Электронная библиотека » Маркус Сотой » » онлайн чтение - страница 8


  • Текст добавлен: 12 ноября 2016, 05:00


Автор книги: Маркус Сотой


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 20 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Откуда мы знаем, что не живем на планете в форме бублика?

В древние времена люди полагали, что Земля плоская. Но, как только они начали путешествовать на большие расстояния, вопрос крупномасштабной формы Земли стал особенно важен. В плоском мире, как считалось, при достаточно долгом странствии можно дойти до края и упасть с него – если, разумеется, мир не бесконечный и тогда нельзя достичь края.

Во многих культурах начали осознавать, что Земля, скорее всего, изогнута и конечна. Самое очевидное предположение для ее формы, несомненно, шар, и несколько древних математиков сделали невероятно точные расчеты его размера, основываясь только на анализе того, как изменяется тень на протяжении дня. Но почему ученые могли быть уверены, что поверхность Земли не сложена в какую-то более интересную форму? Откуда они знали, что мы не живем, скажем, на поверхности гигантского бублика, подобно космонавту из «Астероидов», запертому в своей бубличной двумерной вселенной?

Чтобы найти ответ, отправимся в воображаемое путешествие в этих альтернативных мирах. Давайте поместим исследователя на поверхность планеты и скажем ему, что он находится либо на идеальной сфере, либо на идеальном бублике. Как он сумеет различить эти две возможности? Мы предложим ему взять ведерко белой краски и кисть и идти по прямой линии по поверхности планеты, отмечая свой путь. В конечном счете исследователь вернется на то место, с которого начал движение, прочертив при этом гигантский белый круг вокруг планеты.

Теперь мы дадим ему ведерко с черной краской и скажем идти в другом направлении. На сферической поверхности Земли, какое бы новое направление он ни выбрал, черный путь всегда пересечет белый путь до того, как исследователь вернется к старту. Помните, что он всегда путешествует по прямой линии на поверхности. Точкой, где два пути пересекутся, будет «полюс», противоположный точке, с которой исследователь начинает движение.


Рис. 2.41. Два пути на сфере пересекаются в двух местах


На поверхности планеты, имеющей форму бублика, положение вещей совсем другое. При путешествии с белой краской исследователь мог отправиться к внутренней части бублика, пройти через дырку и выйти на другой стороне. Но если при путешествии с черной краской он отправится по пути, образующему угол 90° с белым путем, то он пройдет вокруг дырки, не заходя внутрь ее. Итак, возможно совершить два путешествия, у которых пересечение происходит лишь в месте начала движения.


Рис. 2.42. На торе есть пути, пересекающиеся один раз


Проблема в том, что поверхность планеты, вообще говоря, не является идеальной сферой либо поверхностью идеального бублика – она искажена. По планете могут ударить метеориты и оставить вмятины, так что исследователь, путешествующий по прямой линии, дойдя до вмятины или нароста, изменит направление своего движения. В действительности вполне может быть такое, что исследователь, начав движение по прямой линии, никогда не вернется в точку старта. Поскольку формы с вмятинами представляют собой лишь слегка искаженные версии сферы или поверхности бублика, возможно, существуют другие способы различить их? Именно здесь проявляется сила топологического подхода, потому что для него не столь важен кратчайший путь между точками, а то, можно ли преобразовать один путь в другой.

Давайте теперь отправим нашего исследователя в путь с белой эластичной веревкой, которую он будет класть на поверхность за собой. Когда путешественник снова вернется к началу, он соединит концы веревки, так что получится петля вокруг планеты. Затем он пойдет в другом направлении с черной эластичной веревкой, пока не вернется к месту старта. Если планета представляет собой шар с несколькими пиками или провалами, то исследователь сможет, не разрезая веревки, переместить черную петлю поверх белой. Но, если у планеты форма бублика, такое не всегда возможно. Если черная веревка обернута вокруг планеты, заходя в дырку бублика, а белая веревка уложена по кругу, проходящему по внешнему краю бублика, то нельзя совместить черную и белую петли, не разрезая их. Итак, путешественник сможет сказать, есть ли в планете дыра, совершив несколько путешествий. Не покидая поверхности планеты, он выяснит, какова ее форма.

Вот два других, более курьезных способа сказать, находитесь ли вы на планете в форме шара или в форме бублика. Представьте, что обе планеты покрыты мехом. Исследователь на бублике сумеет так причесать его, что мех всюду будет лежать гладко. Например, зачесывая мех в дыру с одной стороны и из дыры с другой стороны. Но у исследователя на меховом шаре будут проблемы; как бы он ни старался, обязательно найдется место, где мех будет торчать.

Любопытно, что у этого обстоятельства имеется странное следствие для погоды на этих двух планетах. Можно представить, что направление меха характеризует то направление, в котором дует ветер в этих двух различных мирах. На шаре всегда найдется место, где не дует ветер (там, где торчит мех). Но на бублике ветер может дуть по всей планете.

Другое отличие этих двух планет состоит в картах, которые на них могут быть нарисованы. Поделите каждую из планет на разные страны и затем попытайтесь раскрасить карты так, чтобы любые две страны с общей границей были окрашены в разные цвета. Для сферической поверхности Земли вам всегда будет достаточно лишь четырех красок. Поглядите на фрагмент карты Европы, на то, как Люксембург втиснулся между Германией, Францией и Бельгией, – и становится понятно, что нужны как минимум четыре краски. Но удивительно именно то, что больше и не потребуется – не существует возможности перекроить границы в Европе так, чтобы заставить картографов покупать пятую краску. Но доказать это утверждение нелегко. Для этого математикам пришлось прибегнуть к помощи компьютера – он проверил несколько тысяч карт, чтобы удостовериться, что не существует какой-то патологической, для которой понадобится пятая краска. На рисование всего этого от руки ушло бы слишком много времени.


Рис. 2.43. Для того чтобы раскрасить карту Европы, понадобится четыре краски


А что же у картографов, живущих на планете в форме бублика, – сколько ведерок с краской потребуется им? Оказывается, существуют карты для поверхности бубличной планеты, для которых нужны семь красок. Вспомните, как для игры «Астероиды» мы сворачивали прямоугольный экран, чтобы изготовить бублик. Мы соединяли верх и низ, чтобы сделать цилиндр, а затем соединяли концы цилиндра и получали бублик. На рис. 2.44 представлена карта для поверхности бублика до проведения этих соединений. Для раскрашивания этой карты нужно семь красок.

Теперь, после того как мы совершили путешествие по математике пузырей и бубликов, фракталов и пены, мы готовы взяться за наиглавнейший вопрос математики формы.


Рис. 2.44. Сверните эту карту в форму бублика, для чего сначала совместите верх и низ, а потом соедините концы. Вы обнаружите, что вам понадобится семь красок, чтобы раскрасить ее


Какова форма нашей Вселенной?

Над этим вопросом человечество билось на протяжении тысячелетий. Древние греки полагали, что Вселенная ограничена небесной сферой (твердью), на внутренней поверхности которой нарисованы звезды. Эта сфера вращалась, совершая оборот за 24 часа, что объясняло движение звезд. Но эту модель нельзя признать удовлетворительной: если мы отправимся в космическое путешествие, то что же – в конечном счете налетим на стенку? А если так, то что находится по ту сторону стенки?

Исаак Ньютон одним из первых предположил, что у нашей Вселенной, возможно, нет границы – что она бесконечна. Сколь ни привлекательна идея бесконечной Вселенной, она не соотносится с современной теорией возникновения Вселенной при Большом взрыве и ее последующего расширения из концентрированного сгустка материи и энергии. Мы теперь считаем, что в пространстве находится лишь ограниченное количество материи. Но как Вселенная может быть конечна и при этом не иметь границы?

Эта проблема аналогична той, что стояла перед нашими исследователями мира, у которого конечная площадь поверхности, но нет ни краев, ни границ. Правда, вместо того чтобы быть прижатыми к двумерной поверхности, мы находимся внутри трехмерной Вселенной. Существует ли элегантный способ найти форму этой Вселенной и разрешить очевидный парадокс того, что у нее нет границ и при этом она конечна?

Потребовалось открытие четырехмерной геометрии форм в середине XIX в. для того, чтобы у нас появился возможный ответ. Математики поняли, что четвертое измерение дает им достаточно пространства, чтобы сложить нашу трехмерную Вселенную в формы, у которых конечный объем и при этом нет границ. Так же происходит с конечной по площади двумерной поверхностью Земли или поверхностью бублика, у которых нет краев.

Мы уже видели, как конечная двумерная вселенная в игре «Астероиды» в действительности является поверхностью трехмерного бублика. Но мы же трехмерные путешественники, которые могут перемещаться и в третьем измерении. Возможно, Вселенная, в которой мы живем, подобна вселенной из игры «Астероиды»? Начнем с того, что сделаем стоп-кадр Вселенной после Большого взрыва в тот момент, когда она расширилась до размера вашей спальни. Эта Вселенная размером со спальную комнату конечна по объему, но у нее нет границ – потому что различные части спальни соединены между собой довольно любопытным образом.

Представьте, что вы стоите в середине комнаты лицом к стене (я предполагаю, что у вашей спальни форма куба). Когда вы идете вперед, то не ударяетесь в стену перед вами, а проходите через стену, бывшую за вами. Сходным образом когда вы проходите через стену за вами, то появляетесь из стены впереди. Если вы поменяете направление на 90° и направитесь к стене слева, то, пройдя через нее, вы выйдете из стены справа (и наоборот). Итак, части вашей спальни соединены как в игре «Астероиды».

Но мы – трехмерные путешественники в пространстве, которые могут отправиться и в третьем направлении. Когда мы подлетаем к потолку, то не отскакиваем от него, а проходим сквозь него и выходим из пола. При путешествии в противоположном направлении мы проходим через пол и выходим из потолка.

При этом форма Вселенной соответствует поверхности четырехмерного бублика, или гипербублика. Но подобно тому, как космонавт, запертый в игре «Астероиды», не может выйти из своего двумерного мира, чтобы разглядеть, как свернута вселенная, мы не в состоянии увидеть этот гипербублик. И все же, используя язык математики, мы можем испытать его форму и исследовать его геометрию. К настоящему времени наша Вселенная заметно расширилась за пределы спальной комнаты, но, возможно, она по-прежнему устроена как поверхность гипербублика. Подумайте о свете, который распространяется по прямой линии от Солнца. Быть может, он не исчезает на бесконечности, а, образуя петлю, возвращается назад и попадает на Землю. Если это так, одна из наблюдаемых нами далеких звезд – это наше Солнце, потому что его свет распространялся по всему гипербублику и наконец пришел на Землю. Следовательно, мы можем видеть наше Солнце, когда оно было значительно моложе.

Это кажется невероятным, но представьте, что вы сидите в своей спальне, которая соответствует мини-бублику Вселенной, и зажигаете спичку. Когда вы глядите на стену перед собой, то видите пламя спички перед вами. Теперь обернитесь и посмотрите на противоположную стену. Вы снова увидите спичку, но теперь на несколько большем расстоянии, потому что свет от спички сначала идет к стене перед вами, а затем проходит через противоположную стену и попадает вам в глаз.

Возможно, мы живем не на гипербублике, а на поверхности четырехмерного футбольного мяча. Некоторые астрономы полагают, что мы могли бы жить в форме, которая напоминает додекаэдр с 12 гранями, где как в мини-вселенной размером со спальню, когда вы достигаете одной из граней додекаэдра, то возвращаетесь в вашу вселенную через противоположную грань. Вероятно, мы совершили полный круг и вернулись к той модели, которую Платон предложил две тысячи лет назад. Согласно ей наша Вселенная заключена внутрь стеклянного додекаэдра, к поверхности которого прикреплены звезды. Возможно, современная математика наполнила смыслом эту модель, ведь противоположные грани этой формы теперь соединены и более не представляют стеклянных перегородок вселенной.

Но какие другие формы могли бы быть у нашей Вселенной? Вспомните, как Пуанкаре провел классификацию всех возможных форм, которые могли бы быть у двумерных поверхностей, таких как поверхность нашей планеты. Поверхность может быть свернута как футбольный мяч, бублик, брецель с двумя дырками, с тремя дырками или с большим количеством дырок. Пуанкаре доказал, что какие бы другие формы вы ни постарались изготовить, их можно деформировать в сферу или брецель с дырками.

А что же можно сказать о нашей трехмерной Вселенной – какая форма может быть у нее? Эта задача на миллион долларов называется гипотезой Пуанкаре. Она особенна, потому что в 2002 г. появились новости о ее решении российским математиком Григорием Перельманом. Его доказательство гипотезы Пуанкаре было проверено многими математиками, и теперь признано, что он действительно расклассифицировал все возможные формы, которые могла бы принимать наша Вселенная. Это была первая решенная задача на миллион долларов, но, когда в июне 2010 г. Перельману предложили получить премию, он, к общему изумлению, отказался от нее. Для Перельмана приз был не в деньгах, но в найденном решении одной из величайших задач в истории математики. До того Перельман уже отказался от медали Филдса, математического эквивалента Нобелевской премии. В наш век погони за славой и материальным достатком такой поступок человека, которого вдохновляет доказательство теорем, а не получение призов, представляется невероятно благородным.

После того как математики признали доказательство Перельмана, можно утверждать, что они разобрались во всех возможных формах. Теперь дело за астрономами, наблюдающими за ночным небом: определить, какая из них лучше всего описывает неуловимую форму Вселенной.

Решения

Воображая формы

Разрез пересекает все шесть граней, и каждая грань добавляет ребро к образовавшейся новой грани. Эта форма должна быть симметрична, так что у вас получится шестиугольник.


Расцепление колец

Вот так можно расцепить два кольца, непрерывно деформируя их в тор с двумя дырками.


Рис. 2.45


Глава 3
Секрет победной серии

Участие в играх является существенной частью человеческого опыта. Игры – это безопасный способ исследования ситуаций, происходящих в реальной жизни. «Монополия» – это микрокосм экономики, шахматы – поле сражения 8 × 8, покер – упражнение в оценке риска. Игры позволяют нам научиться предсказанию того, как при выполнении определенных правил будут развиваться события, и соответственному планированию своих действий. Благодаря им мы знакомимся со случайностями и непредсказуемостью, играющими столь большую роль в игре жизни, организуемой природой. От древних цивилизаций во всем мире нам досталось в наследство захватывающее разнообразие игр. Камешки, бросаемые в песок, палочки, подкидываемые в воздух, жетоны, вставляемые в прорези в деревянных колодках, соревнования с помощью рук и карт с изображениями на них… От древней игры манкала до «Монополии», от японской игры го до покерных столов Лас-Вегаса – в играх неизменно побеждает тот, кто лучше следует математическому, аналитическому подходу. В настоящей главе я покажу вам, как математика может быть секретным оружием к победной серии.

Как стать чемпионом мира по игре «Камень, ножницы, бумага»?

«Дзян-кэн-пон» в Японии. «Ро-шам-бо» в Калифорнии. «Кай-бай-бо» в Корее. «Чин-чон-ча» в Южной Африке. В игру «Камень, ножницы, бумага» играют по всему миру.

Правила очень просты. На счет «три» каждый игрок показывает рукой один из трех знаков: кулак, обозначающий камень, два разведенных пальца вместо ножниц или прямую ладонь, символизирующую бумагу. Камень побеждает ножницы, ножницы побеждают бумагу, и бумага побеждает камень. Если выпадают два одинаковых знака, то результат ничейный.

Логическое обоснование первых двух побед достаточно очевидно: камень затупляет ножницы, ножницы режут бумагу. Но почему камень проигрывает бумаге? Лист бумаги – не слишком-то хорошая защита от камня, запущенного в вас. Но возможно, эта условность дошла до нас из Древнего Китая. В те дни прошение, подаваемое императору, символизировалось камнем. Император указывал на то, принял или нет он прошение, посредством листа бумаги, помещаемого под камнем или над ним. Если камень был покрыт листом бумаги, то в прошении отказывалось, а подавший его проигрывал дело.

Происхождение этой игры довольно трудно проследить. Есть свидетельства, что в нее играли на Дальнем Востоке, она была распространена и у кельтских племен и, вероятно, даже у древних египтян, которые любили игры на пальцах. Но все эти цивилизации уступили первенство в изобретении этой игры разновидности ящериц, которая прибегала к ней в борьбе за выживание задолго до того, как Homo sapiens начал делать жесты.

На западном побережье Америки обитает вид ящериц Uta stansburiana, более известный как обыкновенная пятнистая ящерица. У самца этого вида три возможных окраса – оранжевый, синий и желтый, и у каждого из них различная тактика спаривания. Оранжевые ящерицы – самые сильные. Они нападают на синих ящериц и побеждают их. Синие ящерицы больше желтых и охотно вступают с ними в битвы, нанося соперникам поражения. Но, хотя желтые самцы меньше синих и оранжевых, они выглядят как самки, что сбивает с толку оранжевых самцов. Поэтому оранжевые самцы, всегда готовые вступить в бой, не замечают, как желтые ящерицы проскальзывают у них под носом и спариваются с самками. Иногда желтых ящериц называют «пронырами» из-за используемого ими нечестного приема для обмана оранжевых ящериц. Итак, оранжевая побеждает синюю, синяя побеждает желтую, а желтая побеждает оранжевую – мы видим эволюционную версию игры «Камень, ножницы, бумага».


Рис. 3.01


Эти ящерицы участвуют в игре, передавая при этом свои гены. Было бы интересно узнать, разработали ли они какую-то стратегию выигрыша. Оказывается, в их популяции имеется шестилетний цикл, в начале которого доминируют оранжевые ящерицы, потом желтые, затем синие, а потом снова оранжевые. Появляющаяся последовательность в точности такая же, как у людей, которые пытаются победить в этой игре, сражаясь один на один. Если соперник слишком часто выкидывает «камень», вы начинаете показывать «бумагу», но оппонент, видя то, как участившаяся «бумага» побеждает его «камень», переключится на «ножницы», чтобы пресечь бумажную серию. Вы подмечаете это изменение в поведении и снова переходите на «камень».

В своей основе умение побеждать в этой игре состоит в обнаружении закономерностей, что является выраженной математической особенностью. Если вы можете предсказать, как поступит ваш оппонент, исходя из сложившейся у него модели поведения, то вы готовы к победам. Проблема только в том, что вы не желаете, чтобы в вашей реакции было легко заметить ритм, иначе преимущество перейдет к оппоненту. Поэтому состязание обставлено массой психологических нюансов, когда каждый из соперников пытается заметить закономерности в игре оппонента и догадаться, как он мог бы поступить.

Игра «Камень, ножницы, бумага» недавно переросла рамки детских площадок и вышла на уровень международных соревнований. Каждый год чемпиона мира по «Камню, ножницам, бумаге» наряду с вожделенным титулом ожидает приз в $ 10 000. В списке славы доминировали участники из США, но в 2006 г. житель Северного Лондона Боб Купер по прозвищу Камень сумел сдержать свои нервы и завоевать звание. Как он готовился к турниру? «Несколько часов тяжелых тренировок перед зеркалом каждый день». Полагаю, что это помогает укрепить психологическую подготовку к противостоянию с оппонентом, намеревающимся читать ваши мысли. А каков секрет его успеха? Его прозвище подталкивает соперников к мысли, что он будет чаще обычного выкидывать «камень». Поэтому у Боба появляется возможность изрезать «ножницами» «бумагу», которую соперники готовят, чтобы обернуть его «камень». Но после того, как оппоненты догадываются о его уловке, Боб Купер использует математический подход.

С математической, а не психологической точки зрения лучшей стратегией было бы сделать ваш выбор совершенно случайным. Тогда вашему оппоненту будет не на что опираться, потому что в совершенно случайной череде событий то, что произошло ранее, никоим образом не влияет на последующее. Если я подкину монету десять раз, то первые девять бросков никоим образом не могут повлиять на исход последнего броска. Даже если у вас девять раз выпал орел, это не означает, что в десятый раз должна выпасть решка, чтобы навести баланс. У монеты нет памяти.

Стратегия, опирающаяся на рандомизацию, дает вам лишь равный шанс выиграть, потому что при этом игра «Камень, ножницы, бумага» ничем не отличается от подбрасывания монеты для определения победителя. Но, если мне приходится соперничать с чемпионом мира, я соглашусь на любую стратегию, дающую мне тот же шанс выиграть. Мне не приходит в голову много видов спорта, где можно придумать стратегию, дающую вам шанс пятьдесят на пятьдесят победить чемпиона мира. Может быть, спринт на 100 м? Я так не думаю.

Но как можно выбрать ряд исходов и быть совершенно уверенным, что он случаен и не характеризуется какой-то скрытой закономерностью? Это серьезная проблема: мы, люди, печально известны своей неспособностью выдать случайную последовательность – мы настолько склонны к закономерностям, что в любую нашу «случайную» последовательность просачивается структура. Вы можете загрузить PDF-файл с веб-сайта «Тайн 4исел», содержащий игральную кость «Камень, ножницы, бумага». Соберите игральную кость, которая поможет вам делать случайный выбор и победить в игре.

Ножницы и Сезанн

Игра «Камень, ножницы, бумага» использовалась для улаживания разногласий как в детских песочницах, так и на заседаниях директоров компаний. Был знаменитый случай, когда аукционные дома Sotheby’s и Christie’s решили выбрать, кому из них продавать коллекцию импрессионистских полотен Ван Гога и Сезанна, посредством единственного раунда «Камня, ножниц, бумаги». Каждый из аукционных домов должен был за выходные определиться со своим выбором. Sotheby’s нанял за немалые деньги команду аналитиков первого ранга, чтобы те предложили выигрышную стратегию. Аналитики пришли к выводу, что это игра случая и один выбор ничем не хуже другого. Поэтому они предложили «бумагу». А в Christie’s просто спросили одиннадцатилетнюю дочь одного из служащих, что бы сделала она. «Все полагают, что вы покажете “камень”, поэтому выбирают “бумагу”. Значит, нужно показать “ножницы”», – сказала она. Christie’s выиграл контракт на продажу. Сказанное лишь должно продемонстрировать вам, что математика не всегда дает преимущество.


Страницы книги >> Предыдущая | 1 2 3 4 5
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации