Текст книги "Технология творческого мышления"
Автор книги: Лариса Шрагина
Жанр: Самосовершенствование, Дом и Семья
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 33 страниц) [доступный отрывок для чтения: 11 страниц]
В настоящее время функции грузоподъемных механизмов выполняют рычаги, домкраты, блоки, подъемные краны, дирижабли, вертолеты и т. д. Перенесем МЫСЛЕННО на остров подъемный кран, например автомобильный. Если такой кран вводить, то, в точном соответствии с причинно-следственной связью, он поднимет лодку, но недопустимо усложнит систему. Получается, что кран и необходим, чтобы поднимать груз, и не нужен, чтобы не усложнять систему.
Но в самом кране нас интересуют не колеса, не рама, не кабина, даже не стрела и двигатель. Нас интересует только основная функция крана – его способность создавать подъемную силу. Вот эту способность крана – создавать подъемную силу – мы на острове оставим, а все остальные части, чтобы не усложнять систему, уберем. На острове останется основная функция ОТСУТСТВУЮЩЕГО крана. Идеальный кран – его нет, а функция выполняется!
Система, которой нет, но функция которой выполняется, в ТРИЗ называется идеальной.
Рассмотрим это понятие на еще одном примере – калькуляторе. Его основная функция – то, для чего был создан калькулятор, – быстрый счет, т. е. быстрые действия с числами. Потребность в таких действиях возникла давно, и первыми устройствами (если не считать палочки и камешки), которые эти действия выполняли, были счеты, потом арифмометр и логарифмическая линейка, а затем уже им на смену пришел калькулятор.
Какие же основные параметры менялись при смене каждого предыдущего устройства на новое? Прежде всего, росла скорость счета – лучше выполнялась основная функция. При этом уменьшались затраты энергии на выполнение одной операции (одного действия с числами) и габариты всего устройства. Так что можно сказать, что каждая последующая система была более идеальной по сравнению с предыдущей.
Доведем теперь эти параметры до предела. Предельная скорость счета – в идеале огромная, бесконечно большая. Затраты энергии в идеале – нулевые, т. е. устройство работает без всяких затрат энергии. И габариты такого устройства в идеале тоже сводятся к нулю. И тогда мы получаем идеальный калькулятор – его нет, но вычисления производятся с бесконечно большой скоростью!
Применение понятия «идеальная система» позволяет нам представить себе модель, к которой нужно стремиться при изменении любой системы.
А теперь применим понятие «идеальная система» для решения проблемы Робинзона. Если крана нет, а его функция – создание подъемной силы – должна выполняться, то очевидно, что такую силу нужно искать только внутри самой системы. Иными словами, лодка должна сама себя поднять, т. е. выступать одновременно в двух ролях: в качестве объекта, который нужно поднять, и в качестве силы, которая поднимает.
Единственная сила, которая есть внутри системы, – это вес лодки, который направлен вниз и прижимает ее к земле. Эту силу как раз и необходимо преодолеть. Получается новая – очень неожиданная! – задача: поднимать с помощью силы, направленной вниз! Существуют ли механизмы, которые работают таким образом? Да, это обычный рычаг, его простейший и всем известный вариант – детские качели. Второй механизм – блок: трос тянут вниз, а груз поднимается.
В нашей задаче ситуация осложняется тем, что лодка должна сама себя поднять, т. е. выступать одновременно в двух ролях: в качестве объекта, который нужно поднять, и в качестве силы, которая поднимает.
Оба варианта (рычаг и блок) можно реализовать, если мысленно разделить лодку на две части и рассматривать, например, корму – в качестве силы, а нос – в качестве объекта. Но, чтобы нос мог подняться, корма должна иметь возможность опуститься. А опускаться ей некуда – мешает земля. Новая задача, но значительно более простая: выкопаем яму под кормой. А чтобы много не копать, сместим центр тяжести лодки к корме, для этого можно использовать тот самый грунт, который мы из-под кормы вынимаем. Когда нос задерется, а корма опустится в яму, подставим катки, выбросим груз из лодки – и она сама на катки опустится. Теперь лодку можно катить к морю.
Для сопоставления эффективности методов мозгового штурма и ТРИЗ проанализируем этапы решения задачи. Если попросить автора каждой идеи, возникшей во время мозгового штурма, восстановить ход мысли, в результате которого его идея появилась на свет, то чаще всего отвечают: по ассоциации, по аналогии с чем-то уже известным, виденным, хорошо знакомым. Аналогизирование, как правило, прямое: необходимый признак или принцип переносятся без существенных изменений. Если предложить участникам мозгового штурма оценить методику с точки зрения наличия каких-либо закономерностей, то ответ чаще всего будет отрицательным. Поэтому цена опыта, приобретенного в результате участия в штурме, очень невелика.
Почему это так? Прежде всего потому, что в методике мозгового штурма отсутствует этап АНАЛИЗА ПРОБЛЕМЫ и участники сразу начинают решать ее, предлагая и развивая идеи. К тому же в этой методике нет критериев выбора направления поиска решения, нет критериев оценки идей, выдвигаемых непосредственно в ходе штурма. Основная красота штурма – в хаотичности выдвигаемых идей, поэтому часто очередная выдвинутая идея перебивает ход решения, ведущий к нужному ответу, и задача возвращается к началу. Ход штурма отображает рис. 2.1.
Идея 1, например, неприемлемая в принципе («Прорыть канал к лодке»), получает вполне логичное и технически обоснованное развитие в виде идей 2 и 3 – использовать дождевую воду для создания шлюзов. Но это развитие перебивается идеей 4 – все-таки тянуть лодку. Идеи 8–11 представляют собой постепенное развитие варианта, предлагающего уменьшить трение, и естественно подводят к идее 12 – катить лодку. Но попытка решить новую задачу – поднять лодку – опять уводит решение в сторону. В результате большинство выдвинутых идей (а иногда и все!) оказываются «пустыми», а время на их генерирование – затраченным зря.
Кроме того, методика не дает уверенности, что в числе выдвинутых идей действительно находится та, которая приведет к единственно верному результату.
ТРИЗ требует начинать решение с анализа проблемной ситуации и определения основной функции системы. Для проблемы Робинзона это – прежде всего надежность, поэтому дискуссии на тему «Зачем нужна большая лодка?» сразу отменяются.
Анализ причины, из-за которой возникла проблема – необходимость создания большой тяговой силы, нужной, чтобы тащить лодку, – приводит к выбору другого способа перемещения – катить лодку. И еще десяток выдвинутых идей, связанных с понятием «тащить», оказываются ненужными: запрягать коз, рубить деревья, смазывать поверхности жиром… Так возникает новая задача – поднять лодку, чтобы поставить ее на катки. НО (!) – вместо поисков вариантов «по аналогии» сразу выдвигается идеальное с точки зрения ситуации требование: лодка должна САМА СЕБЯ поднять. Тем самым отсекается возможность применения блоков, рычагов, растущих деревьев, воздушных шаров и других «пустых» вариантов идей. И остается только один, самый сильный и реальный.
Так методика ТРИЗ самой структурой своего построения устраняет недостатки, присущие мозговому штурму (и, как убедимся в дальнейшем, другим методам перебора вариантов). Изначальная нацеленность на идеальное решение отбрасывает саму возможность тратить время на генерирование и дальнейший анализ «пустых» идей, сужая в процессе решения поле поиска до той минимальной зоны, в которой существуют только сильные варианты.
Определим инструментарий, использованный при решении проблемы алгоритмическим методом. Прежде всего, это была четкая программа в виде некоторой универсальной последовательности шагов по анализу проблемы и преобразованию исходной ситуации до задачи и поиска ее решения. Эта программа называется алгоритмом решения проблемных ситуаций (АРПС).
По ходу решения мы неоднократно исследовали сущность физических процессов, создающих проблемы. Да и само решение в конце концов свелось к поиску физического (в данной задаче) эффекта, который обеспечивает реализацию идеального варианта. Объем знаний о законах природы, необходимый для реализации идеи, составляет необходимый информационный фонд (ИФ).
Во время решения задачи к чисто логическим ходам мысли подключалось воображение: например, тогда, когда нужно было представить себе идеальный – отсутствующий – кран, мысленно разделить лодку на две части… Формирование управляемого воображения – цель специального курса развития творческого воображения (РТВ).
АРПС, ИФ и РТВ – основные части теории решения изобретательских задач – ТРИЗ, основы которой в конце 1940-х гг. заложил и затем на протяжении всей своей жизни развивал инженер Г. С. Альтшуллер с соратниками и учениками. Возможность применения ТРИЗ для формирования культуры мышления в учебном процессе и является содержанием данной книги.
3. Генетический анализ технической системы
В предыдущей главе, решая проблему Робинзона, мы использовали некоторые понятия: функция, система, идеальный объект. Определим теперь эти понятия и их значимость для поиска решения проблем.
Но прежде немного истории. Проблемы интенсификации интеллектуального труда, в частности творческого, – генерирования новых идей с целью создания новых технологий – особенно острыми стали в начале XX в. Тогда были предприняты попытки изучить процессы мышления наиболее талантливых ученых и изобретателей, чтобы выявить закономерности в этих процессах и на их базе сформировать систему обучения творческим способностям. Результаты этих исследований и практические наблюдения за технологией генерирования идей и особенностями мышления личности привели к созданию целого ряда широко известных методов, применяемых в техническом творчестве. Эти методы можно условно разделить на две группы:
1. Методы психологической активизации творческих процессов (мозговой штурм, синектика, конференция идей, метод фокальных объектов и др.).
2. Методы систематизации перебора вариантов (практически все методы этой группы используют в качестве основы принцип морфологического анализа).
В конце 1940-х гг. изучением процесса генерирования идей начал заниматься Г. С. Альтшуллер (15.10.1926 – 24.09.1998). После недолгих и бесплодных попыток выявить технологию мышления изобретателей Альтшуллер обратился к продукту изобретательской деятельности – авторским свидетельствам и патентам. Изучение в патентном фонде (в этой библиотеке собраны и систематизированы описания всех изобретений мира) истории развития объектов, созданных человеком для удовлетворения своих потребностей, и причин их изменения позволило сделать ему неожиданные и основополагающие для всей методологии творчества выводы, которые стали базой для создания ТРИЗ – теории решения изобретательских задач. Проведем аналогичное исследование (в ТРИЗ его называют генетическим анализом) и на примере развития и изменения одной системы попробуем выявить некоторые общие закономерности развития систем.
Но предварительно введем несколько определений. Взглянем на объекты и явления вокруг себя. По способу возникновения, существования и изменения их можно разделить на две группы: природные, или естественные, и искусственные. К первым относятся горы, реки, облака, дождь, снег, растительный и животный мир и многие другие объекты и явления, созданные природой без участия человека.
К искусственным относят объекты и явления, созданные трудом человека. Внимательный взгляд на них показывает, что нет «объектов-бездельников»: нож, повозка, книга, станок, телефон, кинофильм – каждый из этих объектов создавался, когда у человечества возникала очередная острая потребность. Поэтому введем понятие «основная функция» (ОФ) как действие, для осуществления которого создан данный искусственный объект.
В качестве объекта для проведения генетического анализа системы рассмотрим источник местного освещения. Потребность в таком источнике возникла, чтобы продлить световой день и иметь возможность работать в темное время суток или в темной пещере.
Функцию первого источника местного освещения выполнял костер. Источником интересующей нас световой энергии служило дерево, получалась эта энергия в процессе химической реакции в форме горения. Регулирование количества света производилось изменением количества дров и их концентрацией в очаге горения.
Итак, чтобы осветить нужное место, можно разжечь костер. Но по мере развития человеческого общества и роста его потребностей недостатки такого источника освещения становились все более очевидными: прежде всего, костер потреблял много дров и освещал очень небольшое пространство.
Возникает проблема: если нужно осветить какое-то место, то можно использовать свет костра, но его в этом месте нет. Костер придется здесь разжечь специально, так как переносить его практически невозможно. А если нужно осмотреть большую пещеру? Или поискать что-то в темном лесу? Разжигать в каждом месте костер ради одного взгляда – смысла не имеет. Источник света должен быть подвижным. Отсюда противоречие: костер нужно переносить, чтобы осветить нужное место, но его нельзя переносить, потому что нельзя взять в руки.
Взять и перенести можно часть костра – одну горящую ветку. Но одна ветка без компании плохо горит и быстро гаснет. Новая проблема: если использовать в качестве источника света одну ветку, то ее можно переносить, но она быстро гаснет. И появилось новое противоречие: одна ветка должна гореть, чтобы ее можно было переносить, но одна ветка гореть не может.
Впрочем, может, если она тонкая и сухая – лучинка. Но лучинка, хотя дает много яркого света, быстро сгорает. Чтобы лучина долго горела, она должна быть длинной. Но тогда по мере сгорания лучины огонь будет перемещаться, например, сверху вниз, а огонь нужен на одном месте, например, над столом. Для этого придется все время лучину поднимать… Складывается интересная ситуация: как только мы пытаемся улучшить что-то одно – тут же ухудшается другое. Опять проблемы и противоречия…
А почему, собственно, должно гореть именно дерево? Гореть может что-то другое: например, жир, который надо как-то удержать на одном конце ветки. А второй конец ветки можно взять в руку и переносить огонь таким образом с места на место.
По сравнению с костром факел – более сложное устройство; он состоит минимум из трех частей: жира, который является источником световой энергии; какой-то «держалки», например, хлопчатобумажной тряпки, которая пропитана жиром и потому его удерживает, и самой палки-рукоятки. Очевидно, что без любой из этих частей факела не будет. Поэтому введем понятие «система» как объединение разнородных элементов, предназначенное для выполнения основной функции и создающее своим объединением новое свойство, которым не обладает ни один из составляющих систему элементов. Элементы, из которых состоит система, будем называть частями системы, или «подсистемами».
Но сам факел можно рассматривать как элемент значительно большей системы «Устройство для освещения» – надсистемы, куда, кроме факела, войдет пока только костер (других мы еще не знаем).
Возникает некоторая иерархия систем, в которой каждый элемент можно рассматривать, с одной стороны, как систему, состоящую из отдельных элементов, а с другой – как элемент, входящий в иную систему. Например, элементы факела – жир, деревянная палка и хлопчатобумажная тряпка – являются частями систем «Животный мир» и «Растительный мир».
Отметим также, что линия «костер – ветка – лучина» исчерпала свои возможности: в факеле изменился принцип действия системы – закон природы, с помощью которого реализуется основная функция. В факеле в качестве источника световой энергии вместо дерева горят жир или нефть, которые дают значительно большее количество света на единицу веса (рис. 3.1).
Рабочая часть факела усовершенствовалась, а ветка-палка стала ручкой и выполняет уже не основную, а вспомогательную функцию. В результате факел как источник местного освещения, хотя и стал сложнее, выполняет с точки зрения пользователя свою основную функцию значительно лучше – идеальнее, чем костер. Происходит это в результате специализации элементов: жир, тряпка, палка – каждый из них подобран по принципу наилучшего выполнения своей функции.
Продолжим генетический анализ. Факел как источник местного освещения может гореть на одном месте, например там, где работает ремесленник. Поэтому желательно не держать факел, а освободить руку для работы. В такой ситуации фактически нужен не весь факел, а только его верхняя часть – светильник. Новая проблема: если факел горит на одном месте, то его можно не держать в руке, но тогда нужно как-то закрепить. И новое противоречие: светильник нужно держать, чтобы он горел в определенном месте, и не нужно держать, чтобы не занимать руку. Длинная ручка оказывается лишней, ее можно заменить подставкой, чтобы ставить светильник на стол, или каким-нибудь крючком, чтобы крепить светильник на стенку. Система опять изменяется, чтобы лучше для пользователя выполнять свою функцию. Можно изменить и способ удержания жира и продлить время горения светильника: тряпку положить в какой-то сосуд.
В первом случае изменился принцип действия системы – вместо дерева горит жир, т. е. изменился основной элемент – источник энергии. В последующих изменениях усовершенствовались другие элементы системы – вспомогательные, а принцип действия остался тем же (рис. 3.2). Поэтому дополним схему.
Столь детальный и многоплановый анализ всего двух этапов развития системы позволяет сделать ряд важных выводов и, опираясь на них, в дальнейшем вести анализ более сжато.
Прежде всего отметим, что система изменилась не сама по себе, а потому, что пользователь системы – человек – предъявил к ней новые функциональные требования, которые система в своем существующем варианте выполнить не могла. Возникла проблема, в основе которой лежало противоречие. И только преодоление противоречия приводило к изменению системы.
Отчетливо видно и направление изменения системы – в сторону повышения уровня ее идеальности с точки зрения пользователя, потребителя функции системы. Действительно, совершенствовать жировой светильник «обратно» к костру вряд ли кто-то будет. Следовательно, существуют какие-то объективные законы развития систем, по которым реализуются субъективные требования потребителя системы. (В дальнейшем будет показано, что, если субъективные требования расходятся с объективными законами, развитие системы заходит в тупик.)
Таковы были первые выводы, сделанные Г. С. Альтшуллером в конце 1940-х гг. в результате анализа патентного фонда. Они стали основанием для формулирования постулата ТРИЗ: существуют объективные законы развития технических систем, эти законы познаваемы и могут быть использованы для сознательного развития систем.
Затем был сформулирован первый закон развития технических систем: развитие технических систем происходит в направлении повышения уровня их идеальности.
И следствие из первого закона: идеальна та система, которой нет, а функция которой выполняется.
Постулат ТРИЗ, первый закон развития технических систем и следствие из него позволили создать первый «инструмент» для решения изобретательских задач – ориентироваться при решении на идеальный конечный результат (ИКР). Мы уже использовали этот инструмент, когда ввели идеальный – отсутствующий! – кран для подъема лодки Робинзона: крана не было, а функция крана выполнялась.
В последующих главах, анализируя ход решения задач и делая на основе этих анализов выводы, мы еще вернемся к законам развития технических систем. А сейчас четко определим, ПОЧЕМУ появляются искусственные системы и ПО КАКОЙ ПРИЧИНЕ они изменяются.
Причины появления и изменения систем можно определить так: в процессе жизнедеятельности и по мере развития у человека возникает новая потребность. Чтобы ее удовлетворить, нужно создать искусственную систему, которая будет выполнять определенную функцию и таким образом удовлетворять эту потребность. Чтобы создать искусственную систему, в нее нужно заложить принцип действия – использовать законы природы, которые позволят этой системе выполнять свою основную функцию. Таким образом, возникает конструкция, действие которой удовлетворяет потребность. Но со временем потребности человека растут и он начинает предъявлять к существующей конструкции новые, повышенные требования, которые она удовлетворить не может. Возникает противоречие между требованиями человека и возможностями конструкции. Чтобы разрешить это противоречие, нужно изменить либо элементы системы, либо сам принцип действия. Система становится более совершенной – она лучше удовлетворяет потребности человека, пользователя этой системы.
Но со временем человек начинает предъявлять уже улучшенной системе новые требования – и вновь возникают противоречия между его требованиями и возможностями системы. Цепочка повторяется…
А теперь продолжим генетический анализ системы местного освещения в более быстром темпе, но будем иметь в виду, что сделанные выше выводы о причинах изменения систем действуют на каждом этапе этих изменений.
Причиной дальнейшего совершенствования светильника стало благоустройство жилища, оно привело к созданию свечи – короткой «лучины», которая долго горит. По сравнению со светильником свеча явно идеальнее – в холодном состоянии воск (в дальнейшем – парафин или стеарин) имеют твердую структуру, поэтому не растекаются и не требуют корпуса, легче хранятся, безопаснее в быту и т. д. Но воск – вещество дорогое, поэтому в домах попроще еще долго горела лампада – кусочек фитиля, плавающий в растопленном жире.
А что, если вместо жира налить в плошку керосин? Керосин, точнее, его пары, прекрасно горят и дают яркий свет – это как раз то, что нужно! Плохо то, что пламя сразу распространяется по всей поверхности плошки и керосин быстро выгорает. Поэтому надо разделить две зоны – место горения и место хранения. А как подавать керосин из второй зоны в первую? Опыт уже есть: тряпка на факеле, пропитанная жиром, обгорает снаружи, постепенно «вытягивая» жир изнутри. Сделаем фитиль из тряпки и опустим его в керосин. Но пламя сбегает по фитилю вниз к плошке. Надо его остановить чем-то негорючим. Как в свече. Так появляется металлическая трубка, внутри которой проходит фитиль. Его нижний конец плавает в керосине, а верхний горит.
Стало лучше, и тут же появилось новое требование: открытая плошка с керосином опасна. Значит, вместо плошки используем закрытый бачок. Но керосин нужно периодически подливать – сделаем из трубки съемную крышку-головку, например, на резьбе. Теперь поставим регулятор и усовершенствуем подачу фитиля: во-первых, он постепенно сгорает, и его надо вытягивать из трубки. Кроме того, от размера вытянутого конца фитиля зависит яркость пламени. Чтобы обезопасить себя от открытого пламени и заодно избавиться от копоти, поставим стекло. Но зачем освещать потолок? Оденем на стекло отражатель – рефлектор – и направим поток света на стол (рис. 3.3).
Дальше можно совершенствовать ряд мелких деталей, но в принципе возможности керосиновой лампы на этом оказались исчерпанными. Ее идеальность по отношению к предыдущим источникам света значительно выше, что проявляется в следующем:
• возможность получить гораздо более яркий и чистый источник света – по спектру и без копоти;
• возможность простого регулирования количества света;
• бо́льшая безопасность – открытое пламя прикрыто стеклом, а источник энергии – керосин – плотно закрыт.
Какую же цену заплатило человечество за повышение этого уровня идеальности?
Чтобы получить керосин, нужно разведать залежи нефти, а для этого должна существовать такая наука, как геология. Чтобы извлечь нефть из недр земли, нужно пробурить скважины – для этого пришлось создать нефтедобывающую отрасль промышленности. Чтобы переработать ее на заводе – нефтехимическую. Но выполнить все эти работы можно только при наличии развитой металлургической и металлообрабатывающей отраслей. Эти же отрасли нужны, чтобы изготовить саму лампу – прокатать тонкий металлический лист, разрезать на куски, соединить в герметичный корпус, изготовить остальные детали… Чтобы получить дешевое, тонкое и прочное стекло, необходимы опять-таки химическая и стеклообрабатывающая отрасли со своими специальными машинами. А изготовление машин требует развитой энергетики, транспорта, приборов для измерения и контроля… Все эти отрасли – надсистемы для различных частей керосиновой лампы. Так образуется сложнейшая иерархическая сеть горизонтальных и вертикальных взаимосвязей между различными отраслями производства, учет и анализ которых составляет сущность системного подхода.
Таким образом, из закона повышения уровня идеальности систем вытекает еще одно следствие: повышение этого уровня происходит за счет усложнения надсистемы. Иными словами, упрощая свою жизнь с целью получения максимального количества свободного времени и удовлетворения все возрастающих материальных и духовных потребностей, человечество все больше и больше усложняет производство. Это и есть научно-технический прогресс. Или, если учесть его темпы и последствия, научно-техническая революция…
А как же керосиновая лампа? Некоторое время с керосиновой лампой пыталось конкурировать газовое освещение, но из-за сложности и повышенной опасности не нашло широкого распространения. А затем ее свет померк рядом со свечой Яблочкова (1876), а еще через несколько лет – с лампами накаливания Лодыгина и Эдисона.
Электрическая лампочка, при ее высочайшей идеальности по сравнению с керосиновой лампой, не говоря уже о лампаде и факеле, тоже довольно скоро стала объектом критики. Прежде всего вычислили, что ее коэффициент полезного действия составляет всего несколько процентов, а вся остальная энергия расходуется на нагревание нити накаливания. И второй основной недостаток: спектральный состав излучаемого светового потока сильно отличается от состава спектра естественного солнечного освещения, что вредно отражается на зрении.
Второй недостаток более-менее устранен: добавки некоторых газов внутрь колбы лампы позволяют получить спектр излучения, близкий к солнечному. А вот повысить КПД лампы накаливания практически не удается, так как получить яркий свет можно только от сильно нагретой нити – это принцип действия лампы накаливания.
Опять прервем на некоторое время генетический анализ и рассмотрим лампочку как систему. Основная функция этой системы – создавать световой поток. Эту функцию выполняет нить накаливания – рабочий орган системы. Чтобы рабочий орган смог реализовать свою функцию, необходим источник энергии – электростанция или аккумулятор. Энергия должна поступать к рабочему органу – значит, необходима трансмиссия. И подачей энергии необходимо управлять – нужен орган управления, например, в виде выключателя.
Эти четыре элемента – рабочий орган, источник энергии, трансмиссия и орган управления – определяют минимальный состав любой автономной технической системы. Все эти элементы присутствовали и в костре, и в керосиновой лампе, но в менее явном виде. Так, рабочим органом в лампе было пламя, источником энергии – керосин, трансмиссией – капилляры фитиля, по которым керосин поступал из бачка лампы в зону горения, а органом управления – механизм, перемещающий фитиль вверх или вниз.
Выполняя по существу одну и ту же функцию, керосиновая лампа и лампа накаливания отличаются друг от друга всеми элементами. Корень различия – в принципе действия.
Принцип действия реализует идею потребности, обеспечивая системе возможность функционировать с помощью соответствующего рабочего органа – первичного элемента любой системы. И уже под рабочий орган подбираются остальные элементы системы.
А как найти подходящий принцип действия? Только из знания законов природы. Таким образом, рождение новой системы получается в результате такой цепочки: потребность человека (общества) – возникновение идеи – поиск соответствующих знаний – определение принципа действия системы – выбор рабочего органа – подбор остальных элементов системы. Система будет работоспособной, если минимально работоспособными будут все четыре органа системы. Повышение работоспособности – функциональности – системы происходит за счет совершенствования всех ее органов.
Совершенствование это, кстати, происходит неравномерно: то один, то другой орган вырывается вперед и вынуждает подтягиваться остальные. Но наступает период, когда из резервов всех элементов системы выжато все возможное и дальше совершенствовать нечего и некуда – система исчерпала свои возможности. Такая система или умирает (гусиное перо в качестве пишущего средства, факел), или останавливается в своем развитии (карандаш, лампа накаливания), или ее рабочий орган входит в новую систему (грифель карандаша – в цанговый карандаш).
Если мы продолжим генетический анализ системы местного освещения, прерванный нами на лампе накаливания, то увидим лампу дневного света, работающую на принципе дугового разряда. В этой лампе значительно выше коэффициент полезного действия – до 20 %, значительно лучше спектральный состав светового потока. Но появляются свои недостатки: например, мерцание, которое очень вредно для зрения. Чтобы устранить эти недостатки, разрабатываются новые источники света, например энергосберегающие лампы, – наука в своем развитии не может остановиться. Совсем недавно появилось сообщение о «вечной» лампе. Эта лампа заполнена газом и никуда не подключается, но рядом устанавливается специальный высокочастотный генератор. Под действием высокой частоты молекулы газа возбуждаются и излучают свет…
Историю развития системы местного освещения, как и любой другой системы, можно представить в виде схемы, состоящей из длинной цепочки сменяющих друг друга систем с различными принципами действия, подсистемами, надсистемами и связями между ними. Такая схема носит название «Системный оператор», так как позволяет ориентироваться во всей генетике системы, или «Схема многоэкранного мышления» – из-за необходимости при работе с системой быстро представить в своем воображении всю эту структуру (рис. 3.4).
И чем больше «экранчиков» вы сможете увидеть, чем больше связей установить и учесть, тем легче будет вам сделать и принять выявленные в процессе генетического анализа общие законы развития технических систем, а именно:
1. Развитие любой технической системы идет в направлении повышения уровня ее идеальности.
Следствия:
1.1. Техническая система идеальна, если ее нет, а функции системы выполняются.
1.2. Повышение уровня идеальности системы происходит за счет усложнения надсистем.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?