Автор книги: Ларс Орстрём
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]
8
Бриллианты навсегда[99]99
«Бриллианты навсегда» – седьмой фильм о Джеймсе Бонде (1971).
[Закрыть], а также цирконий для подводных лодок
Из этой главы мы узнаем, как взаимное расположение элементов в Периодической таблице помогает предсказать не только их свойства, но и их местонахождение в природе, а еще поговорим о ядерных реакторах, фальшивых бриллиантах и главной драме, развернувшейся в СМИ в 1952 году.
Казалось, что появление обручального кольца с бриллиантом в длинной и запутанной истории любви между Мма Рамотсве – первой женщиной-детективом Ботсваны – и блестящим механиком и владельцем компании Road Speedy Motors в Тлоквенге мистером Дж. Л. Матекони ознаменовало собой конец этой сюжетной линии, которая развивалась на протяжении нескольких томов в серии оригинальных и весьма популярных детективов Александра Макколла Смита (мы уже говорили о них в главе 1). Однако обнаружилась небольшая проблема с участием кубического циркония, и эта история продолжилась и в следующей книге серии[100]100
Smith A.M. Tears of the Giraffe. Polygon Books, 2000.
[Закрыть].
Рисунок 19. Периодическая таблица, в которой переходные металлы выделены серым, а группа титана дана в увеличенном виде.
Похожие названия элементов и их соединений – одно из досадных неудобств в химии[101]101
Не хочу, чтобы у вас возникло впечатление, будто химики небрежно относятся к практике присвоения названий – это скорее прозвища или профессиональный жаргон. Международный союз теоретической и прикладной химии (ИЮПАК) постоянно разрабатывает термины, слова и грамматику для того, чтобы в названиях химических соединений не было двусмысленностей. Эта крайне важная деятельность способствует нормальной работе в сфере торговли, контроля, законодательства и таможни по всему миру.
[Закрыть], но часто они возникают исторически, и в случае с цирконием произошло именно так.
Помимо чистого металла циркония, существуют еще циркон и кубический оксид циркония (в русском языке его часто называют «фианит», а в английском языке он известен как zirconia), и у всех из них есть важные практические приложения. Циркон – это силикат циркония, имеющий формулу ZrSiO4, а кубический оксид циркония – это особая форма ZrO2. Как вы уже догадались, последний, помимо других сфер применения, может служить отличной заменой бриллианту в обручальных кольцах.
Мы не станем задерживаться на детальном описании элемента циркония, но вам следует знать, что в Периодической таблице он находится в середине, в большом семействе элементов, которые называют переходными металлами. Возможно, вы слышали о его кузене титане, расположенном прямо над ним, и о родном брате гафнии, стоящем на ступеньку ниже.
Почему я называю их родными братьями? Потому что элементы, расположенные в Периодической таблице в одной группе (то есть столбце), часто имеют схожие химические свойства. В частности, в центральной ее части, в семействе переходных металлов, состоящем из 27 элементов, – все они имеют много общих свойств – два нижних элемента обычно больше всего похожи друг на друга.
Схожие химические свойства циркония и титана означают, что мы обычно можем найти цирконий там, где добываем гораздо более распространенный титан; кроме того, как только мы отделим титан от циркония, за ними потянется некоторое количество гафния – примеси, от которой гораздо труднее отделаться.
Ушлого ювелира из Габороне не волнует, есть ли в его фальшивых бриллиантах следы HfO2, смешанного с ZrO2. Для нетренированного глаза это никак не повлияет на блеск, твердость или прозрачность камня, но для инженеров, проектирующих первые ядерные реакторы для электростанций в США, дело обстояло совсем иначе.
Всесторонние испытания различных материалов после Второй мировой войны показали, что сплав, основным компонентом которого служит металлический цирконий, лучше всего подойдет для покрытия оксида урана в топливных стержнях, которые предполагалось использовать в ядерных реакторах. Загвоздкой для инженеров, внедрявших эту технологию на электростанциях, оказалось то, что металл должен быть полностью очищен от примесей гафния. Причина заключается в том, что цирконий и гафний схожи во всем, кроме ядра – того места, где заканчивается химия и начинается физика. Эти два элемента (или, выражаясь точнее, их природные изотопы) очень по-разному реагируют, когда сталкиваются с нейтронами; как объяснил бы физик, их нейтронные сечения сильно различаются.
Для того чтобы цепная реакция деления ядра урана в ядерном реакторе шла с соответствующей низкой скоростью, требуется постоянный поток нейтронов. Если их будет слишком много, реакция выйдет из-под контроля, а если слишком мало – она просто прекратится. В обычном ядерном реакторе происходит следующее: уран-235, или 235U на языке химиков, сталкивается с нейтроном, имеющим массовое число 1. Далее может произойти множество вещей, самая важная из которых расщепление ядра урана с образованием двух новых атомов, 92Kr и 141Ва. Как вы заметили, сумма массовых чисел этих двух атомов не равняется 235 + 1 = 236: не хватает трех атомных единиц массы. Это происходит потому, что во время реакции испускаются три новых нейтрона, каждый из которых может расщепить еще одно урановое ядро и выпустить еще три новых нейтрона. Это и есть основа знаменитой цепной реакции в атомной бомбе. Эта реакция может стать совершенно неуправляемой, если тщательным образом не контролировать количество свободных нейтронов в реакторе.
Во время работы над проектом атомной электростанции металлы анализировали на наличие многих свойств, одним из которых была их способность захватывать нейтроны; уровень и детальность этого анализа были беспрецедентными по сравнению со всеми инженерными проектами прошлого. Ученые обнаружили, что все природные изотопы циркония имеют очень маленькое сечение захвата тепловых нейтронов; это означает, что нейтрон, столкнувшийся с атомом циркония, просто оттолкнется от него и полетит к другому атому. А вот изотоп гафния 178Hf, представляющий собой каждый второй встречающийся в природе атом гафния, испытывает большую симпатию к этим элементарным частицам. 178Hf легко поглощает нейтрон, в результате чего образуется 179Hf, тоже стабильный и встречающийся в природе изотоп. Самое малое количество гафния во внешнем слое топливных стержней быстро поглотит нейтроны, остановит цепную реакцию, и реактор встанет. Положительный аспект всего этого заключается в том, что гафний можно использовать в управляющих стержнях, которые опускаются между топливными стержнями реактора и эффективно останавливают процесс расщепления, поглощая все питающие его нейтроны.
Мы начали главу с обручального кольца в Габороне – городе, расположенном недалеко от пустыни Калахари в не имеющей выхода к морю Ботсване, а завершим ее рождественской историей из Северной Атлантики. Любопытное совпадение: гафний назван в честь датской столицы Копенгагена (Køpenhavn по-датски), и незадолго до Рождества в 1951 году легендарный (мы скоро поймем почему) датский капитан торгового судна Курт Карлсен покинул Гамбург на ходившем под американским флагом грузовом пароходе Flying Enterprise («Флаинг Энтерпрайз»), следовавшем в Нью-Йорк. Датчанином был не только капитан: судно принадлежало живущему в Нью-Йорке датчанину Хенрику Исбрандсену – необычному предпринимателю, связанному родственными узами со знаменитым семейством Мерск, чьи суда даже сегодня можно встретить во всех главных морских портах.
Все, кто прожил достаточно, чтобы помнить новостную повестку начала 1952 года, скорее всего, в курсе событий, развернувшихся сразу после Рождества 1951-го. На Северную Атлантику и северо-западную Европу обрушился один из самых страшных штормов, случавшихся в 50-е годы; блуждающая волна ударила выходивший из Ла-Манша пароход, и в центре корпуса образовалась трещина. Команда произвела временный ремонт, который выглядел вполне надежно, и капитан приказал двигаться дальше как можно быстрее, хотя некоторые члены экипажа испытывали по поводу этого решения смешанные чувства и предпочли бы, чтобы Карлсен направил судно в безопасную гавань. И действительно, через несколько часов на судно обрушилась вторая волна, в результате чего в третьем трюме сдвинулись автомобили «фольксваген», а возможно, то был чугун в болванках в трюме номер два. Судно получило крен 60°, от которого так и не оправилось[102]102
Delaney F. Simple Courage: A True Story of Peril on the Sea. Random House, 2006.
[Закрыть].
Нас интересует другой трюм, в котором находился незадекларированный груз металлического циркония; однако внимание общественности привлекла спасательная операция. Вторая волна также уничтожила двигатели и вывела из строя рулевое управление, так что у Карлсена не оставалось иного выбора, кроме как приказать всем покинуть корабль. На деле это оказалось не так просто, так как спасательные шлюпки не функционировали из-за крена. К счастью, на сигнал бедствия откликнулись три других судна, среди которых был и транспортный корабль USS General A.W. Greely («Генерал А.В. Грили»), так что Карлсен велел команде и пассажирам прыгать в воду и плыть к приближающимся спасательным шлюпкам.
В то время это казалось удачей, но, возможно, в ретроспективе Карлсен желал бы, чтобы корабль американского флота находился где-нибудь в другом месте. Постоянное присутствие нескольких американских кораблей рядом с его полуопрокинувшимся судном вызывало бесконечные домыслы о том, что старый и ветхий корабль перевозил очень важный и секретный груз для американского правительства; эти домыслы будут преследовать Карлсена до самой смерти.
Существует множество косвенных улик. Почему флот США не спасал другие пострадавшие от шторма суда? Почему Королевский флот Великобритании также обратил пристальное внимание на это судно? Почему часть груза спасли во время секретной операции весной 1953 года? Почему Карлсен не повернул назад после первой блуждающей волны? И самое главное: почему он оставался на тонущем судне в течение почти двух недель и покинул его за несколько мгновений до того, как оно затонуло в Ла-Манше примерно в 70 километрах от порта Фалмут в Корнуолле?
В человеческой натуре есть одна неприглядная черта: как бы мы ни восхищались героями, ничто не доставляет нам большего удовольствия, чем их ниспровержение; их очень человеческие слабости позволяют нам чувствовать себя лучше. Так что дело было не в классическом искусстве мореплавания, не в чудовищности того факта, что капитан потерял свой корабль, не в боевом духе того, кто до последнего не был готов сдаться; Карлсена толкало вперед что-то другое. Наверняка капитан получил от самого высокопоставленного начальства в США строжайший приказ не покидать корабль, поскольку в противном случае секретный груз попал бы в неподходящие руки. Более цинично настроенные люди предполагают, что в Нью-Йорке капитана ожидала большая награда, которую держали в тайне.
Зачем же была нужна вся эта секретность, беспокойство и укрывательство? Затем, что цирконий предназначался для реакторов первой в мире атомной подводной лодки USS Nautilus («Наутилус»). Два десятилетия спустя Карлсен насмехался над «глупыми журналистами», предположившими, что он перевозил материалы для ядерного оружия, и говорил, что из-за невозможности доставить груз запуск подлодки отложили на полгода[103]103
Bekker B. Flying Enterprise & Captain Carlsen. Bekkers forlag, 2011.
[Закрыть].
Однако насколько секретной была эта история на самом деле? Разумеется, правительство США не готово было делиться со всем белым светом знаниями о ядерных свойствах циркония, но уже в марте 1951 года Комиссия США по атомной энергии выпустила пресс-релиз, в котором заявляла о намерении получать цирконий и гафний из коммерческих источников и просила подавать предварительные заявки. В ноябре того же года к участию были приглашены 35 компаний, а в январе 1952-го шесть компаний претендовали на контракт[104]104
Rockwell T. The Rickover Effect: How One Man Made a Difference. Naval Institute Press, 1992.
[Закрыть].
Это была тщательно продуманная стратегия еще одного легендарного мореплавателя – адмирала Хаймана Риковера, который в то время был одновременно директором отдела военно-морских реакторов и чиновником в Комиссии по атомной энергии. Приняв решение об использовании циркония в топливных стержнях еще в 1947 году, он не хотел, чтобы программа по созданию реакторов для флота зависела от одного-единственного поставщика, особенно не являющегося государственным ведомством, несмотря на то что на начальных стадиях Ок-Риджская национальная лаборатория (прославившаяся атомной бомбой) и Горное бюро успешно производили цирконий[105]105
Rickover H.G., Geiger L.D., Lustman B. History of the Development of Zirconium Alloys for Use in Nuclear Reactors // United States Energy Research and Development Administration, Division of Naval Reactors, 1975.
[Закрыть].
Итак, если капитан Карлсен перевозил «секретный» груз циркония, он не обязательно делал это по приказу Военно-морского флота США; возможно, он делал это по поручению одной из двух компаний, задействованных в выполнении правительственного заказа.
Тогда каково было происхождение этого циркония? Возможно, относительно большой запас чистого циркония имелся у компании Philips в Эйндховене, так как в 1928 году они получили первый патент на отделение гафния от циркония и производили этот металл в чистом виде по крайней мере до 1950 года[106]106
Hayes E.T. Part VII – Alloys // Zirconium: Its Production and Properties, U.S. Bureau of Mines Bulletin, 561 (1956). P. 93.
[Закрыть] – главным образом для использования в фотовспышках.
Сам Карлсен утверждает, что источником его циркония был Uranverein – проект нацистской Германии по созданию атомной бомбы и получению атомной энергии[107]107
Bekker, Flying Enterprise & Captain Carlsen.
[Закрыть]. Однако для создания самой простой атомной бомбы на основе урана цирконий не нужен; он требуется только для вырабатывающего энергию атомного реактора, а немцы не продвинулись сколько-нибудь серьезно ни в одном из этих направлений. Возможно, нацисты просто украли запас циркония у компании Philips, поэтому трудно сказать, точно ли Карлсен ошибался на этот счет.
Сомнений, однако, не вызывает то, что адмирал Риковер получил готовый USS Nautilus в срок, с запасом уложившись в официальный график, но упустил свою собственную, более амбициозную цель из-за проблемы с паропроводом в зоне электростанции, не относящейся к выработке ядерной энергии. Однако весь циркониевый проект представлял собой взвешенный риск. Не из-за проблем с поставкой – обнаружить цирконий легче, чем многие распространенные металлы вроде вольфрама, хрома, цинка и меди, – а из-за инженерных сложностей при производстве чистого металла. Один из ближайших гражданских коллег Риковера, Тед Рокуэлл, говорил мне, что это была «трудная и яростная гонка», которая «легко могла оказаться безуспешной вплоть до самого последнего момента»[108]108
Из личного общения с Т. Рокуэллом. 2012.
[Закрыть].
Но все получилось, а остальное, как говорится, история. Риковер[109]109
Риковер известен как «отец атомного флота», однако, по общему мнению, он был противоречивой фигурой. Однажды кто-то процитировал слова Главнокомандующего ВМС США: «У Военно-морского флота США есть три врага: авиация США, Советский Союз и Хайман Риковер» (Rickover H.G., Geiger L.D., Lustman B. History of the Development of Zirconium Alloys for Use in Nuclear Reactors. United States Energy Research and Development Administration, Division of Naval Reactors, Washington, 1975).
[Закрыть] также осуществлял контроль за строительством первой специализированной мирной АЭС в Шиппингпорте, Пенсильвания, которая была подключена к электросети через несколько лет после спуска USS Nautilus на воду. Более того, введенные им стандарты для атомного флота позволяют американскому Военно-морскому флоту до сих пор работать с атомными реакторами без единой аварии[110]110
Bowman F.L. S., Statement of Admiral F.L. ‘Skip’ Bowman, U.S. Navy Director, Naval Nuclear Propulsion Program Before the House Committee on Science 29 October 2003. URL: http://www.spaceref.com/news/viewsr.html?pid=10826.
[Закрыть].
Тем не менее цирконий – не беспроблемный элемент. При обычных условиях это прочный и весьма инертный металл, который так же устойчив к коррозии, как золото, но, если топливо не удается охладить и если нельзя задействовать управляющие стержни для остановки цепной реакции, экстремально высокая температура сделает цирконий похожим на натрий. А теперь проведем типичный школьный демонстрационный опыт, с которым мы вкратце ознакомились в главе 2 при обсуждении кальция: кусочек блестящего металлического натрия, брошенный в банку с водой, крутится на поверхности воды, горит, а иногда производит громкие хлопки или отдельные чпокающие звуки.
Реакция 1:
2H2O (жидкость) + 2Na (твердый) →
2Na+ + H2 (газ) + 2OH— + теплота.
Реакция 2:
2H2 (газ) + O2 (газ) →
2H2O (жидкость) + большое количество теплоты.
Горение, которое мы наблюдаем, – это не металл, а газообразный водород, образующийся в результате реакции между металлом и водой (реакция 1). Иногда случаются небольшие взрывы – когда накапливается не прореагировавший водород, смешивается с кислородом воздуха и затем весь мгновенно вступает в реакцию (реакция 2). Это называется водородным взрывом, и именно он произошел в реакторе на АЭС Фукусима-1 (остров Хонсю, Япония) в 2011 году, а возможно, и во время аварии на АЭС Три-Майл-Айленд (Пенсильвания, США) в 1979-м, только металлом в обоих случаях был не натрий, а цирконий.
И наконец, если среди читателей есть потенциальные покупатели колец с бриллиантами, то их, возможно, интересует, как избежать проблем, возникших у Дж. Л.Б. Матекони. Очевидный способ проверить предположительно фальшивые камни – опустить их между топливными стержнями ядерного реактора и посмотреть, не снизится ли выходная мощность из-за содержащегося в них гафния; вы мало что можете сделать помимо этого, если камень мал и уже вставлен в оправу кольца.
Фианит и алмаз слегка отличаются твердостью и показателем преломления, но пробу царапанием и тест на прозрачность трудно провести на оправленном камне. Они также отличаются друг от друга плотностью – очевидно, что атомы углерода весят меньше, чем атомы циркония, – но это практически невозможно проверить на камне в кольце.
Если же вы присматриваете солидный бриллиант, проверить его довольно просто. Приложите камень к какому-нибудь чувствительному участку кожи – например, к верхней губе: настоящий бриллиант очень хорошо проводит тепло, поэтому он быстро примет на себя тепло из кожи, и вы ощутите холод, словно от кусочка металла; а вот фианит – теплоизолятор, поэтому вы не заметите никакой разницы.
9
Графитовая долина: информационные технологии в озерном крае XVIII века
В этой главе мы выясним, что чистые простые вещества могут всячески маскироваться и что провозить контрабандой стоит не только алмазы. И наконец, узнаем больше о химических связях и о том, как заставить электроны скакать.
Если вы выросли на английской детской литературе, то озеро Уиндермир на северо-западе Англии, наверное, вызывает у вас ассоциации с поэтами или подростковыми приключениями не столько о волшебниках и вампирах, сколько о «Ласточках и амазонках»[111]111
Серия из 12 детских книг английского автора Артура Рэнсома (1884–1967), действие которых происходит по большей части в Озерном крае.
[Закрыть]. В общем, для вас оно связано с людьми, которые зарабатывали на жизнь карандашом. Или, может быть, ручкой? Мы как-то не представляем себе серьезного автора, усердно работающего в кабинете с карандашом в руке. Обычно считается, что карандаши больше подходят детям, выполняющим домашнее задание, или тем людям, которым часто приходится исправлять ошибки.
У людей никогда не было недостатка в чернилах, традиционно состоящих из смеси солей железа, воды и танинов – горьких на вкус компонентов чая[112]112
Чтобы это продемонстрировать, сначала заварите крепкий чай, а затем как можно тщательнее растворите в воде или уксусе кусочек железосодержащей пищевой добавки в форме таблетки. Добавьте раствор железа в чай и понаблюдайте, что получится. Для промышленного производства чернил использовались галлы – чернильные орешки (наросты на листьях дуба и других растений, образовавшиеся в результате жизнедеятельности насекомых).
[Закрыть] и красного вина. Этой черной жижи всегда было достаточно, чтобы писать стихи и подписывать смертные приговоры. Но карандаш – совсем другое дело. Он предназначен отнюдь не только для детей – он был и остается незаменимым инструментом для художников, инженеров, плотников и архитекторов[113]113
Petroski H. The Pencil: A History of Design and Circumstance. Knopf, 2006.
[Закрыть]. В инженерном училище в конце 80-х мы (по крайней мере, некоторые из нас) все еще вручную чертили карандашом прекрасные чертежи реакторов с двойной облицовкой из нержавеющей стали. А за четыре года до того, в армии, недалеко от полярного круга, разве мы выписывали приказы и расшифровывали радиосообщения шариковой ручкой? Разумеется, нет; строго говоря, это было запрещено, потому что чернила в ручке быстро замерзают.
«Свинцовый карандаш» (конечно же, грифель карандаша состоит не из свинца – элемента за номером 82, а из кое-чего другого) переносит нас в зеленые долины английского Озерного края и Камбрии – в место, где так же неожиданно обнаружить центр информационных технологий, как и в апельсиновых рощах вокруг Пало-Альто. Разница в том, что в Калифорнии 70-х годов важны были преданные делу люди, а не местные кремниевые шахты. В долине Борроудейл в конце XVI века значение имело содержимое горы, потому что именно там можно найти то, из чего делается карандашный грифель.
Не то чтобы люди совсем не были важны: здесь процветали различные формы предпринимательства. Говорят, например, что Черный Сэл, трудившийся в начале XVIII века в маленьком городке Кесвике недалеко от Борроудейла, руководил сетью контрабандных поставок карандашного графита. Этот ценный груз – плюмбаго – перевозили по труднопроходимой холмистой местности до Ирландского моря, откуда на ожидавших там лодках отправляли на континент. Незаконная разработка месторождения, питавшая этот контрабандный бизнес, была в то время обычным делом, и существуют также письменные свидетельства о парочке вооруженных ограблений на рудниках. В целом это очень похоже на Дикий Запад, только вместо американских кавалеристов в синей форме действовали «красные мундиры»[114]114
Британская пехота.
[Закрыть], а местные пытались удержать в своих руках то, что считали своей собственностью, и не отдать ее «иностранным» владельцам и инвесторам[115]115
Tyler I. Seathwaite Wad, and the Mines of the Borrowdale Valley. Blue Rock Publications, 1995.
[Закрыть].
В те дни в Камбрии[116]116
Или, вернее, в Камберленде – небольшом историческом графстве, которое является частью церемониального графства Камбрия с 1974 г.
[Закрыть] важную роль играли многие виды горных работ, но самым ценным минералом, когда-либо добытым из местной земли, считался черный камень, который называли вад или плюмбаго. Предполагают, что впервые его начали использовать в позднем Средневековье для того, чтобы отслеживать, кому какие овцы принадлежат, – тогда, как и сейчас, отчетность о материальной собственности была важной частью информационных технологий[117]117
Collingwood W.G. Lake District History. Titus Wilson & Son, 1925.
[Закрыть].
Так что же такое это серое вещество, если не свинец? Это кристаллическая форма углерода под названием графит (см. рисунок 20), которая сильно отличается от другой формы кристаллического углерода – алмаза. Но точно так же, как это делается на алмазных рудниках, работников в Борроудейле при выходе из шахты обыскивали, чтобы найти припрятанные камни, а транспорт с графитом до конечного пункта назначения провожали вооруженные охранники.
Все эти разные формы углерода немного сбивают с толку. Углерод добывают также и в угольной шахте, так что в шведском языке все еще более запутано, потому что слова «углерод» и «уголь» обозначаются одним словом kol[118]118
А чтобы нам было еще сложнее, kol является также омонимом слова kål – «капуста».
[Закрыть]. А ведь существуют еще угольные печи, в которых уголь предполагается получать из дров. Но никакой путаницы здесь нет – мы говорим об одном и том же элементе, а не об ошибке определения, когда один элемент принимают за другой, как в случае со «свинцом» в карандашах.
Рисунок 20. Кусок графита из Борроудейла, купленный совершенно легально в Кесвике (Камбрия, Великобритания) в 2012 году. Фото сделано автором.
Итак, давайте начнем с самого драгоценного члена этой семьи – алмаза. В этом веществе каждый атом углерода соединен прочными связями с четырьмя другими атомами. Образуется (если бы мы могли это увидеть) нечто похожее на миниатюрные строительные леса, только перекладины в них соединяются не под прямым углом, а под углом 109,5°, что позволяет этой конструкции бесконечно повторяться во всех направлениях. Поскольку перекладины состоят из прочных одинарных углерод-углеродных связей, структура получается очень крепкой. Кроме того, эти атомы углерода абсолютно лишены воображения: они располагаются совершенно одинаковым образом в пределах всего алмазного кристалла, и именно по этой причине алмаз – это прежде всего кристалл; нам требуется знать лишь положение одного-единственного атома углерода, и тогда мы сможем сказать, где расположены все остальные атомы этого кристалла.
Рисунок 21. Слева: атом углерода, соединенный с четырьмя другими атомами и образующий то, что мы называем тетраэдром. Справа: множество углеродных тетраэдров, соединяющихся друг с другом и образующих алмазную структуру. Алмаз – это бесконечная решетка из атомов углерода, очень похожая на одну большую молекулу; структура воспроизводится и вдоль пунктирных линий.
К тому же жесткой дисциплине подчинены и электроны: на каждую углерод-углеродную связь полагается по паре электронов, а сбежать им не дает заклятие притяжения, наложенное на них положительно заряженными ядрами углерода. Это означает, что алмаз не должен проводить электрический ток; он действительно проявляет свойства электроизоляционного материала, и притом весьма хорошего. (Как ни удивительно, при этом он отлично проводит тепло, как мы убедились в главе 8.) Электроны держатся так крепко, что их нельзя сдвинуть и при помощи видимого света – то есть тем способом, при помощи которого вещества обычно приобретают цвет (поэтому идеальный алмаз совершенно прозрачен).
Следующим по ценности в этом списке идет графит, в котором атомы углерода расположены совершенно иначе; это мы и называем явлением полиморфизма. Полиморфные модификации – это такие вещества, которые имеют одинаковый химический состав, но разное пространственное расположение атомов. В особых случаях, когда простое вещество существует в разных формах, такие формы называют аллотропами или аллотропными модификациями. В графите, в отличие от трехмерной алмазной решетки, атомы углерода формируют слои в виде пчелиных сот толщиной один атом, в которых каждый атом углерода образует связи только с тремя своими соседями. Наиболее запоминающаяся черта этой структуры – абсолютно симметричные шестиугольники, образованные шестью атомами углерода в замкнутом контуре.
Если вы бухгалтер, то, наверное, сразу обратили внимание, что теперь у нас больше электронов, чем нужно для того, чтобы вставить по паре электронов между каждым атомом углерода, образуя таким образом химические связи в шестиугольных слоях. Каждый атом углерода в алмазе делился четырьмя электронами, по одному на каждую связь. То же упражнение, проделанное с графитом, оставляет нам один избыточный электрон на каждый атом углерода, после того как три других распределились по трем связям с соседними атомами.
Так что же делать с этими избыточными электронами?.. Было бы естественно подумать, что их можно использовать для того, чтобы связать вместе слои и образовать трехмерное вещество, которое мы можем взять в руки в виде реального куска графита, но дело обстоит иначе. Между слоями графита нет ничего, напоминающего химические связи. Вместо этого близкое расположение атомов углерода внутри слоев создает пространство сверху и снизу этих слоев, где избыточные электроны свободно перемещаются, внося свой вклад в образование связей в шестиугольниках. Это не те двойные связи, которые мы видели в главе 5; их называют делокализованными двойными связями, поскольку мы не можем точно указать, между какими именно атомами углерода находятся дополнительные электроны. Наличие таких освобожденных электронов приводит к возникновению электропроводности, и графит в самом деле отлично проводит электричество – при условии, что мы остаемся в рамках одного слоя.
Рисунок 22. Небольшая часть слоя графита и расположенные друг над другом слои в кусочке кристаллического графита, похожего на тот, что добывали в шахтах Борроудейла.
Дополнительные связи также улучшают прочность слоев – но эти дополнительные электроны с большой неохотой помогают удерживать два слоя вместе: расстояние между слоями больше чем в два раза превышает расстояние между атомами углерода в слоях.
Еще одно важное свойство: теперь электроны можно перемещать при помощи видимого света, хотя моих коллег, возможно, огорчает такая терминология и они предпочли бы, чтобы я сказал, что электроны «возбуждаются». Поскольку электроны постоянно движутся или ведут себя скорее как волна с некоторой плотностью (представьте расплывчатое облако, окружающее ядра в атомах), то, возможно, лучше сказать, что они переключают передачу. Химики часто используют термин «скачок», описывая возбужденные электроны, особенно когда графически изображают это на бумаге в виде диаграмм. Для большинства веществ, способных поглощать видимый свет, существует лишь одна либо несколько избранных передач, каждое переключение между которыми требует собственного цвета, или длины световой волны. Эти цвета, условно говоря, поглощаются веществом и стираются из полного спектра белого света, а мы видим лишь оставшиеся цвета.
Однако графит обладает черным или темно-серым цветом с металлическим блеском, поэтому должен поглощать все длины волн приходящих фотонов. Следовательно, у него не может быть обычной коробки передач с пятью-шестью положениями; ему требуется постоянное переключение скоростей от низкоэнергетических красных цветов до высокоэнергетических оттенков, находящихся на границе с ультрафиолетом. Именно это происходит, когда избыточные электроны, не ограниченные одинарными углерод-углеродными связями в графите, могут свободно перемещаться в том, что фактически может рассматриваться как одна гигантская плоская молекула.
И наконец, эта самая плоская природа скажет последнее слово в ответе на вопрос, почему графит стал такой важной частью информационных технологий. Поскольку прочных связей, удерживающих слои графита вместе, не существует, можно относительно легко создать новые, более мощные силы притяжения, прижав графит к шероховатой поверхности. Тогда слои графита прилипнут к волокнам бумаги, и большие его куски останутся на ней, заполнив микроскопические впадины на бумаге. На карандашном рисунке мы видим не единичные слои: толщина этих линий составляет от нескольких сотен до нескольких тысяч слоев.
При этом следует заметить, что слои графита в один атом толщиной можно извлечь с поверхности графита, и тогда вы получите самый тонкий из известных материалов – графен[119]119
Существуют и другие формы углерода – знаменитые молекулы С60, недавно дискредитированный собрат алмаза лонсдейлит, и некоторые другие.
[Закрыть]. Работа, посвященная этому веществу, получила Нобелевскую премию по физике в 2010 году. Вполне вероятно, что когда-нибудь в будущем графен тоже найдет место в информационных технологиях.
Еще на ступеньку ниже по соотношению ценности к стоимости добычи находится антрацит, но теперь мы покидаем область чистых веществ и встречаемся с материалами, которые представляют собой смеси. Антрацит состоит из углерода примерно на 97 %, однако из-за примесей ему недостает дальнего порядка симметрии, характерного для графита, хотя он также содержит некоторое количество очень маленьких кристаллических областей.
Расположенные еще ниже (согласно качественной оценке) вещества типа угля непросто охарактеризовать по их молекулярному составу, но ясно, что со снижением содержания углерода снижается и кристалличность. То же самое вы можете наблюдать, рассмотрев кристаллики кухонной соли: очень чистый NaCl промышленного производства образует единообразные кубические кристаллы, ровные и прозрачные – под микроскопом они похожи на маленькие драгоценные камни. Прочие разнообразные «гурманские» виды соли, морская соль и прочие имеющиеся в продаже продукты обычно имеют гораздо больше примесей и, следовательно, более низкую кристалличность.
С XVI по XVIII век в Европе и других странах было много графитовых шахт, но шахты в Камбрии выделялись среди прочих высочайшим качеством добываемого графита. Он был очень чистым и обладал высокой кристалличностью; фактически эта шахта была единственным в мире известным источником графита, из которого получались карандаши достойного качества. Некоторое время графит также играл важную роль в изготовлении форм для отливки пушечных ядер, но для этого можно было использовать и более низкокачественный графит, а вскоре разработали и технологию на замену.
Когда шведский промышленный шпион и дворянин Рейнгольд Ангерштейн (глава 4) приезжал в Борроудейл в 1754 году, он должным образом отметил беды более раннего поколения, но к тому времени власти и крупные промышленники вроде бы взяли ситуацию под контроль[120]120
An Act for the More Effectual Securing Mines of Black Lead from Theft and Robbery, The Statues at Large from the Twentieth Year of Reign of King George the Second to the Thirtieth Year of Reign of King George the Second. Mark Basket, 1764. Vol. 7. P. 415.
[Закрыть]. Однако лучшей поре камберлендского графита вскоре суждено было миновать. В следующем поколении Французская революция и британское эмбарго на экспорт, наложенное на вновь образованную республику, оказали удивительное и нежелательное (для британцев) влияние на изобретение современного карандаша, который придумал Николя-Жак Конте. Он соединил глину и низкокачественный графит, запек эту смесь и вложил внутрь палочек из древесины кедра; весь этот процесс описан во французском патенте № 32[121]121
Pederson J.P. International Directory of Company Histories. Gale, 2005. Vol. 73.
[Закрыть].
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?