Автор книги: Крейг Вентер
Жанр: Биология, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]
При помощи Haemophilus influenzae мы перевели двойную спираль биологии в цифровой мир компьютера, но веселье только начиналось. Работая с геномом этой бактерии, чтобы исследовать ее биологию и как она вызывает менингит и другие болезни, мы одновременно для подтверждения методики секвенировали еще один геном – самый маленький из известных тогда бактериальных геномов, геном Mycoplasma genitalium. Когда я закончил речь, аудитория поднялась в едином порыве и устроила мне долгую и сердечную овацию. Я никогда раньше не видел на научной конференции{88}88
Venter, J. Craig (18.10.2007). A Life Decoded: My Genome: My Life. Penguin. E-book.
[Закрыть] такой масштабной и спонтанной реакции.
Это был очень сладкий миг. Моя команда стала первой, когда-либо секвенировавшей геном живого организма, и не менее важным было то, что мы это сделали, разработав новый метод, который назвали «полногеномное секвенирование методом дробления[11]11
В русской литературе этод метод называют также «методом дробовика».
[Закрыть]». Это свершение отметило начало новой эры, когда чтение ДНК живых существ стало настолько рутинным делом, что позволяло анализировать их, сравнивать и понимать.
После завершения чтения генома Haemophilus influen-zae я хотел секвенировать второй геном, чтобы мы могли сравнивать два генома, что помогло бы понять базовый набор генов, потребных для жизни. В это время Клайд Хатчинсон в Университете Северной Каролины в Чапел-Хилле предложил перспективного кандидата с самым наименьшим известным геномом: вид Mycoplasma genitalium, у которого меньше пятисот генов. Мы решили, что этот геном дополнит нашу работу по H. influenzae, потому что он принадлежит другой группе бактерий. Окраска по Граму, названная так в честь ее изобретателя Ханса Кристиана Грама (1853–1938), делит все виды бактерий на две категории в зависимости от того, как они реагируют на краску: грамположительные (как Bacillus subtilis, например) становятся фиолетовыми или синими, а грамотрицательные (как H. influenzae) приобретают розовый или красный цвет. Считалось, что M. genitalium эволюционно произошла от какой-то бациллы, поскольку она классифицировалась как одна из грамположительных бактерий.
Для завершения секвенирования этого генома потребовалось всего лишь три месяца, и в 1995 году мы опубликовали 580 000 пар оснований генома Mycoplasma genitalium в Science{89}89
Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton, R. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley, J. L. Fritchman, J. F. Weidman, K. V. Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T. R. Utterback, D. M. Saudek, C. A. Phillips, J. M. Merrick, J. Tomb, B. A. Dougherty, K. F. Bott, P. Hu, T. S. Lucier, S. N. Peterson, H. O. Smith, C. A. Hutchison, J. C. Venter. “The Minimal Gene Complement of Mycoplasma genitalium.” Science 270, стр. 397–403 (1995).
[Закрыть]. Наше достижение должно было послужить основой большого труда по сотворению синтетической клетки, но в то же время у него нашлись и более скорые последствия. Эта работа дала старт новой дисциплине, известной как сравнительная геномика. Сравнив два первых в истории секвенированных генома, мы могли поискать общие элементы, связанные с живой самовоспроизводящейся формой жизни. Сравнительная геномика разрабатывает одно из самых захватывающих открытий биологии: создав однажды белковую структуру, которая выполняет важную биологическую функцию, эволюция склонна использовать эту структуру/последовательность снова и снова.
Гены, которые управляют фундаментальным процессом деления клеток у дрожжей, например, похожи на те, которые используют наши клетки{90}90
Lee, M. G., and P. Nurse. “Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2.” Nature 327, стр. 31–35 (1987).
[Закрыть]. Поскольку из бактерии E. coli уже выделили, секвенировали и функционально охарактеризовали гены, кодирующие ДНК-полимеразу, наша группа могла использовать эту информацию для поиска сходных последовательностей в геноме H. influenzae. Если бы какие-либо из последовательностей ДНК близко соответствовали гену ДНК-полимеразы E. coli, мы могли бы сделать вывод, что ген H. influenzae – это тоже ген ДНК-полимеразы. Проблема была в том, что в 1995 году базы данных генов были весьма скудны, поэтому мы мало с чем могли сравнить наш геном. В целом почти 40 % предполагаемых генов в наших секвенированных геномах не имели соответствия в базе данных.
Наша статья в Science про M. genitalium описывала, как мы использовали данные из обоих секвенированных геномов, чтобы задать основные вопросы о рецепте жизни: каковы ключевые отличия в генном содержимом двух видов? У H. influenzae около 1740 белков, кодируемых каждый своим геном, и примерно восемьдесят генных последовательностей для РНК. У M. genitalium только 482 гена, кодирующих белки, и 42 гена для РНК. Геном M. genitalium меньше отчасти потому, что в нем отсутствуют все гены ферментов, производящих собственные аминокислоты (она может добывать их из человека-хозяина). Как и у M. genitalium, у нас тоже есть незаменимые аминокислоты – валин и триптофан, которые наши клетки не могут синтезировать, и их приходится получать с пищей.
Возможно, еще интереснее вопрос: какие гены общие у этих двух микроорганизмов? Если те же самые гены найдутся у организмов многих разных типов, они обретут гораздо большее значение. Общие гены предполагают общего предка и могут оказаться поистине важнейшими для самого процесса жизни. Ключевой абзац нашей статьи 1995 года гласит: «Обзор генов и их организации у M. genitalium позволяет описать минимальный набор генов, необходимый для выживания».
Мы начали думать над базовым набором жизненно важных генов. Какое минимальное число генов требуется клетке, чтобы выжить и процветать? Мы надеялись, что гены, присутствующие у обеих бактерий из двух разных групп, дадут представление о критическом наборе генов.
Скудость наших биологических познаний в 1995 году отражает уже то, что мы понятия не имели о функциях 736 генов (43 % от всего набора) у H. influenzae и 152 генов (32 %) M. genitalium. Во время написания статей мы много спорили о жизни и о том, действительно ли M. genitalium представляет собой минимальный набор генов. Эти наши дискуссии отразились в заключении статьи о M. genitalium: «Сравнение [новых секвенированных геномов] с генной последовательностью M. genitalium должно способствовать более точному определению фундаментального комплекта генов для самовоспроизводящегося организма и более полному пониманию разнообразия жизни». Другие группы также начали работать с нашими данными по двум первым опубликованным геномам. Евгений Кунин из НИЗ провозгласил, что эта разработка отмечает новую эру в геномной науке, и заключил путем компьютерного исследования, что у микробов очень невелико генное разнообразие. Он основывался на сходстве между наборами генов грамотрицательных (H. influenzae) и грамположительных (M. genitalium) бактерий{91}91
Koonin, Eugene V., Arcady R. Mushegian, and Kenneth E. Rudd. “Sequencing and analysis of bacterial genomes.” Current Biology 1996, Vol. 6, № 4, стр. 404–416.
[Закрыть]. Однако наш следующий геномный проект одним ударом изменил принятые представления о генетическом разнообразии.
В 1996-м мы намеренно выбрали для третьей работы над геномом необычный вид: Methanococcus jannaschii. Этот одноклеточный организм живет в экстремальной среде – гидротермальном источнике, где из-под дна океана бьет горячая, насыщенная минеральными соединениями жидкость. В этих адских условиях клетки противостоят давлению в 245 атмосфер и температурам около 85 градусов Цельсия. Это само по себе примечательно, потому что большинство белков денатурируют при температурах от 50 до 60 градусов (в частности, именно это происходит с яичным белком при варке). В отличие от жизни на поверхности Земли, зависящей от солнечного света, Methanococcus – хемотроф, то есть делает все, что ему нужно для существования, из неорганических веществ. Источником углерода для любого белка и липида в клетке Methanococcus служит диоксид углерода. Кроме того, превращая углекислоту в метан, этот микроб получает энергию для своей жизнедеятельности. Methanococcus принадлежит к предполагаемой третьей ветви жизни – так называемым археям, которые в 1977 году открыл Карл Вёзе из Университета Иллинойса в Урбане{92}92
Woese, Carl R.; George E. Fox (1977). “Phylogenetic structure of the prokaryotic domain: the primary kingdoms.” Proceedings of the National Academy of Sciences of the United States of America 74 (11), стр. 5088–5090.
[Закрыть]. Вместе с Вёзе мы выбрали Methanococcus как первую архею, геном которой будет секвенирован и проанализирован.
Сиквенс не подвел. Геном Methanococcus{93}93
Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, S. M., Weidman, J. F., Fuhrmann, J. L., Nguyen, D., Utterback, T. R., Kelley, J. M., Peterson, J. D., Sadow, P. W., Hanna, M. C., Cotton, M. D., Roberts, K. M. Hurst, M. A., Kaine, B. P., Borodovsky, M., Klenk, H. P., Fraser, C. M., Smith, H. O., Woese, C. R and Venter, J. C. “Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii.” Science 372, стр. 1058–1073 (1996).
[Закрыть] расширил наш взгляд на биологию и генетические богатства планеты. Почти 60 % генов Methanococcus были новыми для науки, ничего не знавшей об их функциях; только 44 % генов напоминали что-то описанное ранее. Некоторые из генов Methanococcus, включая те, которые связаны с основным энергетическим обменом, напоминают те, которые есть у бактериальной ветви жизни. В то же время другие его гены, включая те, что связаны с переработкой информации и репликацией генов и хромосом, лучше всего соответствуют эукариотным генам, в том числе некоторым человеческим и дрожжевым. Наше геномное исследование побывало на первой странице каждой крупной газеты в Америке и широко освещалась в большей части остального мира: The Economist выбрал заголовок «Горячая штучка», в то время как Popular Mechanics возвещала об «Инопланетной жизни на Земле», и ей вторили San Jose Mercury News с заголовком «За пределами научной фантастики»{94}94
Venter, J. Craig (18.10.2007). A Life Decoded: My Genome: My Life (Kindle Locations 3971–3975). Penguin. Kindle Edition.
[Закрыть]. Кстати, современные исследования наводят на мысль, что эукариоты – это потомки архей, и если это окажется так, мы опять вернемся к двум главным ветвям жизни{95}95
Simonetta Gribaldo, Anthony M. Poole, Vincent Daubin, Patrick Forterre & Celine Brochier-Armanet. “The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?” Nature Reviews Microbiology 8, стр. 743–752 (октябрь 2010). DOI: 10.1038/nrmicro2426
[Закрыть].
В том же 1996 году в газетные «шапки» по всему миру попала и НАСА, когда опубликовала то, что некоторые приняли за свидетельство микробной жизни на Марсе. Эверетт Гибсон и его коллеги из агентства объявили, что нашли в метеорите ALH 84001 окаменелость не более нанометра размером. Это было сенсационной находкой, поскольку ALH 84001 был выбит из поверхности Красной планеты и затем упал на Землю примерно тринадцать тысяч лет назад.
Эти сообщения о микробах-марсианах, сопровождаемые интригующими картинками мелких клякс и микроскопических колбасок, еще больше подхлестнули дискуссии о том, из чего может состоять минимальный геном. Наши простые прикидочные расчеты показали, что объем упомянутой «нанобактерии» настолько мал, что просто не может содержать молекулы ДНК или РНК. Теперь уже ясно, что структуры, найденные в ALH 84001, не имеют отношения к живым существам и что отложения, напоминающие примитивные клетки, могут возникать просто в ходе роста кристаллов{96}96
Raoult, D., M. Drancourt, S. Azza, et al. (февраль 2008). “Nanobacteria Are Mineralo Fetuin Complexes.” PLoS Pathog. 4 (2): e41. Garcia-Ruiz, J. M., Melero-Garcia, E., Hyde, S. T. (январь 2009). “Morphogenesis of self-assembled nanocry-stalline materials of barium carbonate and silica.” Science 323 (5912), стр. 362–365.
[Закрыть].
Следующие несколько лет моя команда продолжала секвенировать множество уникальных видовых геномов, включая тот, на который нас вдохновила новаторская работа австралийца Барри Маршалла. Они с патологом Робином Уорреном считали, что язву желудка вызывает спиралевидная бактерия, позже названная Helicobacter pylori. На меня произвело впечатление упорство Маршалла, работа которого постоянно оспаривалась. Его коллеги не желали верить, что причиной язвы может быть бактерия, а не стресс. В 1984 году Маршалл, вдохновленный своей убежденностью, выпил раствор с бактерией. Вскоре у него начались приступы рвоты и развился гастрит. В конце концов его настойчивость окупилась. Благодаря его исследованию миллионы людей были вылечены антибиотиками вместо ежедневного приема лекарств, снижающих кислотность, – что заодно снизило риск развития рака желудка. Мы опубликовали геном Helicobacter pylori в 1997 году{97}97
Tomb, J.-F., O. White, A. R. Kerlavage, R. A. Clayton, G. G. Sutton, R. D. Fleischmann, K. A. Ketchum, H. Р. Klenk, S. Gill, B. A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E. F. Kirkness, Peterson, B. Loftus, D. Richardson, R. Dodson, H. G. Khalak, A. Glodek, McKenney, K., L. M. Fitzgerald, N. Lee, M. D. Adams, E. K. Hickey, D. E. Berg, J. D. Gocayne, T. R. Utterback, J. D. Peterson, J. M. Kelley, M. D. Cotton, J. M. Weidman, C. Fujii, C. Bowman, L. Whatthey, E. Wallin, W. S. Hayes, M. Borodovsky, Р. D. Karp, H. O. Smith, C. M. Fraser, and J. C. Venter. “The Complete Genome Sequence of the Gastric Pathogen Helicobacter pylori.” Nature 388, стр. 539–547 (1997).
[Закрыть], а в 2005-м Маршалл получил Нобелевскую премию по медицине{98}98
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2005/marshall-cv.html
[Закрыть].
Поскольку одноклеточная жизнь существовала около четырех миллиардов лет, она достигла разнообразия, позволяющего освоить всевозможные места обитания, от морозных антарктических пустынь до горячих кислых источников. Способностью к жизни «на грани» эти организмы, обитающие в крайних условиях, заслужили название «экстремофилов». Прощупывая жизнь у ее пределов, как в случае с Methanococcus, мы надеялись получить больше всего от сравнительной геномики. Следующий экстремофильный геном, который мы секвенировали, был геномом рода Archaeoglobus, живущего в нефтяных месторождениях и горячих источниках. Этот организм использует как источник энергии сульфаты, но может пожирать почти что угодно{99}99
Klenk, et al. “The Complete Genome Sequence of the Hyperthermophilic, Sulphate-Reducing Archaeon Archae-oglobus fulgidu.” Nature 390, стр. 364–370, 1997.
[Закрыть]. Наш первый анализ более чем двух миллионов букв его генома показал, что функции четверти его генов были неизвестны (две трети из этих загадочных генов были общими с M. jannaschii), а еще четверть кодировала новые белки.
Наше секвенирование двух первых бактериальных геномов и одного генома археи, а также публикация большим консорциумом лабораторий генома дрожжей{100}100
Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S. G. Oliver (1996). “Life with 6000 genes.” Science 274 (5287), стр. 546, стр. 563–567.
[Закрыть] дали миру первый взгляд на геномы всех трех ветвей жизни. Что эти данные говорят нам о базовом наборе ингредиентов жизни? Наши попытки установить минимально необходимые для жизни гены повели нас по нескольким экспериментальным путям. Наш изначальный план был подойти к пониманию минимальной самовоспроизводящейся формы жизни с разных сторон. Окончательным решением был бы синтез генома, но пока нам было нужно очень много информации об основах клеточной жизни, которой не было в научной литературе.
Самым очевидным подходом было вырубать гены в геноме M. genitalium, чтобы установить, какие из них существенны: удалите или отключите ген, и если организм продолжает жить, вы можете считать, что этот конкретный ген не играет критической роли; если же организм умирает, то ген был явно существенным. Идея была проста и ранее успешно применялась к разным видам. Марио Капеччи из Университета Юты, Оливер Смитис из Университета Северной Каролины и Мартин Эванс из Кардиффского университета в Великобритании получили в 2007 году Нобелевскую премию за разработанную ими в 1980-х технологию создания «нокаутных» мышей, у которых избирательно отключен один или несколько генов.
Другое дело, что для применения этих методов к M. genitalium были серьезные практические препятствия. Нокаутировать гены у организма вроде дрожжей относительно легко благодаря арсеналу генетических инструментов, применимых к таким видам. Для микоплазм таких инструментов просто нет – как нет и инструмента для многих последовательных изменений генов.
Один из фундаментальных инструментов молекулярной биологии – отбор с помощью антибиотиков. При таком отборе клетки, в которых были изменены гены, отбираются путем убивания всех немодифицированных клеток антибиотиком. Модифицированные клетки выживают, потому что плазмиды ДНК, применяемые для введения в них новых генов, содержат еще и гены устойчивости к антибиотику. Хотя эта технология – основа большинства молекулярно-биологических экспериментов, к сожалению, в них применяется лишь несколько систем для отбора антибиотиками, что сильно ограничивает число последовательных изменений генов, которые можно проделать.
Для решения одной из проблем Клайд Хатчинсон предложил уникальный подход, который мы назвали «полногеномным транспозонным мутагенезом», при котором небольшая молекула ДНК, называемая транспозоном, разрывает ген, что позволяет нам судить, насколько этот ген был важен. Транспозоны, или мобильные генетические элементы, – это относительно короткие последовательности ДНК, способные встраиваться в геном – в определенные участки или в случайные места. Американка Барбара Макклинток открыла транспозоны в кукурузе, где они меняли распределение пигментации зерен. Эта работа принесла ей в 1983 году Нобелевскую премию{101}101
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1983/press.html
[Закрыть]. Транспозоны можно считать эгоистичными генами, вроде вирусов, которые «заражают» геном. Оказывается, изрядная доля вашего генома состоит из таких ДНК-паразитов. Они важны, и не в последнюю очередь потому, что могут вызывать генетические болезни, если вставятся в ключевой ген и нарушат его функционирование.
Мы выбрали транспозон (Tn4001), выделенный у Staphylococcus aureus, чтобы он случайно вставлялся в геном M. genitalium и нарушал функционирование генов. Мы растили клетки, которые пережили такие вставки, выделяли и секвенировали их ДНК, начиная с праймера последовательности, который связывается только с транспозоном, чтобы точно определить, где в геноме окажется транспозон. Если Tn4001 вставится в середину гена и клетки это переживут, то мы считали этот ген несущественным для жизни.
После транспозонной бомбардировки генома мы сочли жизненно важными все гены, которые в живых клетках не имели транспозоновых вставок. Но проанализировав свои данные, мы поняли, что эта абсолютная система счета наивна, что гены и геномы существуют в определенных условиях и что жизнь не определяется одними генами. Поскольку все клетки получают ключевые питательные вещества и химикаты из окружающей среды, то, когда эта среда изменяется, ключевыми для жизни оказываются другие гены.
Белки мембранного транспорта ответственны за перенос важных питательных веществ из окружающей среды в клетки. Например, M. genitalium может расти как на глюкозе, так и на фруктозе, и у нее есть два гена, в которых зашифрованы специфические белки-транспортеры для каждого из этих сахаров. В наших исследованиях с транспозоновыми вставками оба гена оказались в группе несущественных для жизни, что поначалу нас удивило: ведь они были ключевыми для способа питания этого организма. Однако мы поняли, что среда, на которой мы обычно растили клетки M. genitalium, содержит и глюкозу, и фруктозу, что означает, что если ген какого-то транспортера выключается, то клетка просто переключается на потребление другого сахара. Напротив, если мы растили клетки только на одном сахаре, то, при вырубании транспортера именно этого сахара клетки умирали. Для некоторых функций, таких как метаболизм сахаров, определить «условно жизненно важные гены» нетрудно, но для тех генов, функции которых в клетке еще неизвестны, нет очевидного способа убедиться, не замещен ли разорванный ген другим.
Это оказалось особенно важно, когда мы включили в исследования вид Mycoplasma pneumonia, ближайшего известного родича M. genitalium, размер генома которого – 816 000 пар оснований, т. е. на 236 000 пар больше, чем у M. genitalium. Опять же мы хотели соединить работы по транспозоновой вставке со сравнительной геномикой, чтобы определить минимальный набор генов, нужных для жизни. Практически у каждого из 480 белок-кодирующих генов Mycoplasma genitalium в геноме M. pneumonia есть «родич», происходящий от общего с ним предкового гена (ортолога), и кроме того, есть еще 197 генов. Это наводит на соблазнительную мысль: не может ли набор из 480 генов, общих для двух видов, уже быть близок к минимальному геному? Наше исходное предположение состояло в том, что все 197 «лишних» генов в геноме M. pneumonia можно уничтожать вставками транспозонов, поскольку само существование M. genitalium предполагает, что они не необходимы для жизни. Результаты были не слишком удовлетворительны и информативны: мы обнаружили, что всего вставками транспозонов были разрушены 179 генов M. pneumonia, но из 197 «лишних» были разрушены лишь 140.
Сопоставив наши работы, мы вычислили, что у M. genitalium от 180 до 215 несущественных генов и от 265 до 350 – существенных. Из последних функция 111 неизвестна. Это явно не было точным определением жизни, которое мы искали. К тому же по мере проработки этих данных становилось всё очевиднее, что есть гены, каждый из которых сам по себе несущественен, но все вместе их удалять нельзя.
Учитывая скудость молекулярно-биологических инструментов и ограниченность данных по транспозонам, мы решили, что единственный путь получения минимального генома – попытаться синтезировать целый бактериальный геном с нуля. Нам надо будет химически синтезировать целую хромосому, используя только существенные гены. Однако это была бы громадная задача. Хотя ученые и писали маленькие кусочки генетических текстов уже почти полстолетия, никто не сделал ни одной конструкции из ДНК размером хотя бы в сотую долю того, что был нужен нам.
Работа над химическим синтезом ДНК начиналась в 1950-е, с успеха Хара Гобинда Кораны и Маршалла Ниренберга, но заметный прогресс был сделан лишь в 1980-е вслед за внедрением автоматического синтезатора ДНК Марвином Карузерсом из Колорадского университета в Боулдере. В его синтезаторе стояли четыре бутыли с нуклеотидами А, Т, Ц и Г, из которых они добавлялись по одному в предписанном порядке. Таким образом ДНК-синтезаторы могут делать короткие цепочки ДНК, называемые олигонуклеотидами. Однако при увеличении длины олигонуклеотидов выход продукта и точность падают. Вокруг синтеза олигонуклеотидов и продажи их исследователям выстроилась целая индустрия, потому что синтетическая ДНК применяется в молекулярной биологии для секвенирования ДНК и проведения ПЦР (полимеразных цепных реакций).
Синтетические олигонуклеотиды химическими методами можно соединять в более длинные куски ДНК. Когда мы впервые начали обсуждать синтез целого генома, самые длинные куски ДНК, которые удавалось сделать, были длиной в несколько тысяч пар оснований. Чтобы выстроить геном жизнеспособного организма, от нас требовалось химически синтезировать и собрать почти шестьсот тысяч пар оснований. Мы поняли: чтобы достичь этой цели, нам придется разрабатывать новые методы. Чтобы посмотреть, реальна ли наша идея хоть в каком-то приближении, мы решили, что надо попробовать сделать небольшой тестовый проект. Мы выбрали для синтеза геном бактериофага phi X 174. Помимо того, что это был первый секвенированный ДНКовый вирус, почти тридцать лет назад другая команда уже сделала примечательную и успешную попытку скопировать этот одноцепочечный геном с помощью ферментов.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?