минералы. Что же может быть за новая ветвь?»
Понимание углублялось, и мыслители становились амбициознее. Для греков идея изменения природы в угоду человеческим стремлениям или поиск способов управления ею выглядели бы абсурдом. Но с начала научной революции в XVI веке принципиальной целью науки стало не только исследование основ вселенной, но и овладение оной. Фрэнсис Бэкон (1561–1626), английский энциклопедист, основатель эмпиризма[3]3
Эмпиризм – одно из важнейших направлений в философии Нового времени, утверждающее, что источником достоверного знания является один только чувственный опыт. В XVII веке эмпиризм стал идеологией нарождающегося естествознания.
[Закрыть], облек это в слова, которые лучше привести в оригинале, чем пересказывать: греки, несомненно, «были похожи на мальчишек; они могут только болтать и ссориться, но не могут делать; ибо их мудрость обильна словами, но пустынна трудами… Из всех этих греческих систем и их последствий для отдельных наук едва ли можно по истечении многих лет привести хоть один эксперимент, который направлен на облегчение и улучшение состояния человека».
В романе-утопии «Новая Атлантида» (1623){14}14
Книга была опубликована в 1627 году, через год после смерти Бэкона.
[Закрыть] Бэкон обрисовал свое представление о будущем, отмеченном человеческими открытиями, и даже предвидел финансируемое государством научное учреждение, Дом Соломона, где целью ставится «познание причин и скрытых сил всех вещей; и расширение власти человека над природою, покуда все не станет для него возможным». В его романе описываются эксперименты со «зверями и птицами», звучащие как генетическая модификация: «С помощью науки делаем мы некоторые виды животных крупнее, чем положено их породе, или, напротив, превращаем в карликов, задерживая их рост; делаем их плодовитее, чем свойственно им от природы, или, напротив, бесплодными; а также всячески разнообразим их природный цвет, нрав и строение тела». Бэкон даже упоминает способность проектировать жизнь: «И это получается у нас не случайно, ибо мы знаем заранее, из каких веществ и соединений какое создание зародится»{15}15
http://oregonstate.edu/instruct/phl302/texts/bacon/atlantis.html
[Закрыть].
Наука не только хочет понять природу – она хочет и поставить ее на службу человеку. Рене Декарт (1596–1650), первопроходец в оптике, которого мы все ассоциируем с фразой «Я мыслю, следовательно, существую», в «Рассуждении о методе» 1637 года также заглянул вперед – в тот день, когда человечество сможет стать «хозяином и господином природы». Декарт и его последователи распространили механистические объяснения природных явлений на биологические системы, а затем исследовали их приложения. С самого рождения этого великого дела, однако, критики выражали опасения, что в погоне за эффективным господством над природой будут забыты более важные моральные и философские проблемы. Вместе с фаустовым духом современной науки пришел спор о приемлемости для человечества «игры в Бога».
Для некоторых не было вопроса, что превосходным примером принятия роли божества было бы создание чего-нибудь живого в лаборатории. В своей книге «Природа и происхождение жизни: в свете новых знаний» 1906 года французский биолог и философ Феликс ле Дантек (1869–1917) обсуждает эволюцию – или «трансформизм», как ее называли в додарвиновских дискуссиях о том, как меняются виды, – современных видов от более ранних и простых организмов, «живой протоплазмы, сведенной к минимальной сумме наследственных признаков». Он писал: «Архимед высказал символическое утверждение, которое, если принять его буквально, абсурдно: „Дайте мне точку опоры, и я переверну Землю“. Примерно так же трансформист наших дней имеет право сказать: „Дайте мне живую протоплазму, и я воссоздам целиком животное и растительное царства“». Ле Дантек очень хорошо понимал, что теми примитивными методами, которые были у него в распоряжении, эту работу было бы трудно выполнить: «Наше знакомство с коллоидами [макромолекулами] еще столь недавнее и рудиментарное, что нам не стоит рассчитывать на скорый успех в попытках изготовить живую клетку». Ле Дантек был так уверен, что будущее принесет синтетические клетки, что говорил: «С новыми знаниями, полученными наукой, просвещенному разуму больше не нужно видеть изготовление протоплазмы для того, чтобы убедиться в отсутствии всякой существенной разницы и абсолютного разрыва между живой и неживой материей»{16}16
With the new knowledge acquired by science, the enlightened mind no longer needs to see the fabrication of protoplasm in order to be convinced of the absence of all essential difference and all absolute discontinuity between living and not-living matter.
[Закрыть].
В предыдущем веке границу между одушевленным и неодушевленным провели химики, в том числе Йёнс Якоб Берцелиус (1779–1848), шведский ученый, который считается одним из пионеров современной химии. Берцелиус впервые применил атомную теорию к «живой» органической химии{17}17
Некоторые описывают Берцелиуса как виталиста, но, как указывает Джон Брук, с этим утверждением надо быть поосторожнее. John H. Brooke: “Wöhler’s Urea and its Vital Force – a verdict from the Chemists.” Ambix 15 (1968), 84.114.
[Закрыть], опираясь на работу французского отца химии Антуана Лавуазье (1743–1794) и других ученых. Он определил две крупных ветви химии как «органическую» и «неорганическую»; органические соединения – это те, которые отличаются от всех прочих тем, что включают в себя атомы углерода. В первый век применения термина «органический» он означал «происходящий от живого». Но примерно в то время, когда Берцелиус выдвинул эти определения, которые мы используем до сих пор, в своем влиятельном учебнике химии начала XIX века, виталисты и неовиталисты рассматривали органический мир еще более однозначно: «Органические вещества имеют по крайней мере три составляющие… они не могут быть приготовлены искусственно… но лишь через сродства, связанные с жизненной силой. Из этого ясно, что одни и те же правила неприменимы к органической и неорганической химии, так как здесь существенно влияние жизненной силы»{18}18
Цитата из The Life and Work of Friedrich Wöhler (1800–1882). Edited by Johannes Buttner. Edition Lewicki-Buttner, vol. 2. Verlag T. Bautz GmbH. E-book.
[Закрыть].
Немецкий химик Фридрих Вёлер (1800–1882), некоторое время работавший с Берцелиусом, совершил открытие, которое долго считалось «опровержением» витализма: химический синтез мочевины. В современных учебниках, в лекциях и статьях вы все еще найдете ссылки на его experimentum crucis. Это достижение стало знаковым моментом в научных анналах, отметив начало конца влиятельной идеи, восходящей к античности, – а именно, что есть некая «жизненная сила», которая отделяет одушевленное от неодушевленного, характерный «дух», который пропитывает все тела, чтобы дать им жизнь. Из заурядных химикатов Вёлер вроде бы создал кое-что от самой жизни – уникальный момент, полный возможностей. В единственном эксперименте он преобразовал химию – до тех пор разделенную на два раздельных царства молекул жизни и неживых химикатов – и увел иголку еще на один стежок прочь от предрассудков к науке. Его открытие пришло всего через десять лет после публикации готического романа Мэри Шелли «Франкенштейн», а тот появился всего через несколько лет после попытки Джованни Альдини (1762–1834) оживить казненного преступника электрическим шоком.
Вёлер объяснил свой успех в письме к Берцелиусу, датированном 12 января 1828 года{19}19
“…denn ich kann, so zu sagen, mein chemisches Wasser nicht halten und mus Ihnen sagen, das ich Harnstoff machen kann, ohne dazu Nieren oder uberhaupt ein Thier, sey es Mensch oder Hund, nothig zu haben.” Otto Wallach, editor, Briefwechsel zwischen J. Berzelius und F. Wöhler (Leipzig: Engelmann, 1901), vol. 1, стр. 206.
[Закрыть], описав случай, когда в Политехнической школе в Берлине он нечаянно создал мочевину, основной азотсодержащий компонент в моче млекопитающих. Вёлер пытался синтезировать щавелевую кислоту, содержащуюся в ревене, из циана и водного раствора аммиака и в итоге получил белую кристаллическую субстанцию. Аккуратно экспериментируя, он сделал точный анализ натуральной мочевины и показал, что это то же самое вещество, что и его кристаллы. До тех пор мочевину получали только из животных источников.
Тревожась, что не получает ответа от Берцелиуса, Вёлер снова написал ему в письме от 12 февраля 1828 года: «Я надеюсь, что мое письмо от 12 января дошло до вас, и хотя я жил в ежедневном и ежечасном ожидании ответа, я не стану ждать дольше, но напишу вам сейчас, потому что не могу дольше, так сказать, придерживать свою химическую мочевину, и надеюсь опубликовать то, что я могу получить мочевину без участия почки, будь то человеческой или собачьей; аммиачная соль циановой кислоты[4]4
Циановая (цианатная) кислота НОСN (не путать с синильной кислотой НСN) при соединении с аммиаком дает цианат аммония NН4СN, который при нагревании превращается в мочевину (NН2)2СО.
[Закрыть] и есть мочевина». Вёлер продолжал: «Предполагаемый цианат аммония был легко получен путем взаимодействия цианата свинца с раствором аммония. Цианат серебра и раствор хлорида аммония тоже годятся. Были получены четырехгранные прямоугольные призмы, красиво кристаллизующиеся; если их обработать кислотами, то не выделяется циановая кислота, а если щелочами – ни следа аммиака. Но с азотной кислотой образуются блестящие хлопья легко кристаллизующегося соединения, причем сильно кислотного; я был склонен принять это вещество за новую кислоту, так как при нагревании не образовывалась ни азотная, ни азотистая кислота, зато выделялось много аммиака. Потом я обнаружил, что если раствор насытить щелочью, то снова появляется так называемый цианат аммония, и его можно экстрагировать спиртом. И вот, совершенно внезапно, я получил ее! Все, что было нужно, – это сравнить мочевину из мочи с мочевиной из цианата»{20}20
The Life and Work of Friedrich Wöhler (1800–1882). Edited by Johannes Buttner. Edition Lewicki-Buttner, vol. 2. (Kindle Locations 1927–1933.) Verlag T. Bautz GmbH. Kindle Edition.
[Закрыть].
Когда Берцелиус наконец ответил, его реакция была шутливой и полной энтузиазма: «Тот, кто положил начало своему бессмертию в моче, имеет все основания завершить свой путь вознесения на небеса при помощи того же предмета… и поистине, герр доктор на самом деле придумал трюк, который ведет по истинному пути к бессмертному имени… Это, безусловно, будет очень полезным для будущих теорий».
Тут он попал в точку. В сентябре 1837 года в научное общество в Ливерпуле, известное как Британская ассоциация по развитию науки, обратился Юстус фон Либих (1803–1873), влиятельный ученый, совершивший ключевые открытия в химии, например, он установил важность азота как питательного вещества для растений{21}21
http://www.biodiversitylibrary.org/item/46624#page/20/mode/1up
[Закрыть]. Фон Либих обсуждал продемонстрированное Вёлером «удивительное и в какой-то степени необъяснимое получение мочевины без помощи жизненных функций», добавляя, что «началась новая эра в науке»{22}22
Ramberg, Peter J. “The Death of Vitalism and the Birth of Organic Chemistry: Wöhler’s Urea Synthesis and the Disciplinary Identity of Organic Chemistry.” Ambix, Vol. 47, Part 3, ноябрь 2000, стр. 174.
[Закрыть].
Достижение Вёлера вскоре попало в учебники, а именно в «Историю химии» Германа Франца Морица Коппа (1843), в которой было написано, что оно «разрушило ранее принятое разделение между органическими и неорганическими телами». К 1854 году значение Вёлерова синтеза мочевины было подчеркнуто, когда другой немецкий химик, Герман Кольбе, написал{23}23
Lehrbuch der organischen Chemie (Учебник по органической химии).
[Закрыть]: всегда считалось, что соединения в животных и растительных телах «обязаны своим образованием весьма загадочной силе, присущей исключительно живой природе, так называемой жизненной силе». Но теперь, в результате Вёлерова «эпохального и важного» открытия, разделение между органическими и неорганическими соединениями рассыпалось.
Однако, как бывает при непредвзятом рассмотрении многих исторических событий, «пересмотренная история» работы Вёлера может дать новое понимание, которое удивит всякого, придерживающегося традиционной точки зрения из учебников – той, что историк науки Питер Рамберг называет «вёлеровским мифом». Этот миф достигает апофеоза в 1937 году, в книге Бернарда Яффе «Тигли: Жизни и достижения великих химиков», популярной истории химии, где Вёлер описан как молодой ученый, тяжко трудившийся в «священном храме» своей лаборатории, чтобы развенчать загадочную жизненную силу.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?