Электронная библиотека » Маркус Сотой » » онлайн чтение - страница 5


  • Текст добавлен: 12 ноября 2016, 05:00


Автор книги: Маркус Сотой


Жанр: Математика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 20 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Как сделать самый круглый в мире футбольный мяч

Во многих видах спорта используются шары и сферические мячи: теннис, крикет, бильярд, футбол. Хотя природе с легкостью удаются сферы, людям изготавливать их особенно сложно. Это обусловлено тем, что в большинстве случаев мы вырезаем формы из плоских листов материала, которые впоследствии сшиваются либо подвергаются термосклейке. В некоторых состязаниях упор делается на трудности изготовления сфер. Крикетный мяч состоит из четырех кусков формованной кожи, которые сшиваются вместе, поэтому он не вполне сферический. Наличие шва может быть использовано боулерами, подающими мячи, чтобы мяч непредсказуемым образом отскакивал от поля.

В противоположность этому игрокам в настольный теннис необходимы идеально круглые мячи. Мячи изготавливаются склеиванием двух целлулоидных полусфер, но этот метод не слишком-то успешен: более 95 % изделий отбраковываются. Изготовители мячей для пинг-понга немало развлекаются, когда отсортировывают сферы от деформированных мячей. Специальное ружье запускает мячи в воздух, и неровные отклоняются влево либо вправо. Только идеальные сферы летят по прямой линии, и их собирают на другом конце стрельбища.


Рис. 2.03. Ранние дизайны футбольных мячей


Как же мы можем сделать совершенную сферу? При подготовке к чемпионату мира по футболу 2006 г. в Германии производители заявляли об изготовлении самого круглого футбольного мяча. Футбольные мячи часто получают путем сшивки нескольких кусков кожи. Многие из футбольных мячей, изготавливавшиеся на протяжении поколений, собираются из форм, которыми играли еще в древние времена. Чтобы узнать, как сделать самый симметричный футбольный мяч, исследуем сначала те «мячи», которые собираются из копий одного симметричного куска кожи. Эти копии расположены таким образом, чтобы у их объединения была симметричная форма, для чего в каждой вершине должно сходиться одинаковое количество граней. Данные формы были исследованы Платоном в диалоге «Тимей», написанном в 360 г. до н. э.

Каковы же различные возможности для Платоновых футбольных мячей? Меньше всего компонентов требуется для пирамиды с треугольным основанием, называемой тетраэдром. Он получается сшивкой четырех равносторонних треугольников, но результатом этого не будет хороший футбольный мяч, потому что у него слишком мало граней. Как мы увидим в главе 3, такая форма хотя и не подходила для футбольного поля, но была задействована в других играх Древнего мира.

Другой конфигурацией является куб, состоящий из шести квадратных граней. На первый взгляд эта форма кажется слишком стабильной для футбола, тем не менее эта структура послужила основой многим ранним футбольным мячам. Мяч для самого первого чемпионата мира 1930 г. состоял из 12 прямоугольных полосок кожи, сгруппированных в шесть пар и расположенных таким же образом, как при сборке куба. Один из таких мячей находится в экспозиции Национального музея футбола в Престоне, на севере Англии. Сейчас он ссохшийся и несимметричный. Другой весьма необычный футбольный мяч, также использовавшийся в 1930-х гг., опять-таки основывается на кубе и состоит из 6 хитро соединенных между собой кусков, каждый из которых имеет форму буквы Н.

Вы можете посетить веб-сайт «Тайн 4исел» и загрузить PDF-файлы с инструкциями по изготовлению пяти Платоновых футбольных мячей.

Но давайте вернемся к равносторонним треугольникам. Восемь из них могут быть расположены симметрично, составляя октаэдр. По существу, он представляет две соединенные между собой пирамиды с квадратными основаниями. После надлежащего объединения невозможно сказать, где был стык.

Чем больше граней, тем более круглыми становятся Платоновы футбольные мячи. Следующей после октаэдра формой является додекаэдр, состоящий из 12 пятиугольных граней. Это вызывает ассоциации с 12 месяцами года. Были найдены изготовленные в древности додекаэдры, на гранях которых вырезаны календари. Из всех Платоновых форм лучшим приближением к сферичному футбольному мячу служит икосаэдр, состоящий из 20 правильных треугольников.



Рис. 2.04. Платоновы тела ассоциировались со строительными кирпичиками природы


Платон полагал, что эти пять форм настолько фундаментальны, что связывал их с четырьмя стихиями, из которых строится весь мир: тетраэдр, обладающий самой заостренной формой, сопоставлялся с огнем, стабильный куб – с землей, октаэдр – с воздухом. Икосаэдр, имеющий самую округлую форму, олицетворял скользкую воду. Платон решил, что пятая форма, додекаэдр, представляла форму Вселенной.

Но как мы можем быть уверены, что Платон не упустил какую-то форму, шестой футбольный мяч? Другой греческий математик, Евклид, в кульминационной части одной из величайших когда-либо написанных математических книг доказал, что невозможно сшить вместе какую-то другую комбинацию, основанную на одной симметричной форме, чтобы получить шестой футбольный мяч и расширить список Платона.

Книга Евклида называется просто – «Начала»; возможно, она несет ответственность за становление аналитического искусства логического доказательства в математике. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира. Доказательство Евклида говорит нам, что в отношении этих форм мы рассмотрели все возможности и что действительно исключены сюрпризы, которые мы могли упустить.

Как Архимед улучшил Платоновы футбольные мячи

А что будет, если попытаться сгладить некоторые углы у пяти Платоновых футбольных мячей? Если вы возьмете икосаэдр с 20 гранями и отсечете все углы, то есть надежда получить мяч, чья форма будет более близка к круглой. В каждой вершине икосаэдра сходятся пять треугольников, так что если вы срежете угол, то получите пятиугольник вместо вершины. А треугольник с тремя отсеченными углами превращается в шестиугольник. Получившийся многогранник называется усеченным икосаэдром. Именно эта форма используется для футбольных мячей с того времени, как она была представлена на чемпионате мира по футболу 1970 г. в Мексике. Но есть ли возможность сделать из набора симметричных кусков другие формы, которые еще лучше подойдут для футбольного мяча на следующем чемпионате мира?

В III в. до н. э. греческий математик Архимед вознамерился улучшить Платоновы тела. Он начал с изучения того, что произойдет, если вы используете два или более строительных кирпичика в качестве граней вашей формы. Составные части должны хорошо состыковываться, поэтому у их краев должны быть одинаковые длины. Таким образом вы добьетесь точного совпадения на границе. Архимед также хотел как можно большей симметричности, поэтому все вершины – углы, где сходятся грани, – должны выглядеть одинаково. Если в одной вершине сходятся два треугольника и два квадрата, то такая структура должна повторяться.

Мир геометрии всецело овладел сознанием Архимеда. Даже когда слуги отрывали упирающегося Архимеда от занятий математикой и уводили к ванне для омовения, он проводил время, рисуя геометрические формы на золе, либо наносил их маслом на свое обнаженное тело. Плутарх описывает, как «наслаждение от занятий геометрией уносило его так далеко, что он оказывался в состоянии исступленного восторга».

Во время этих геометрических трансов Архимеда и возникла полная классификация лучших форм для футбольных мячей: он придумал 13 других способов создания многогранников. Рукопись, в которой Архимед написал о своих формах, не дошла до нас. Лишь в трудах Паппа Александрийского, который жил пятью веками позже Архимеда, встречается письменное свидетельство об открытии этих 13 форм. Тем не менее они называются Архимедовыми телами.

Некоторые из них он создал, отрезая кусочки от Платоновых тел, словно сглаживая футбольный мяч. Например, отсеките четыре угла у тетраэдра. Тогда треугольные грани превращаются в шестиугольники, а на месте разрезов появляются четыре новых треугольника. Итак, четыре шестиугольника и четыре треугольника можно объединить и сделать то, что называется усеченным тетраэдром (рис. 2.05).


Рис. 2.05


Рис. 2.06


Действительно, семь из 13 Архимедовых тел могут быть получены отрезанием кусочков от Платоновых тел – среди этих многогранников и классический футбольный мяч из пятиугольников и шестиугольников. Но более примечательным было открытие некоторых других форм. Оказывается, возможно объединение 30 квадратов, 20 правильных шестиугольников и 12 правильных десятиугольников в симметричную форму, которая называется ромбоусеченный икосододекаэдр (рис. 2.06).

Именно одно из 13 Архимедовых тел послужило основой новому футбольному мячу Teamgeist[3]3
  «Командный дух» (от англ. team и нем. Geist).


[Закрыть]
, представленному на чемпионате мира 2006 г. в Германии. Этот мяч, слывущий самым круглым, состоит из 14 фигурных кусков, но структурно он соответствует усеченному октаэдру. Возьмите октаэдр, состоящий из восьми равносторонних треугольников, и обрежьте шесть его вершин. Восемь треугольников становятся шестиугольниками, а на месте шести вершин появляются квадраты (рис. 2.07).


Рис. 2.07


Вы можете посмотреть изображения всех 13 Архимедовых тел, если зайдете на http://bit.ly/Archimedean.

Возможно, будущие чемпионаты мира отличатся более экзотическими Архимедовыми футбольными мячами. Мои предпочтения связаны с плосконосым додекаэдром, состоящим из 92 симметричных компонентов: 12 правильных пятиугольников и 80 равносторонних треугольников (рис. 2.08).


Рис. 2.08


До самого последнего мгновения ум Архимеда был сосредоточен на математике. В 212 г. до н. э. римляне вторглись в его родной город Сиракузы. Но Архимед с головой углубился в рисование чертежей, которые помогли бы ему решить математическую головоломку, и совершенно не осознавал, что город пал. Когда к нему подбежал римский солдат с обнаженным мечом, Архимед умолял, чтобы тот позволил ему закончить вычисления. «Как я могу оставить свою работу в таком незавершенном состоянии?!» – вскричал он. Но солдат не был готов ожидать QED[4]4
  QED – доказательство (сокр. quod erat demonstrandum – «что и требовалось доказать» (лат.).


[Закрыть]
и зарубил Архимеда посередине доказательства теоремы.

Какую форму вы предпочитаете для чая?

Формы стали горячей темой не только у производителей футбольных мячей, но и у английских любителей чая. На протяжении поколений мы довольствовались простыми квадратиками, но теперь нация поголовно стремится заварить совершенную чашку чая, для чего окунает в нее круги, сферы и даже чайные пакетики в форме пирамидок.

Чайный пакетик был изобретен по ошибке нью-йоркским чаеторговцем Томасом Салливаном в начале XX в. Он разослал своим клиентам образцы чая в маленьких шелковых мешочках, но получатели, вместо того чтобы высыпать чай из мешочков, погружали их в воду целиком. Британцы убедились в необходимости радикального изменения своих привычек чаепития лишь в 1950-х гг. По оценкам нашего времени, около 100 миллионов пакетиков чая ежедневно погружаются в чашки с горячей водой в Великобритании.

Многие годы надежный квадратик позволял любителям чая приготовить свой напиток без хлопот, связанных с очищением и мытьем заварочных чайников. Квадрат – очень эффективная форма, такие пакетики легко делать, кроме того, нет излишних расходов упаковочного материала. PG Tips, ведущий производитель пакетированного чая, ежегодно на протяжении 50 лет штамповал миллиарды пакетиков на своих фабриках по всей стране.

Но в 1989 г. компания Tetley, его главный конкурент, сделала смелый шаг для передела рынка и представила круглые пакетики. Хотя такое изменение мало отличалось от эстетического ухищрения, оно сработало. Продажи новой формы взмыли вверх. В PG Tips понимали, что необходимо превзойти конкурента, для того чтобы удержать покупателей. Хотя круг и понравился клиентам, он по-прежнему оставался плоской, двумерной фигурой. Тогда команда PG Tips решила совершить скачок в третье измерение.

Разработчики PG Tips знали, что нам не хватает терпения, когда дело доходит до чая. В среднем пакетик находится в чашке лишь 20 секунд, а потом его вытаскивают. Если вы разрежете обычный двумерный пакет, который окунали на 20 секунд, то обнаружите, что чай посередине остался сухим: у него было недостаточно времени для контакта с водой. Команда PG Tips полагала, что трехмерный пакетик будет своего рода заварочным чайником в миниатюре, который даст возможность всем чайным листьям провзаимодействовать с водой. Был даже привлечен эксперт по теплотехнике из Имперского колледжа Лондона: он занимался расчетом компьютерных моделей, чтобы подтвердить уверенность в том, что третье измерение способно улучшить аромат чая.

Но затем в разработке пришла очередь следующего шага: а какая же форма? Были подготовлены различные трехмерные формы для тестирования потребителями. Эксперименты шли с цилиндрами и чайными пакетиками, напоминавшими китайские фонарики. Также испытывались правильные сферы. Сфера выглядит довольно привлекательно, ведь, как и в случае пузыря, это такая форма, которая при заданном объеме требует минимума материала для изготовления пакетика. Но сфера крайне неудобна для производства, особенно если вы стартуете с плоского листа муслина – всякий, кто пытался завернуть футбольный мяч на Рождество, может засвидетельствовать это.

Если дан плоский лист бумаги, то естественно рассмотреть трехмерные формы с плоскими гранями. В PG Tips начали с исследования тех форм, которые описали Платон и Архимед более двух тысяч лет назад. В отличие от производителей спортивного снаряжения, понявших, что футбольный мяч, сделанный из пятиугольников и шестиугольников, хорошо приближает сферу, изготовители чая заинтересовались формой на другом конце спектра. Хотя тетраэдр с четырьмя гранями (пирамида с треугольным основанием) охватывает наименьший объем при заданной площади поверхности, для его изготовления требуется минимальное количество граней. Невозможно объединить три плоские грани, чтобы создать трехмерную замкнутую форму.

В компании PG Tips, очевидно, были заинтересованы и в том, чтобы как можно меньше упаковочного материала шло в отход. Форма должна быть не только визуально привлекательна, но и эффективна. Сверх того, поскольку требовалось наладить снабжение нации, которая выпивает более 100 миллионов чашек в день, обязательным условием было, чтобы производство шло с большой скоростью. Недопустимо было заполнять чайные фабрики рабочими, сшивающими вместе четыре маленьких треугольничка, чтобы получилась пирамидка. Прорыв произошел, когда кто-то предложил замечательно красивый и элегантный способ производства чайного пакетика в виде пирамидки.

Подумайте, как делается пакетик с чипсами. Цилиндрическая трубка запечатывается швом снизу, наполняется чипсами, а затем сверху делается шов в том же направлении. Но посмотрите, что будет, если шов наверху делать не в том же направлении, а сначала повернуть пакетик на 90° и лишь потом запечатывать его. Неожиданно у вас в руках оказывается упаковка в виде тетраэдра. У тетраэдра шесть ребер: два из них совпадают со швами и четыре соединяют два шва, от конца каждого шва идут по два ребра к каждому из концов противоположного шва. Это замечательно эффективный способ изготовления пирамидок. Замените чипсы чаем, запечатывайте упаковку с поворотом, и у вас получатся пирамидальные чайные пакетики. Не будет лишнего расходования материала, а машина может запечатывать их со скоростью 2000 штук в минуту, достаточно быстро, чтобы удовлетворить спрос нации любителей чая. Эта машина была настолько инновационной, что попала в топ-лист 100 патентов, зарегистрированных в XX в.

После четырех лет разработки производство пирамидальных чайных пакетиков было запущено в 1996 г. Оно оказалось эффективным, а потребители сочли новую форму современной и стильной. Новая рекламная кампания оказалась долгожданной заменой труппы одетых обезьян, на которых PG Tips полагалась на протяжении ряда лет для поддержки своей продукции. Компания возвратила себе первое место по продажам чая в пакетиках.

Но в то время как тетраэдры позволили подчеркнуть вкус чая, за обликом другого Платонова тела скрывается нечто зловещее.

Почему вы можете умереть, если подхватите икосаэдр

В 1918 г. пандемия «испанского гриппа» погубила не менее 50 миллионов человек, что значительно превосходило число жертв Первой мировой войны. Из-за смертельных последствий многие ученые поставили перед собой задачу определить механизм данного опасного заболевания. Вскоре они поняли, что причиной были не бактерии, а нечто меньшее, недоступное для наблюдения в микроскопы того времени. Они назвали новых переносчиков «вирусами» – от латинского слова virus, обозначающего яд.

Раскрытие истинной природы вирусов стало возможно позднее, когда была разработана новая методика исследований, называемая рентгеновской дифрактометрией. Она позволила ученым разглядеть молекулярную структуру, лежащую в основе этих организмов, которые нанесли такой урон. Молекулу можно представить как набор шариков для пинг-понга, соединенных между собой палочками. Хотя это и является чрезмерным упрощением настоящей науки, в каждой химической лаборатории имеются коллекции шариков и палочек, чтобы помочь студентам и научным сотрудникам исследовать структуру молекулярного мира. Когда пучок рентгеновских лучей проходит через исследуемое вещество, то часть лучей рассеивается встреченными молекулами на различные углы. Это явление называется дифракцией рентгеновских лучей. Получающиеся изображения в чем-то схожи с тенями, которые образуются, если осветить упомянутые структуры из шариков и палочек.

Математика стала могучим союзником в сражении за расшифровку информации, содержащейся в этих тенях. Цель состоит в том, чтобы определить, какие трехмерные формы могли дать двумерные тени, полученные при рентгеновской дифракции. Довольно часто успех связан с нахождением оптимального угла, под которым нужно направить свет, чтобы раскрыть истинное молекулярное строение. Силуэт головы, получающийся, если кому-то направить свет прямо в лицо, содержит мало информации, разве что покажет, насколько торчат уши. Но профиль позволит сказать значительно больше. То же самое касается и молекул.

После того как Фрэнсис Крик и Джеймс Уотсон открыли структуру ДНК, они совместно с Дональдом Каспаром и Аароном Клугом обратили внимание на двумерные картинки, получающиеся при дифракции рентгеновских лучей на вирусах. К своему удивлению, они увидели изображения, полные симметрии. На первых картинках были видны точки, упорядоченные в треугольники. Это подразумевало, что у вирусов была трехмерная форма, которая переходит в себя при повороте на треть полного оборота: значит, имелась симметрия. Когда биологи заглянули в математический кабинет теней, они решили, что Платоновы тела были наилучшими кандидатами на форму вирусов.

Воображая формы

Представьте, что на рождественской елке висит украшение в форме кубика, причем веревочка прикреплена к одному из его углов. Если вы разрежете куб горизонтально между верхней и нижними точками, то получите два тела, у каждого из которых будет новая грань. Какова форма новой грани? Ответ приведен в конце главы.

Но проблема была в том, что у всех пяти Платоновых тел имеется ось симметрии третьего порядка, при повороте на треть полного оборота вокруг которой тело переходит в себя. Лишь когда биологи получили другие дифракционные изображения, возникла возможность более точно определить структуру вирусов. Неожиданно появились точки, сгруппированные в пятиугольники. Это позволило сфокусировать внимание на одном из более интересных Платоновых тел – на икосаэдре, у которого 20 треугольных граней, причем в каждой вершине сходятся пять граней.

Вирусы любят симметричные формы, потому что симметрия позволяет им лучше размножаться, что и делает вирусные заболевания настолько заразными. Именно это значит слово «вирулентный». Обычно люди считают симметрию эстетически привлекательной, идет ли речь о бриллианте, цветке или лице супермодели. Но симметрия не всегда так желанна. Некоторые из самых смертоносных вирусов по медицинской статистике, от гриппа до герпеса, от полиомиелита до вируса иммунодефицита человека, в своем строении используют форму икосаэдра.

Стабилен ли пекинский олимпийский плавательный комплекс?

Плавательный комплекс, построенный к пекинской Олимпиаде, – необычайно красивое сооружение, в особенности когда включается ночная подсветка и он кажется прозрачной коробкой, наполненной пузырями. Проектировавшая его компания Arup стремилась к тому, чтобы совместить дух водных состязаний, проводимых внутри, с естественным и органичным внешним видом комплекса.

В компании начали с того, что принялись изучать формы, которыми можно замостить плоскость, наподобие квадратов, равносторонних треугольников и правильных шестиугольников. Но разработчики решили, что они слишком регулярны и не позволяют создать желаемый органичный вид. Тогда проектировщики решили изучить другие возможности, которые использует природа для упаковки многих предметов, например кристаллы и клеточные структуры в тканях растений. Во всех этих структурах встречаются примеры тех форм, которые, согласно открытию Архимеда, позволяют сделать хорошие футбольные мячи. Но команду Arup в особенности привлекло то, как множество пузырей группируется вместе и создает пену.

Поскольку лишь в 1884 г. было доказано, что сфера – самая эффективная форма для единичного пузыря, становится неудивительно, что слипание множества пузырей для образования пены поставило перед математиками нелегкие вопросы, которые мучают их по сегодняшний день. Если у вас два пузыря, содержащие одинаковый объем воздуха, какую форму они примут при объединении? Неизменное правило состоит в том, что пузыри ленивы и предпочитают формы с наименьшей площадью поверхности мыльной пленки. Поскольку у объединившихся пузырей есть общая граница, они могут трансформироваться так, чтобы не просто касаться в точке, а сделать меньше площадь поверхности.

Если вы выдуваете пузыри и два пузыря одинакового объема слипаются, их комбинация выглядит так (рис. 2.09):


Рис. 2.09


Рис. 2.10


Две неполные сферы пересекаются под углом 120°, кроме того, их разделяет плоская мембрана. Разумеется, это состояние стабильно, в противном случае природа не позволила бы сохранять его. Но вопрос в том, возможна ли другая форма, у которой еще меньше площадь поверхности и, соответственно, энергия, что сделало бы ее более эффективной? Вероятно, потребуется потратить энергию, чтобы вывести пузыри из данного стабильного состояния, но энергия нового результирующего состояния двух пузырей может быть еще ниже. Например, вдруг более эффективна причудливая конфигурация двух слипшихся пузырей, когда один из них принимает форму бублика и обертывается вокруг другого, поджимая тот до формы арахиса (рис. 2.10)?

О первом доказательстве того, что невозможно улучшить обычную конфигурацию слипшихся пузырей, было объявлено в 1995 г. Хотя математики не особенно любят прибегать к помощи компьютера, поскольку это вступает в противоречие с их понятиями красоты и элегантности, авторам пришлось воспользоваться им, чтобы проверить свои длинные численные расчеты, вовлеченные в доказательство.

Пять лет спустя было заявлено о доказательстве предположения о двойном пузыре, которое использовало лишь ручку и бумагу. В действительности было доказано более общее предположение: если объем заключенного воздуха неодинаков, то есть один пузырь меньше другого, то они слипаются таким образом, что разделяющая их мембрана уже не плоская, а выгибается в сторону большего пузыря. Эта мембрана является частью третьей сферы, она пересекается с двумя сферическими пузырями таким образом, что получающиеся углы между тремя мыльными пленками равны 120° (рис. 2.11 и 2.12).


Рис. 2.11


Рис. 2.12


По сути, это свойство 120° оказывается общим правилом для слипания мыльных пузырей. Впервые оно было открыто бельгийским ученым Жозефом Плато, родившимся в 1801 г. Когда Плато желал изучить влияние света на сетчатку, он полминуты смотрел на полуденный солнечный диск, из-за чего временно ослеп. К 40 годам он окончательно потерял зрение. Затем, опираясь на помощь родственников и коллег, он переключился на исследование формы пузырей.

Плато начал с того, что погружал в мыльный раствор разнообразные проволочные каркасы и исследовал получающиеся формы. Например, если ваш каркас сделан в форме куба, результатом будет 13 мембран внутри его, причем в центре образуется квадрат (рис. 2.13).


Рис. 2.13


Правда, это не совсем квадрат, его стороны несколько выпирают наружу. По мере того как Плато исследовал множество пленок, получающихся в разных каркасах, он начал формулировать набор правил для объединения пузырей. Первое из них состояло в том, что пленки всегда пересекаются тройками, образуя между собой углы в 120°. Край, образующийся при пересечении этих трех пленок, называется в его честь границей Плато. Второе правило касается пересечения этих границ. Границы Плато пересекаются четверками, образуя между собой угол в 109,47° (если точнее, arccos(−⅓)). Если вы возьмете тетраэдр и проведете из его центра масс линии к четырем вершинам, то получите конфигурацию четверки границ Плато в пене (рис. 2.14). Итак, выпирающие наружу стороны квадрата, находящегося в центре кубического проволочного каркаса, в действительности пересекаются под углом 109,47°.


Рис. 2.14


Полагается, что если какой-либо пузырь не подчиняется правилам Плато, то он нестабилен, следовательно, должна произойти перестройка конфигурации в стабильную, подчиняющуюся этим правилам. Лишь в 1976 г. Джин Тейлор окончательно доказала, что форма пузырьков в пене должна подчиняться правилам, установленным Плато. Ее работа говорит нам о том, как пузыри объединяются, но какова же фактическая форма пузырей в пене? Поскольку пузыри ленивы, появляется возможность ответить на этот вопрос, если найти формы пузырей в пене, каждая из которых охватывает заданный объем воздуха и при этом минимизирует площадь мыльной пленки.

Медоносные пчелы уже решили эту задачу в двух измерениях. Причина, по которой они сооружают соты, используя шестиугольники, состоит в том, что при этом требуется наименьшее количество воска при фиксированном количестве меда в каждой ячейке. Но опять-таки лишь благодаря недавнему прорыву удалось доказать теорему о медовых сотах: никакая другая двумерная структура не превзойдет шестиугольные соты по эффективности.

Тем не менее, когда мы переходим к трехмерным структурам, положение вещей становится менее очевидным. В 1887 г. знаменитый британский физик лорд Кельвин предположил, что один из Архимедовых футбольных мячей играет ключевую роль в минимизации площади поверхности в пене. В то время как шестиугольник является строительным кирпичиком при сооружении эффективных пчелиных сот, усеченный октаэдр определяет построение пены. Усеченный октаэдр получается срезанием шести углов обычного октаэдра:


Рис. 2.15


Правила, которые установил Плато для пересечения пузырей, показывают, что грани и ребра должны быть не плоскими, а изогнутыми. Например, стороны квадрата образуют угол 90°, но по второму правилу Плато это недопустимо. Вместо этого края квадрата должны немного выгибаться наружу, как в случае кубического проволочного каркаса, тогда между ними образуется необходимый угол 109,47°.


Рис. 2.16. Пена из усеченных октаэдров


Многие считали, что структура Кельвина является ответом на вопрос, как получить пену с минимальной поверхностной энергией, но никто не мог доказать этого. Но в 1993 г. Денис Уэйр и Роберт Фелан из Дублинского университета обнаружили две формы, которые при совместной упаковке превосходят структуру Кельвина на 0,3 % (пусть это послужит предупреждением тем, кто полагает, что доказательство в математике – напрасная трата времени).

Использованные ими формы не были в списке Архимеда. Гранями первой из них являются неправильные пятиугольники, они объединены в искаженный додекаэдр (пентагондодекаэдр). Вторая форма называется тетракаидекаэдр, ее грани – два удлиненных шестиугольника и 12 неправильных пятиугольников двух видов. Уэйр и Фелан выяснили, что они могут упаковать эти формы вместе, так что получится более эффективная пена, чем предложенная Кельвином. Опять-таки, чтобы удовлетворить правилам Плато, нужно немного искривить ребра и грани. Оказывается, довольно трудно проникнуть внутрь настоящей пены, чтобы посмотреть, что происходит на самом деле. Двое ученых проводили численные эксперименты, использовали компьютеры для моделирования пены и обнаружили новую структуру.


Рис. 2.17. Формы, которые нашли Уэйр и Фелан


Это – лучшее, на что способны пузыри? Мы не знаем. Мы считаем, что данная структура наиболее эффективна. Но ведь и Кельвин полагал, что нашел ответ.

Дизайнеры Arup в своем поиске интересных природных форм, напоминающих о состязаниях, проходящих в олимпийском плавательном комплексе, изучали туман, айсберги и волны. Они случайно натолкнулись на пену Уэйра – Фелана и поняли, что у нее был потенциал к созданию совершенно новых архитектурных форм. Чтобы избежать чрезмерной регулярности, решили разрезать пену под углом. Внешние стены «Водяного куба», как неформально называется плавательный центр, представляют ту структуру пузырей, которую вы увидите, если вставите лист стекла в пену под углом.

Хотя структура, созданная Arup, кажется вполне случайной, она начинает повторяться на протяжении здания. Тем не менее она вызывает именно то органичное ощущение, к которому стремились дизайнеры. Однако если вы получше приглядитесь, то заметите пузырь, который противоречит правилам Плато, ведь в его очертаниях заметны прямые углы вместо предписанных Плато 120° и 109,47°. Так стабилен ли «Водяной куб»? Будь он сделан из пузырей, ответом было бы «нет». Данный прямоугольный пузырь изменил бы свою форму, чтобы прийти в соответствие тем математическим правилам, которым должны подчиняться все пузыри. И все-таки у китайских властей нет повода для беспокойства. Насколько можно ожидать, «Водяной куб» будет стоять благодаря математике, которая была задействована при создании этого прекрасного сооружения.


Рис. 2.18. На поверхности олимпийского плавательного центра в Пекине есть нестабильный пузырь


Но не только Arup и китайские власти интересуются формой, которую приобретают пузыри, когда их прижимают друг к другу. Понимание строения пены помогает нам разобраться во многих других природных структурах, например в структуре органических клеток в шоколаде, взбитых сливках или в шапке над пинтой пива. Пена используется при тушении пожаров, в защите водных ресурсов от радиоактивных утечек и при переработке минералов. Интересуетесь ли вы борьбой с пожарами или тем, как добиться, чтобы пенная шапка над вашим «Гиннессом» не оседала слишком быстро, ключ к ответу определяется пониманием математической структуры пены.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации