Электронная библиотека » Марк Медовник » » онлайн чтение - страница 5

Текст книги "Жидкости"


  • Текст добавлен: 10 сентября 2019, 15:40


Автор книги: Марк Медовник


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +18

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Расплавленные стержни ядерного топлива очень напоминают вулканическую лаву, но эта жидкость намного горячее. Лава вытекает из вулкана раскаленная докрасна; как правило, ее температура составляет 1000°C. Жидкое ядерное топливо – оксид урана – намного внушительнее; это раскаленная добела жидкость, температура которой превосходит 3000°C. Она способна расплавить и растворить почти всё, с чем вступает в контакт. В «Фукусиме» она проплавила себе путь сквозь 25 см стали, которая ее удерживала, а затем продолжила прогрызать путь дальше, сквозь бетонный пол по крайней мере одного из реакторов. Но это было только начало.

Ядерное топливо в реакторе заключено в оболочку из сплава циркония. Он невероятно стоек к коррозии, но не при высоких температурах. При 3000°C циркониевые сплавы активно реагируют с водой с выделением водорода. По оценкам экспертов, в результате расплавления в каждом из реакторов станции выделилось по тонне газообразного водорода. Он вступил в реакцию с воздухом внутри защитной оболочки реактора, и взрыв, в форме которого протекала реакция, разрушил комплекс (это случилось 12 марта).

Жидкости невероятно сложно удерживать, и в итоге значительная часть радиоактивного загрязнения от расплавления активной зоны реакторов проникла в местные водные системы, а затем и в море. Оттуда оно может попасть – и попадает – куда угодно. Вот почему главная забота всех инженеров, работающих с ядерными отходами, – предотвратить попадание воды в любые хранилища. Но большинство ядерных электростанций построено рядом с крупными водоемами не потому, что так безопаснее, а потому, что дешевле. Вода нужна для охлаждения: наличие поблизости большого водоема делает станцию значительно более рентабельной. Но, как мы видели на примере «Фукусимы», в случае катастрофы наш источник воды может пострадать от огромного количества радиоактивных отходов.

Это, конечно, проблема не только ядерной энергетики. Чуть ли не все крупные города мира построены на побережье, поскольку исторически торговля между странами требовала наличия портов. Но если уровень моря повысится в результате глобального изменения климата, действие цунами, ураганов и штормов сделает эти места – и их многочисленное население – еще более уязвимыми. Единственный способ защитить себя от этой угрозы – перебраться в более высокие места, а может быть, в воздух. Соблазнительная мысль, особенно если смотреть с моей позиции в самолете, где я в этот момент прихлебывал водичку и поглядывал вниз на громадный Атлантический океан. День был спокойный и ясный, и океан казался почти невинным.

Неожиданно раздался глухой удар, и самолет, как нам показалось, какую-то секунду падал, прежде чем выправиться и продолжить полет. Затем удар повторился, причем с такой силой, что вода выплеснулась из горлышка бутылки мне на колени.

«Мы проходим зону турбулентности, – объявил по громкой связи капитан авиалайнера. – Я включаю табло “Пристегните ремни” и прошу всех пассажиров вернуться на свои места. Мы возобновим нормальное обслуживание через несколько минут, когда выйдем в более спокойный воздух». Самолет вновь головокружительно рухнул вниз. Меня начало подташнивать, а за окном я увидел на мгновение, как дико вибрируют кончики самолетных крыльев.

Глава 4. Клейкие

Не важно, сколько раз я сталкивался с турбулентностью во время перелетов, – мне никогда, кажется, не удавалось подавить панику в мозге. Умом я понимал, что крылья не сломаются: мы летели на одном из самых высокотехнологичных пассажирских самолетов, которые производятся в мире; мне доводилось даже бывать на фабрике, где склеивают крылья, и видеть, как их механически испытывают. Однако мои паникующие нейроны упрямо игнорировали рациональную часть мозга. И я знаю, что я такой не один. За много лет я научился не рассказывать другим пассажирам о том, как склеивают самолеты; как правило, моих собеседников такие истории не успокаивают.

Многие жидкости обладают липкостью: если потрогать их пальцем, то они прилипают к нему. Вспомните масло, воду, мыло и мед. К счастью, есть вещи, к которым они прилипают лучше, чем к нам; именно поэтому полотенца выполняют свою функцию. Когда вы принимаете душ, вода ручейками стекает по телу, прилипая к вашей коже, вместо того чтобы отскакивать от нее; это позволяет ей следовать по изгибам вашей груди, живота и пятой точки, а не падать вертикально вниз под действием силы тяжести. Липкость возникает из-за низкого поверхностного натяжения между водой и вашей кожей. Когда же вода вступает в контакт с волокнами полотенца, они действуют как крохотные фитильки. Фитиль свечи всасывает наверх жидкий воск, а микрофитильки полотенца отсасывают воду с вашего тела. Кожа становится сухой, а полотенце мокрым. Липкость жидкостей, следовательно, не есть свойство, присущее им изначально; оно определяется их взаимодействием с различными веществами.

Но сам тот факт, что некое вещество липкое, не означает, что его можно использовать для склеивания самолета. Смочите палец, дотроньтесь им до какой-нибудь пылинки – и она прилипнет к пальцу и будет держаться на нем, пока вода не испарится. Вода теряет липкость, когда испаряется, – именно поэтому она не может быть клеем. Клеи – изначально жидкости, но со временем затвердевают, навсегда скрепляя предметы.

Это обработка материалов – процесс, с которым человечество имеет дело уже очень давно. Наши доисторические предки изготавливали пигменты, например измельченный древесный уголь или цветные минералы вроде охры, и использовали их для рисования картин на стенах пещер. Чтобы пигменты приставали к стенам, люди смешивали их с различными липкими субстанциями, например жиром, воском и яйцом. Так были изобретены краски. По сути это цветные клеи, и самые ранние из них были достаточно устойчивы, чтобы продержаться тысячи лет. Некоторые из древнейших дошедших до нас пещерных рисунков находятся в пещерах Ласко во Франции, возраст их оценивается примерно в 20 000 лет.

Племенные культуры давно используют разноцветные липкие субстанции как краски для лица – немаловажной части как священных ритуалов, так и войны. Сегодня эту традицию продолжает современная косметическая промышленность. Губная помада, например, делается из пигментов, смешанных с маслами и жирами, которые помогают красителю прилипать к губам. Получение клея, способного держаться на губах несколько часов, но при этом легко удаляться с них при необходимости, всегда стояло на повестке дня; то же можно сказать и о подводке для глаз, и о любом другом виде макияжа. Эта задача иллюстрирует одну из главных тем в разработке клея: отсоединение зачастую не менее важно, чем приклеивание. Но подробнее об этом мы поговорим позже – разобраться бы пока с приклеиванием. Если вы хотите соединить то, что должно обладать механической прочностью, например части топора, лодку, тем более самолет, вам нужно нечто понадежнее краски или губной помады.


Древний пещерный рисунок большерогого оленя из Ласко (Франция), сделанный древесным углем и охрой


Летом 1991 г. двое немецких туристов, путешествуя по итальянским Альпам, нашли мумифицированные останки мужчины. Этот человек, костям которого, как выяснилось, около 5000 лет, позже получил от ученых прозвище Эци. Его останки необычайно хорошо сохранились, поскольку с момента его смерти были заключены в лед вместе с его одеждой и вещами: на Эци надеты сплетенная из травы накидка, куртка, пояс, чулки, набедренная повязка и обувь вроде мокасин, всё кожаное. Все его инструменты сделаны весьма изобретательно, но если говорить о клее, то самым интересным оказался топор. Рукоятка сделана из тиса, лезвие – из меди, а соединены они кожаными полосками, залитыми березовым дегтем. Это смолистое вещество получается путем длительного нагревания березовой коры в горшке; в результате выходит черно-коричневая вязкая жижа, которая широко использовалась в качестве связующего вещества в позднем палеолите и мезолите. Она годится для изготовления тяжелых инструментов вроде топора, потому что при затвердевании становится прочной и твердой. Наши предки использовали ее для крепления к стрелам наконечников и перьев, изготовления кремневых ножей, ремонта гончарных изделий и строительства лодок. Сама жидкость в основном состоит из молекул семейства химических веществ, известных как фенолы.


Структурная формула 2-метокси-4-метилфенола, который входит в состав березового клея. Она представляет собой шестиугольник из атомов углерода и водорода, соединенный с гидроксильной группой – OH, отличительным признаком фенола


Их химическое название вам, может быть, незнакомо, но запах, уверен, вы узнали бы без труда: основной фенол березового дегтя – 2-метокси-4-метилфенол, пахнущий дымным креозотом. Фенолальдегид пахнет ванилью. Этилфенол – копченой грудинкой; на самом деле характерный аромат копченой рыбе или мясу придают именно фенолы.

Нагревая березовую кору, вы извлекаете из нее фенолы. Густая смола, которая при этом получается, представляет собой в основном смесь растворителя под названием скипидар и фенолов. Скипидар – основа жидкости, но за несколько недель он испаряется, и остается только фенольная смесь; жидкость превращается в твердый вар, достаточно липкий, чтобы связать дерево с кожей или другими веществами.

Оказывается, деревья – вообще прекрасные поставщики всего липкого. Сосны выделяют капли смолы, из которой тоже выходят хорошие клеи. Популярное уже тысячу лет связующее вещество гуммиарабик получают из аравийской акации. Смола босвеллии, известная как ладан, – клей с особенно приятным запахом. Еще одна ароматическая смола, мирра, происходит из колючего дерева коммифоры. Смолы часто использовали в составе лекарств, а также духов, возможно потому, что их активные химические элементы, подобно фенолам, обладают мощными антибактериальными свойствами. Ладан и мирра так высоко ценились в Античности, что их нередко дарили королевам, королям и императорам – вот почему их присутствие в библейском рассказе о Рождестве так важно.

Липкость древесных смол не случайна. Такими они стали в процессе эволюции, чтобы растения имели возможность ловить насекомых. Так что смолы для деревьев – важный инструмент защиты. Ювелирный янтарь – на самом деле окаменевшая древесная смола, и в ней часто присутствуют идеально сохранившиеся насекомые и кусочки случайного мусора.


Муравей в янтаре – окаменевшей древесной смоле. © Anders L. Damgaard


Без древесных смол нашим древнейшим предкам было бы крайне сложно изготавливать орудия и инструменты, и тогда нашей цивилизации очень трудно было бы взять старт. Но вряд ли стоит склеивать смолой самолет – она наверняка потрескается во время полета. Фенольные молекулы не слишком прочно связываются с другими веществами – они слишком замкнуты, слишком самодостаточны.

Но если вы среди деревьев, то вам не придется слишком долго искать более сильные разновидности клея. Посмотрите на птиц: их крылья не скручены болтами или шурупами. Их мышцы, связки и кожа держатся за счет молекул семейства химических веществ, известного как белки. Наши тела тоже связаны ими. Один из важнейших белков называется коллагеном. Он обычен для всех животных, и получить его относительно несложно. Древние люди использовали рыбью кожу и шкуры диких зверей – отделяли жир, а затем вываривали шкуры в воде. При этом коллаген извлекается из шкур, и получается густая прозрачная жидкость, которая, остывая, превращается в твердое жесткое вещество – желатин.

Коллагеновые белки в желатине – длинные молекулы с «хребтом» из атомов углерода и азота. В телах животных коллагеновые молекулы удерживаются вместе, образуя прочные волоконца, из которых состоят сухожилия, кожа, мышцы и хрящи. Однако, оказавшись в горячей воде в процессе вываривания, молекулы коллагена разделяются. У них появляются свободные химические связи, которые они стремятся заполнить. Иными словами, они хотят прилепиться к чему-нибудь – а значит, превращаются в костный клей.


Изменение структуры коллагенового волоконца при превращении в костный клей


Именно клеи животного происхождения заменили древесные смолы в качестве основы древних человеческих технологий. Египтяне, например, использовали костный клей при изготовлении мебели и декоративных инкрустаций. К тому же они, судя по всему, первыми придумали использовать клей, чтобы обойти одну из главных механических проблем древесины: волокнистость.

Это свойство определяется плотностью и расположением целлюлозных волокон, которые зависят не только от биологии конкретных деревьев, но и от условий их произрастания. Волокнистость различается не только у разных биологических видов, но и у конкретных деревьев. Из-за этого свойства древесина, как правило, прочна поперек волокон, но может легко раскалываться вдоль. Это полезно, если вы колете дрова, но, когда вы строите дом, делаете стул, скрипку, самолет, да что угодно из дерева, возникает серьезная конструкторская проблема. Чем тоньше деревянная деталь, тем сложнее ее изготовить. Как ни странно, решение – разрезать древесину на еще более тонкие куски, называемые шпоном.

Первыми делать шпон научились египтяне. Они укладывали его куски друг на друга, и волокна нового слоя оказывались перпендикулярны волокнам предыдущего. Так создавались куски древесины, у которых не было слабого направления: мы сегодня называем это фанерой. Для ее склеивания египтяне использовали клеи животного происхождения, и получалось в целом неплохо. Но, как вы сами видели, если вам приходилось когда-нибудь готовить с желатином, костный клей растворяется в горячей воде. Мебель, склеенная им, должна содержаться в полной сухости, иначе она развалится. Это очень серьезный недостаток; но в Египте и тогда было сухо, и в наши дни тоже, и жителей этой страны всё устраивало.

Как уже говорилось выше, иногда нужен клей, который не скрепляет детали намертво. Из истории мы знаем, что изготовители классических музыкальных инструментов, такие как Антонио Страдивари, величайший скрипичный мастер всех времен, при сборке своих инструментов использовали костный клей. Это, в принципе, позволяло ему в любой момент разъять любое соединение в корпусе скрипки, которое показалось ему неудачным, и довести изделие почти до совершенства. И сегодня при ремонте деревянных инструментов мастера расклеивают и разнимают нужные соединения при помощи пара. Под его действием связь между клеем и деревом ослабевает, а затем и исчезает – и дерево остается неповрежденным и чистым, что продлевает срок жизни инструмента и увеличивает его ценность. Вообще большинство из тех, кто занимается реставрацией мебели, пользуется клеями животного происхождения именно потому, что скрепленные ими детали можно легко разъединить при помощи тепла.

Но при изготовлении крыльев высокая температура может стать серьезной проблемой – по крайней мере так гласит легенда. Достаточно вспомнить, что случилось с царем Миносом, который правил средиземноморским островом Крит и которому бог моря Посейдон подарил прекрасного снежно-белого быка. Миносу было велено принести животное в жертву Посейдону, но оно так понравилось царю, что тот решил пожертвовать другого быка, не такого красивого. Посейдон, чтобы наказать Миноса, заставил жену царя влюбиться в быка, и плодом этого союза стало необычное существо – получеловек-полубык Минотавр. Он вырос в ужасное чудовище и начал есть людей, и царь Минос поручил мастеру Дедалу построить для него тюрьму в виде громадного замысловатого лабиринта. Чтобы Дедал не мог никому рассказать о тайнах, скрытых в нем, Минос заключил его вместе с юным сыном Икаром в башню. Однако Дедала нелегко было удержать в заточении. Он соорудил крылья, склеив перья воском: пару для себя и пару для Икара. В день побега Дедал предостерег сына и запретил ему подлетать слишком близко к солнцу. Но во время полета Икар пришел в такой восторг, что не удержался и начал подниматься всё выше. Воск расплавился, перья расклеились, Икар упал на землю и разбился насмерть.

Если вы задумались о том, не может ли современный авиалайнер расклеиться, поднимаясь всё выше, то замечу, что миф об Икаре противоречит науке. Поднимаясь выше, он попадал бы в более холодный, а не более теплый воздух. Температура снижается примерно на 6°C на каждый километр набранной высоты, потому что атмосфера там охлаждается за счет излучения тепла в космос. На высоте 12 000 м, где летел мой самолет, температура за окном составляла примерно –50°C; тут уж любой воск затвердевает.


Картина падения Икара увековечивает миф о том, что упал он из-за расплавления воска, скреплявшего перья в его крыльях


Тут мне следовало бы сказать, что современный авиалайнер не скрепляется при помощи воска – сегодня у нас есть куда более надежные клеи. Интеллектуальное путешествие, связанное с их изобретением, начинается с каучука. Разумеется, это липкий продукт очередного дерева. Получают его, надрезая кору гевеи бразильской – дерева, произрастающего в Южной и Центральной Америке. Мезоамериканские культуры делали из этого сока множество вещей, включая и упругие мячи, которые использовались в ритуальных играх. Когда в XVI в. на континенте появились европейские исследователи, каучук поразил их до глубины души. Они никогда не видели ничего подобного: каучук обладал гладкостью и мягкостью кожи, но был куда более эластичен и совершенно непромокаем. Но, несмотря на его очевидную ценность, никто в Европе не мог найти ему подходящее применение, пока британский ученый Джозеф Пристли не обнаружил, что каучук хорошо стирает карандашные пометки с бумаги. Так появилась стирательная резинка.

Природный каучук состоит из тысяч маленьких изопреновых молекул, связанных в длинную цепочку. Этот молекулярный фокус – связывание воедино множества единиц одного и того же химического вещества с получением совершенно иного – широко распространен в природе. Молекулы такого типа называются полимерами: «поли» означает «много», а «мер» – «единица». Изопрен – это, можно сказать, мономер природного каучука. Длинные полиизопреновые цепочки в каучуке перепутаны, как спагетти. Связи между цепочками слабы, вот почему вы не встретите особого сопротивления, если будете растягивать каучук: цепочки просто слегка распутаются.


Структура природного каучука, представляющая собой сплетение длинных молекул полиизопрена


Именно способность растягиваться делает каучук таким липким. Он легко меняет форму и способен втиснуться в любое пространство, включая линии на вашей ладони, – вот почему он такой ухватистый. Каучук идеален для изготовления велосипедных ручек и автомобильных покрышек – он позволяет машине цепляться за дорогу достаточно прочно, чтобы возникало трение, необходимое для движения вперед, но не слишком, чтобы машина не прилипла к дороге навсегда; он позволяет ладоням лежать на ручках велосипеда достаточно надежно, чтобы не соскальзывать с них случайно, но при этом вам нет нужды беспокоиться о том, что руки навсегда прилипнут к рулю.

Одно из незаметных, но весьма изобретательных применений каучука – клейкие стикеры. На них нанесен тонкий липкий слой каучука, который остается на них при отрывании стикера от пачки; за счет этого слоя его можно прилепить к стене, столу, компьютерному монитору, книге и т. п., не повредив их и не оставив следа. Микроскопические шарики каучука, из которых состоит клей на стикерах, связывают его достаточно прочно с самим стикером, но при прижимании к поверхности создают лишь очень небольшую силу сцепления. Именно поэтому, когда вы снимаете стикер с поверхности, где он находился, каучук остается на бумаге. Листочек получается многоразовым, его можно прилепить еще куда-нибудь. Гениально? Ну, строго говоря, этот не слишком липкий клей на самом деле был случайным изобретением. На него наткнулся в 1968 г. доктор Спенсер Сильвер, химик из компании 3M, при попытке создать суперсильное связующее средство.

В XX в. появились и многие другие липкие продукты, оказавшие заметное влияние на нашу цивилизацию. Один из важнейших – клейкая лента, изобретенная в 1925 г. еще одним сотрудником компании 3M по имени Ричард Дрю. Лента Дрю состоит из трех основных слоев. Средний сделан из целлофана – пластика, получаемого из древесной целлюлозы и придающего ленте прочность и прозрачность. Нижний слой – клей, а верхний, главный представляет собой нелипнущее вещество вроде тефлона, имеющее высокое поверхностное натяжение по отношению к большинству других веществ и не способное легко смачиваться ими (именно поэтому мы используем его в покрытиях непригорающих сковородок). Использовать его в клейкой ленте было по-настоящему гениальным решением; благодаря ему ленту можно наматывать на саму себя, и она не слипается, поэтому ее можно выпускать в рулонах. Ну какой дом может обойтись без такого рулона? Или десяти, как у меня.

Можно многое сказать о человеке по тому, как он обращается с мотком скотча. Я, например, должен сразу признаться, что всегда отрываю ленту, а не отрезаю аккуратно. Попросите у меня клейкой ленты – и я схвачу моток и с энтузиазмом попытаюсь оторвать для вас кусочек. Вероятно, с первого раза у меня не получится. Скорее всего, сначала я испорчу несколько кусков, оторвав их либо не там, либо под диким углом; еще пара непременно спутается и слипнется в комок. Я не горжусь этим; на самом деле это меня бесит. Я начинаю всё больше злиться на скотч, который, в свою очередь, как будто дразнит меня, укладываясь обратно на рулон так гладко, что концов не найдешь. Тут мне приходится прибегать к особым мерам: я провожу большим пальцем по рулону, пытаясь нащупать кончик ленты, если уж увидеть его не получается. Иногда времени на это уходит так много, что я начинаю орать на скотч, а затем швыряю моток в стену – и в очередной раз с недоумением думаю о том, почему у меня до сих пор нет держателя для ленты.

Тканевая клейкая лента лучше подходит к моему темпераменту. Она специально сделана так, чтобы легко рваться без ножниц. Она усилена тканью, которая идет вдоль мотка, и поперечный разрыв делается без труда. Прочность ленты обеспечивается волокнами ткани, а липкость и гибкость – слоями пластика и клейкого вещества. Я так люблю тканевую клейкую ленту, что, признаюсь, завидую людям, которым по работе требуется всегда носить ее с собой на поясе. Подумав об этом, я украдкой бросил взгляд на Сьюзен, которая по-прежнему смотрела кино; интересно, какую клейкую ленту она предпочитает? Ее книга, «Портрет Дориана Грея» Оскара Уайльда, лежала перед ней на столике. Я заметил, что корешок книги когда-то чинили при помощи чего-то, напоминающего красную изоленту. Концы ее были аккуратно обрезаны ножницами: так, с темпераментом этой женщины всё ясно.

Клейкая лента, предложенная Ричардом Дрю, – конечно, полезное изобретение, но не она стала той технической новинкой, которая привела к созданию современных авиалайнеров. Автором нужного нам изобретения стал другой американский химик по имени Лео Бакеланд, которому удалось изготовить одну из первых пластмасс. Она получалась при соединении двух жидкостей. Основой первой были фенолы, главные компоненты березового дегтя, а второй стал формальдегид – раствор, используемый для бальзамирования. Эти две жидкости реагируют друг с другом с образованием новой молекулы. У нее есть свободная связь, к которой могут присоединяться дополнительные фенолы, что, в свою очередь, формирует новые свободные связи для реакций с новыми фенолами, – и со временем вся жидкость (если смешать ее в верных пропорциях) оказывается химически связана и затвердевает. Иными словами, в результате реакции образуется единственная гигантская молекула, в которой все связи постоянны. Так что любой изготовленный вами объект будет твердым и прочным.

Бакеланд использовал свой новый пластик для создания множества вещей – например, телефонных аппаратов, которые как раз были недавно изобретены. Материал, разумеется, пришелся ко двору и принес Бакеланду состояние. Но кроме непосредственной пользы он оказал и другое влияние. Химики поняли, что фенол и формальдегид можно смешивать и применять в месте соединения двух предметов – и смесь, затвердев, их склеит. Это положило начало семейству новых клеев, которые получили название двухкомпонентных; они оказались прочнее всего, что удавалось придумать прежде.


Как из двух жидкостей, фенола и формальдегида, получается мощный клей


Чем шире использовались двухкомпонентные клеи, тем лучше мы понимали, насколько они полезны. Во-первых, составляющие такого клея – фенол и формальдегид – можно хранить в отдельных емкостях, где они будут оставаться жидкими до тех пор, пока не понадобятся. К тому же химический состав компонентов можно менять при помощи добавок, улучшая или ухудшая такие свойства клея, как способность к смачиванию и адгезия к различным материалам, например металлам или дереву.

Новый тип клея сильно повлиял на инженерный мир. Конструкторы вспомнили о фанере, которую первыми научились делать еще древние египтяне. Если изготовить ее с применением двухкомпонентного состава, разработанного специально для идеальной сцепляемости с деревом, то выйдет материал, не ограниченный малой прочностью костного клея и не чувствительный к воде. Но чтобы такая фанера нашла широкое применение, нужна была еще и серьезная рыночная потребность в ней. И она появилась в авиапромышленности – новом, возникшем практически в то же время типе производства. В начале XX в. большинство самолетов делали из дерева, но из-за его текстуры детали часто трескались. Фанера стала идеальным решением: ее можно было гнуть, придавая корпусу аэродинамическую форму, а благодаря новым двухкомпонентным клеям она была надежна и устойчива.

Самым знаменитым из когда-либо существовавших фанерных самолетов стал бомбардировщик de Havilland Mosquito. Когда во время Второй мировой войны он поступил на вооружение, это был самый быстрый самолет в небе. Его даже не вооружали защитными пулеметами, поскольку он способен был обогнать любой другой самолет. Он и до сего дня остается, возможно, самым красивым изделием из фанеры в истории. Его элегантность объясняется способностью фанеры принимать сложную форму в процессе застывания клея. Именно этому свойству она была обязана своей популярностью у конструкторов, длившейся несколько десятков лет.


Фанерный бомбардировщик de Havilland Mosquito


После войны фанера продолжила триумфальное шествие и произвела революцию еще в одной области – на этот раз в производстве мебели. Два самых изобретательных дизайнера того времени, Чарльз и Рэй Имз, использовали ее, чтобы переосмыслить деревянную мебель. Их конструкции, в первую очередь то, что мы сегодня называем стульями Eames, стали классикой. Их делают и подражают им до сих пор: зайдите в любое кафе или в любой класс, и вы, скорее всего, увидите какую-нибудь вариацию на тему этих стульев. Модные течения в мебели приходят и уходят, но фанера сохраняет свою привлекательность.


Фанерный стул, сконструированный Чарльзом и Рэй Имз. © Steven Depolo


Но если мебель из фанеры прошла проверку временем, то в аэронавтике конструкторской мысли пришлось двинуться дальше. После войны основными материалами в самолетостроении стали различные алюминиевые сплавы – не потому, что при том же весе они обладают большей прочностью или хотя бы большей жесткостью. Нет, алюминий победил потому, что его можно надежнее производить, герметизировать и сертифицировать, особенно с учетом того, что самолеты становились всё крупнее и летали всё выше. Очень трудно добиться того, чтобы фанера не впитывала воду или не высыхала. Фанерный самолет, который проводит значительную часть времени в сухих странах, со временем обязательно придет в негодность; его фанера ссохнется, возникнут дополнительные нагрузки на клееные сочленения. А в случае эксплуатации при повышенной влажности фанера разбухнет (или даже сгниет), что опять же поставит под угрозу безопасность самолета.

Алюминий не имеет таких недостатков; к тому же он невероятно стоек к коррозии и потому стал основой конструкции всех самолетов на следующие полвека. Но и он не идеален – не обладает ни достаточной жесткостью, ни достаточной прочностью для создания по-настоящему легких, эффективных по топливу самолетов. Так что даже в тот момент, когда производство алюминиевых самолетов было на пике, целое поколение инженеров чесало головы в поисках материала, идеального для самолетной обшивки. «Может быть, это какой-нибудь другой металл? – гадали они. – Или что-то совсем другое?» Углеродное волокно выглядело перспективно, поскольку при том же весе оно в десять раз жестче, чем сталь, алюминий или фанера. Но это текстиль, а в то время никто не мог сделать самолетное крыло из ткани.

Ответом стал эпоксидный клей. Такие компаунды – еще один вид двухкомпонентных адгезивных составов, но в их основе всегда лежит единственная молекула из категории так называемых эпоксидов.

В центре молекулы эпоксида есть кольцо, в котором два атома углерода соединены с одним атомом кислорода. Если разрушить эти связи, кольцо раскроется и эпоксид сможет реагировать с другими молекулами, образуя прочное твердое покрытие. Реакция затвердевания не начнется, пока кольцо не будет раскрыто путем разрывания связей «углерод – кислород»; для этого, как правило, в эпоксидную смолу добавляют отвердитель.


Отвердитель раскрывает кольцо молекулы эпоксида, позволяя ей образовать полимерный клей


Одно из главных преимуществ эпоксидных компаундов в том, что скорость реакции затвердевания зависит от температуры; клей можно смешать, и он не начнет схватываться, пока вы этого не захотите. Это принципиально важно при производстве фиброармированных деталей сложной формы, из которых собирается самолетное крыло; они огромны, и на их изготовление уходит не одна неделя. Когда вы наконец готовы превратить клей в прочное твердое вещество, вы помещаете деталь в герметичную печь, нагреваете крыло до нужной температуры – и готово. Такие печи называются автоклавами и могут быть размером с самолет. Перед нагреванием деталей из печи удаляется весь воздух, что позволяет решить еще одну проблему клеев: они часто захватывают воздух в местах соединений, и образуются пузырьки, которые после затвердевания становятся слабыми местами конструкции. Еще одно серьезное преимущество эпоксидов в том, что химически они очень изменчивы. Химики умеют присоединять к эпоксидному кольцу различные компоненты, что позволяет компаунду связываться с разными материалами: металлами, керамикой и… да, углеродным волокном.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации