Автор книги: Маркус Сотой
Жанр: Личностный рост, Книги по психологии
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]
Шорткат в гиперпространство
Идея превращения геометрии в числа не только позволяет лучше ориентироваться в трехмерном пространстве. Она еще и открывает перед нами порталы в миры, которые мы никогда не увидим своими глазами. Одним из самых захватывающих моментов моего математического путешествия по искусству шортката было открытие возможности изучать многомерные пространства. Тот день, когда я впервые прочитал о том, как этот язык позволяет построить куб в четырех измерениях, до сих пор запечатлен в моей памяти.
Это объясняло, как космический корабль может переместиться с одного конца Вселенной на другой по шорткату через четвертое измерение. Это давало ответ на вопрос, как Вселенная может быть конечной, но не иметь границ. Это даже позволяло распутывать узлы, которые невозможно развязать в трех измерениях.
Но этот словарь позволяет не только путешествовать в пространстве. Благодаря отображению данных в многомерные миры проявляются скрытые структуры. Когда вы строите по данным график, вы видите двумерную тень объекта, который следовало бы изображать в многомерном пространстве. Такой шорткат вполне может прояснить нюансы, скрытые этими двумерными тенями. Итак, пристегните ремни: мы отправляемся в путешествие по гиперпространству!
Чтобы попасть в четвертое измерение, нужно начать со второго. Предположим, я хочу описать квадрат в терминах картезианского словаря координат: я могу сказать, что квадрат – это фигура с четырьмя вершинами, расположенными в точках (0,0), (1,0), (0,1) и (1,1). Очевидно, для определения любого положения в плоском двумерном мире нужны всего две координаты, но, если я захочу учесть еще и высоту над уровнем моря, можно добавить третью координату. Третья координата также понадобится, если я захочу описать при помощи координат трехмерный куб. Восемь вершин куба можно описать точками (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1) и, наконец, крайней точкой с координатами (1,1,1).
Рис. 3.4. Построение гиперкуба при помощи координат
В одной колонке словаря Декарта содержатся фигуры и геометрические свойства, а в другой – числа и координаты. Проблема заключается в том, что при попытке выйти за пределы трехмерных тел визуальное восприятие отказывает, потому что физического четвертого измерения не существует. Но у словаря Декарта есть одно великолепное свойство, которое осознал великий немецкий математик XIX века Бернхард Риман, учившийся у Гаусса в Геттингене: вторая сторона словаря продолжает действовать даже и в этом случае.
Чтобы описать четырехмерный объект, нужно всего лишь добавить четвертую координату, указывающую величину смещения в этом новом направлении. Хотя я не могу построить четырехмерный куб физически, тем не менее я могу точно описать его при помощи чисел. У него 16 вершин начиная с точки (0,0,0,0), за которой идут вершины в точках (1,0,0,0), (0,1,0,0) и так далее, вплоть до самой удаленной от первой вершины в точке (1,1,1,1). Числа образуют код, описывающий фигуру. При помощи этого кода я могу исследовать эту фигуру, причем мне даже не нужно видеть ее физически.
Этим дело не кончается. Можно перейти к пяти, шести и даже большему числу измерений и построить гиперкубы и в этих мирах. Например, у N-мерного гиперкуба должно быть 2N вершин. От каждой из этих вершин отходят N ребер, каждое из которых мы учитываем дважды. Следовательно, N-мерный куб имеет N × 2N –1 ребер.
Когда я попробовал на зуб четырехмерный куб, это разожгло во мне аппетит к открытию других фигур в этой необычной многомерной вселенной. Построение в ней новых симметричных объектов стало моей страстью. Например, если вы когда-нибудь бывали в великолепном дворце Альгамбра в Гранаде, вас (я надеюсь) привели в восторг те чудесные игры в симметрию, в которые играли на его стенах художники. Но можно ли понять эти симметрии? Мой шорткат к пониманию с первого взгляда того, что кажется очень наглядным, – это превращение симметрии в язык.
Создание нового языка для понимания симметрии, известного под названием «теория групп», относится к началу XIX века. Этот язык был порождением ума одного выдающегося молодого человека – французского революционера Эвариста Галуа. К несчастью, его жизнь оборвалась до того, как он сумел в полной мере реализовать потенциальные возможности своего открытия. В двадцатилетнем возрасте он был застрелен на дуэли, поводом для которой были любовь и политика.
Хотя две разные стены в Альгамбре украшены очень разными узорами, математика симметрии позволяет установить, что симметрии этих двух стен одинаковы. Такова сила нового языка, который создал Галуа.
Симметрию можно определить как те действия, производимые над объектом, после которых он выглядит так же, как и до них. Галуа понял, что важная характеристика симметрии заключается во взаимодействии между отдельными симметриями. Что, если дать симметриям названия? Тогда можно найти своего рода грамматику, на которой основаны все они. Эта грамматика стала шорткатом к пониманию мира симметрий. Изображения исчезли, а на их месте возникла особая алгебра, выражающая, как симметрии взаимодействуют друг с другом.
При помощи теории групп к концу XIX века математики сумели доказать, что существует всего 17 разных типов симметрии орнаментов, которые возможно изобразить на стенах Альгамбры или где бы то ни было еще. Мои собственные исследования продолжают эти изыскания, выводя их в гиперпространство. Я пытаюсь понять, сколькими разными способами можно украсить Альгамбру орнаментами в многомерном пространстве. Речь идет о здании, построенном не из камня, а из языка.
Эти сюрреалистические формы можно увидеть и в нашем обыденном трехмерном мире. Большая арка Дефанс в пригороде Парижа, которую построил датский архитектор Йохан Отто фон Спрекельсен, на самом деле представляет собой трехмерную проекцию четырехмерного куба, или куба, заключенного в кубе. На картине Сальвадора Дали «Распятие, или Гиперкубическое тело» Христос изображен распятым на трехмерной развертке четырехмерного гиперкуба.
Есть даже компьютерная игра, которая должна позволить игрокам получить опыт существования в четырехмерном пространстве. Ее придумал разработчик компьютерных игр Марк тен Бош, который работает над созданием этой гиперигры уже более десятилетия. Игрок, перед которым на экране оказалась стена, не позволяющая ему пройти дальше в трехмерном мире, может включить четвертое измерение и, переместившись в новом направлении, найти параллельный мир, в котором есть шорткат за эту стену. Судя по всему, игра должна получиться потрясающей, и я с нетерпением жду ее выпуска. Однако я подозреваю, что ее разработка так сильно затянулась отчасти из-за того, насколько разработчику с трехмерным разумом трудно создавать и объединять все эти четырехмерные миры.
Победа в играх
Я вообще очень люблю игры, и не только безумные четырехмерные. Мне нравится коллекционировать новые игры в поездках по всему миру. Но меня не перестает поражать тот факт, что игры из разных уголков света, хотя они и выглядят совершенно не похоже друг на друга, часто бывают, по сути дела, одной и той же игрой в разных нарядах. Это навело меня на мысль, что во многие игры гораздо проще играть, если удастся превратить их в другие, непохожие с виду, игры.
Многие из задач, которые нам приходится решать в жизни, – это, по сути дела, замаскированные игры. Потенциальное сотрудничество между двумя конкурирующими компаниями часто оказывается примером игры под названием «дилемма заключенного». В соперничестве трех сторон может скрываться игра камень-ножницы-бумага. Если вы видели фильм «Игры разума», вы, возможно, помните тот момент, когда один из создателей теории игр, Джон Нэш, которого играет Рассел Кроу, превращает в игру попытку познакомиться в баре с красивой женщиной. Но у игр есть правила, которые очень хорошо умеет описывать математика. Один из величайших шорткатов к победе в игре, открытых математикой, – это превращение игры в нечто совершенно иное, при котором победная стратегия становится гораздо более ясной.
Один из моих любимых примеров такого рода связан с игрой под названием «15». Каждый из участников игры по очереди выбирает числа от 1 до 9, стремясь получить три числа, дающие в сумме 15. Нужно, чтобы пятнадцати была равна именно сумма трех чисел. Например, 1 + 9 + 5. Выбрать 6 + 9 нельзя. Играть в эту игру довольно сложно, потому что нужно не только держать в голове разные способы получить 15 из имеющихся у вас чисел, но и стараться не дать сопернику получить 15 раньше вас. Чтобы почувствовать, как трудно бывает учесть все возможные варианты, имеет смысл сыграть пробную партию с другом.
Шорткат для этой игры заключается в преобразовании ее в другую игру, играть в которую гораздо легче, – в крестики-нолики. Только играть нужно на магическом квадрате.
Магический квадрат замечателен тем, что сумма чисел в любой его строке, любом столбце и любой диагонали равна 15. Если вы играете в крестики-нолики на таком квадрате, вы на самом деле играете в 15. Но держать в голове геометрию игры в крестики-нолики гораздо легче, чем арифметические возможности получения суммы чисел, равной 15.
На следующей странице показана еще одна игра, играть в которую становится легко, если взглянуть на нее с правильной точки зрения. На чертеже показана карта городов, соединенных дорогами. Все дороги представляют собой прямые линии, и на каждой из них может быть 2, 3 или 4 города.
Рис. 3.5. Сеть дорог
Участники игры по очереди «забирают себе» дороги. Выигрывает тот, кто первым скопит три дороги, проходящие через один и тот же город. Чтобы понять, какие стратегии возможны в этой игре, в нее тоже полезно сыграть пробную партию. Но на самом деле это опять замаскированные крестики-нолики. Если обозначить дороги цифрами, как показано на рис. 3.6, окажется, что вы снова играете в крестики-нолики на магическом квадрате.
Рис. 3.6. Сеть дорог, помеченных цифрами магического квадрата
Еще одна классическая игра, стратегия которой становится очевидной, если перевести ее на другой язык, – это игра ним. Есть три кучки бобов. Каждый из участников, дождавшись своего хода, забирает из одной из кучек любое количество бобов. Побеждает тот, кто забирает последний боб. Количество бобов в кучках в начале игры может быть любым.
Предположим, например, что у нас есть три кучки, в которых 4, 5 и 6 бобов. Существует ли стратегия, помогающая победить в этой игре? Хитрость заключается в том, что количество бобов в каждой кучке нужно перевести в двоичную систему счисления. Как вы помните из предыдущей главы, в двоичной системе числа основаны на степенях 2, а не на степенях 10, как в десятичной. Так, 100 в двоичной системе обозначает число 4, потому что в позиции, соответствующей 22, стоит единица. Соответственно, 5 = 22 + 1, то есть 101, а 6 = 22 + 2, то есть 110. Кроме того, есть одно странное правило сложения таких чисел, которое поможет вам понять, выигрышно ли ваше положение в игре. Нужно складывать цифры, стоящие в соответствующих столбцах, но с учетом правила, согласно которому 1 + 1 = 0. Итак,
Выигрышная стратегия требует забрать из одной кучки такое количество бобов, чтобы эта сумма стала равна 000. Оказывается, это всегда возможно. Например, если я заберу 3 боба из кучки, в которой их 5, в ней останутся 2 боба. В двоичной системе 2 – это 010. Сосчитаем сумму еще раз и получим 000:
Самое замечательное в этом то, что любой ход, который сделает после этого ваш противник, изменит сумму так, что в ней появятся какие-нибудь единицы. А если в сумме есть единицы, значит, партия еще не выиграна. Но ваша стратегия позволяет каждый раз возвращать сумму к числу 000. В какой-то момент это приведет к тому, что вы действительно заберете со стола все бобы и победите в этой партии.
Язык двоичных чисел преобразует эту игру в нечто такое, в чем вы всегда можете победить, каким бы ни было количество бобов или кучек. Если только вы выучите двоичные числа. Если в начале игры сумма уже представляет собой последовательность нулей, непременно уступите первый ход противнику. В ином случае делайте первый ход сами, причем так, чтобы он сводил сумму к нулям.
Оказывается, стратегия использования языка двоичных чисел для понимания состояния игры помогает разобраться в массе других сходных игр. Попробуйте сыграть в игру черепахи. Пусть у нас есть ряд черепах, лежащих случайным образом – некоторые лежат на животе, а некоторые перевернуты на спину. (Если у вас дома нет достаточного количества черепах, можно взять монеты. Орлы соответствуют черепахам, лежащим на животе, а решки – черепахам, лежащим на спине.) Каждый из участников игры, когда до него доходит очередь, может перевернуть какую-нибудь черепаху на спину (или монету так, чтобы она лежала не орлом, а решкой вверх). Кроме того, он может, если захочет, перевернуть одну черепаху (или монету), лежащую левее той, которую он перевернул на спину. Вторая черепаха или монета может быть в любом состоянии, на животе или на спине (орлом или решкой). Вот, например, ряд из n = 13 монет:
Р О Р Р О Р Р Р О О Р О Р
Один из возможных ходов в этом положении – перевернуть монету, лежащую в 9-й позиции, чтобы она лежала не орлом, а решкой, и монету, лежащую в 4-й позиции, чтобы она лежала не решкой, а орлом.
Побеждает тот, кто перевернет с живота на спину последнюю черепаху (или из орлов в решки последнюю монету). На первый взгляд кажется, что эта игра не имеет ничего общего с игрой ним, но на самом деле это та же самая игра, только замаскированная.
Число черепах, еще лежащих на животе, соответствует числу кучек, а положение каждой такой черепахи, считая слева, – количеству предметов в соответствующей кучке. В случае показанного на иллюстрации расклада из 13 монет получается 5 кучек, в которых лежат 2, 5, 9, 10 и 12 бобов. Перевернуть черепаху в 9-й позиции на спину (или решкой кверху) и перевернуть черепаху в 4-й позиции на живот – это все равно что забрать 5 бобов из кучки с 9 бобами. Теперь использование языка двоичных чисел, который обеспечивает победу в игре ним, порождает стратегию переворачивания черепах в игре, на первый взгляд не имеющей с той ничего общего.
Хотя вам, возможно, никогда не придется играть в переворачивание черепах, философскую основу победы в этой игре стоит запомнить. Когда вы сталкиваетесь с какой-либо задачей, нельзя ли преобразовать ее в нечто такое, во что вы уже умеете играть? Не существует ли словаря, переводящего эту задачу на язык, делающий решение более очевидным? Когда перед вами возникает стена, в том языке, который вы используете, может не быть способов ее преодолеть. Но, стоит перейти в другой мир, сменив этот язык на другой, там может открыться шорткат, который позволит вам пробраться за стену.
Шорткат к шорткатам
Если задача кажется неподатливой, попытайтесь найти словарь, помогающий перевести ее на другой язык, который яснее покажет решение. Если ваша вновь разгоревшаяся страсть к домашнему мастерству не дает тех результатов, на которые вы рассчитывали, возможно, вам нужно сменить чертежи на числа и посмотреть, не покажут ли измерения, почему детали не желают правильно соединяться. Если бизнес-план, набитый таблицами с числами, не отражает всех достоинств вашего проекта, посмотрите, не станет ли ваша идея понятнее из иллюстраций или графиков. Не найдется ли какого-нибудь алгебраического приема, который сэкономит вам многие часы, уходящие на ввод финансовых данных компании в очередные таблицы? Не окажется ли ваша борьба с конкурентами замаскированной игрой, победная стратегия которой вам уже известна? Вот к чему призывает эта глава: ищите подходящий язык, который поможет вам думать лучше.
Пит-стоп: Память
Хотя я успешно овладел языком математики, меня всегда приводило в отчаяние то, что я не смог освоить более непредсказуемые языки, например французский или русский, которые я пытался выучить, когда мечтал стать разведчиком. Хотя Гаусс тоже отрекся от увлечения языками, чтобы заняться математической карьерой, впоследствии он еще возвращался к изучению новых языков – например, санскрита или русского. К шестидесяти четырем годам он, прозанимавшись русским два года, выучил этот язык настолько хорошо, что смог читать Пушкина в оригинале.
Вдохновившись примером Гаусса, я решил заново попытаться выучить русский. Одна из проблем, с которыми я сталкиваюсь, заключается в том, что мне попросту трудно запоминать новые, незнакомые слова. Мой шорткат к запоминанию – выявление паттернов. Но что делать, если паттернов нет? Я хотел узнать, не бывает ли альтернативных шорткатов, которые используют другие. С этим вопросом лучше всего было обратиться к Эду Куку, гроссмейстеру памяти и основателю новой системы изучения языков Memrise.
Чтобы получить звание гроссмейстера памяти, нужно суметь запомнить за один час 1000-значное число. В течение следующего часа вам дается задача запомнить порядок карт в десяти колодах. Наконец, вам дают две минуты на запоминание еще одной колоды. По правде говоря, пытаться приобрести такую способность кажется делом довольно бессмысленным, но я понял, что для человека, способного на это, запоминание списка русских слов должно быть сущим пустяком.
Учитывая, что цифры 1000-значного числа выбираются случайно, моя стратегия поиска паттернов тут, вероятно, не пригодилась бы. Какой же шорткат использовал Кук, чтобы запомнить тысячу случайно выбранных цифр? Оказывается, он применяет метод так называемого дворца памяти.
«Шорткат сводится к подбору тому, что трудно запомнить, некой замены, которую запомнить легче, – говорит Кук. – Мы помним то, что ощущаем, видим, осязаем, то, что вызывает какие-нибудь эмоции. Это и требуется: преобразование в нечто такое, что задействует первичное сознание.
Чтобы запомнить 1000-значное число, я расставляю по порядку множество картинок, и каждая картинка соответствует какому-нибудь числу. Например, если я пытаюсь вспомнить число вроде 7831809720, его обычно очень трудно запомнить, потому что это просто числа, они звучат приблизительно одинаково, и никакого отдельного смысла в них нет. Но в моем воображении 78 – это тот парень, который травил меня в школе и подвешивал меня за ногу над лестничным пролетом, а на мне были спортивные трусы – очень памятный момент. Гораздо лучше запоминается, чем число 78».
Каждое двузначное число превращается в какого-нибудь персонажа. На личном языке Кука число 31 – это Клаудия Шиффер «в том достопамятном желтом платье из рекламы “ситроена”». Добавление дополнительного цвета важно. «Чем ярче и необычнее образ, тем лучше он запоминается». Число 80 – это один из друзей, у которого очень забавное лицо. 97 – крикетист Эндрю Флинтофф. 20 – отец Кука.
«Я составил этот словарь чисел, когда мне было лет восемнадцать, так что он стал окаменелым отпечатком моего подросткового воображения, моих настроений, красивых людей, о которых я читал в журналах, моих родных, моих лучших друзей», – говорит он.
Хотя Кук прав, что большинству людей все числа кажутся на одно лицо, математик, проводящий все больше и больше времени в путешествиях по миру чисел, начинает познавать индивидуальные черты каждого из них. Каждое обретает свой характер. Про великого индийского математика Рамануджана говорили, что он знает каждое число как личного друга. Однажды, когда он был болен, работавший вместе с ним Харди навестил его в больнице и, не зная, каким разговором развлечь коллегу-математика, вспомнил, что приехал на такси с довольно скучным номером – 1729. Рамануджан немедленно ответил: «Вовсе нет, Харди. Это очень интересный номер. Это наименьшее число, которое можно выразить в виде суммы двух кубов двумя разными способами». 1729 = 123 + 13 = 93 + 103. Однако у большинства нет таких тесных эмоциональных отношений с числами. Вероятно, запомнить Клаудию Шиффер в желтом все же легче, чем сумму кубов.
Но каким образом эти персонажи помогают Куку запомнить 1000 цифр? Главный прием – расположить персонажей в пространстве. «Чтобы составлять очень, очень длинные цепочки информации о чем-нибудь, нужен остов, на который можно спроецировать такие образы, причем оказывается, что у нас поразительно сильная пространственная память. Млекопитающие развили невероятную способность ориентироваться в невероятном множестве разных мест и запоминать их. Мы очень хорошо умеем это делать, даже если нам самим так не кажется. Мы можем запомнить конфигурацию запутанного здания, всего лишь походив по нему несколько минут. И эта сильная способность может служить шорткатом к использованию образов, представляющих в нашей памяти числа. Это называется созданием дворца памяти».
Дворец памяти – это не просто повествование, но повествование, перемещающееся в пространстве. Последнее обстоятельство особенно важно. «Преимущество дворца памяти перед простой историей состоит в том, что истории менее устойчивы к разрывам цепочки. Кроме того, сочинение истории требует дополнительной работы: вам нужно создавать логичный сюжет, а не просто проходить по чисто пространственным структурам; это требует от воображения несколько большего приложения сил».
Несколько лет назад я видел, как Кук строит такой дворец. Мы оба участвовали в «Марафоне памяти» в галерее Серпентайн, проходившем на выходных мероприятии, посвященном исследованию концепции памяти. Я помню, как он устроил для публики поразительную экскурсию по территории галереи и вокруг нее, используя все, что он там видел, для создания дворца памяти, который помог присутствующим запомнить всех президентов Соединенных Штатов. Имя каждого президента было переведено в какой-нибудь чрезвычайно яркий образ. Например, президент Джон Адамс превратился в изображение Адама и Евы, пытающихся устоять на крышке унитаза (слово john – жаргонное название туалета). Затем все эти образы были привязаны к определенным местам в парке. Чтобы вспомнить имена президентов, нужно было только восстановить в памяти эту прогулку – наш мозг, по-видимому, очень хорошо умеет это делать, – а затем обратиться к абсурдным образам, привязанным к разным ее точкам, и они напоминали нужные имена.
Использование пространственной памяти кажется поразительным шорткатом к запоминанию очень длинных последовательностей, будь то числа, президенты или любые другие объекты, которые вы пытаетесь сохранить в памяти. Это на удивление полезный прием, потому что трудность механического запоминания, по-видимому, возрастает экспоненциально. Первые 10 вещей запомнить легко, следующие 10 труднее, а если их больше 100 – почти невозможно. Но, как объяснил мне Кук, «совершенно поразительное свойство пространственного запоминания состоит в том, что его трудность, по-видимому, растет линейно. Я могу запомнить колоду карт приблизительно за минуту – может быть, за две, если захочу проверить, правильно ли я запомнил. Так вот, масштабирование получается линейным: за час я смогу запомнить 30 колод».
Когда я заметил, что способность запоминать расположение карт в колоде – это, возможно, не то искусство, которым захотят овладеть мои читатели, Кук постарался подчеркнуть, что дело совсем не в картах. Эта тактика работает, что бы вы ни пытались запомнить. Он объяснил, что использует в точности ту же самую стратегию, когда читает лекции, не опираясь на свои записи. Нужно преобразовать доклад в прогулку по какому-нибудь знакомому месту – например, по вашему же собственному дому – и расположить в каждой комнате те вещи, о которых вы собираетесь рассказать. По ходу выступления вам будет гораздо легче вспоминать подготовленный доклад, последовательно проходя по дворцу памяти, который вы построили у себя в уме: «Когда отправляешься в путешествие по дворцу памяти, место действия постоянно меняется. Из-за этого опасность смешения разных воспоминаний становится меньше, потому что каждое следующее воспоминание вызывается в новой обстановке».
На технике перевода двузначных чисел в визуальные образы основан и поразительный вычислительный фокус, который умеет показывать мой друг-фокусник Артур Бенджамин. Он научился перемножать в уме шестизначные числа. Один из приемов, которые он использует, – алгебраическое разбиение шестизначных чисел на части, которые можно перемножить по отдельности. Но для того, чтобы продолжать вычисления, ему нужно сохранить эти числа в памяти, чтобы впоследствии вспомнить и использовать их.
Бенджамин обнаружил, что, когда он пытался просто запомнить число, это мешало ему вычислять. Казалось, что численная память занимает то же место, что и вычисления. Поэтому он придумал специальный код, переводящий числа в слова. Оказалось, что запоминание слов происходит в другой, не затрагиваемой вычислениями, части мозга, и впоследствии слова можно вспоминать и снова переводить в числа по мере надобности.
Я беседовал с Эдом Куком в период карантина, введенного в Великобритании в связи с эпидемией COVID-19, и Кук вспомнил, что начал свой путь к званию магистра памяти в другой медицинской изоляции – когда подростком оказался на три месяца в больнице, где ему было нечем заняться. «Отчасти мной двигало удовольствие от доведения дела до логического конца. Студентом я показывал фокусы в барах, запоминая длинные числа и карточные колоды на спор на бутылку шампанского. А еще я начал хвастаться соседям, что я, наверное, один из самых быстрых запоминальщиков карт в мире. А они говорили: “Да ну тебя, Эд! Поди-ка докажи” – и это привело меня к этим чемпионатам памяти».
Дворцы памяти, возможно, помогают запоминать последовательности цифр или читать лекции без конспекта, но как насчет моей мечты выучить русский язык? Эту ли методику использует компания Memrise, созданная Куком программа изучения иностранных языков? Найду ли я наконец секретный шорткат к освоению нового языка?
«Повторение и проверка, – говорит Кук. – Повторяя выученное, мы доказываем своему мозгу, что эта информация достойна запоминания. Важные вещи обычно повторяются. Проверка важна, потому что воспоминания – это движения разума, и эти движения становятся тем увереннее, чем больше мы упражняемся в них».
Честно говоря, это не очень-то похоже на шорткат. Но у Кука есть и другие советы: «Третий компонент – мнемоника. Скажем, у меня есть сложное русское слово “остановка”. Как уложить его в голове? Я могу попытаться соотнести его с известными мне словами моего родного языка так, чтобы они связывали его в единое целое. Если мы хотим закрепить какое-то понятие в уме, его нужно вплести в уже существующую сеть ассоциаций. Например, “оста-“ похоже на “Остин” (Austin), название английской автомобилестроительной компании. Они выпустили достаточно машин – enough cars – что дает мне “-новка”, но я поеду на автобусе, и это напоминает, что значение этого слова – автобусная остановка».
Этот прием кажется более перспективным. Очевидно, необходимость повторения и проверки не позволит мне выучить русский за час. Но мнемоника действительно может оказаться шорткатом к запоминанию русских слов, которые до сих пор не задерживались у меня в памяти. Кроме того, Кук дал еще один, последний, совет по части изучения языков, который он получил от своей бабушки: «Лучше всего изучать язык в романе с иностранкой. Там у вас будут и увлечение, и мотивация, и внимание, и сосредоточенность, помогающие учиться очень быстро».
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?