Электронная библиотека » Мартин Форд » » онлайн чтение - страница 6


  • Текст добавлен: 19 апреля 2022, 02:29


Автор книги: Мартин Форд


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Я думаю, что именно так должен использоваться машинный суперинтеллект. Если все получится, выигрыш будет настолько большим, что мы просто обязаны гарантировать всем фантастическое качество жизни: не только экономическую выгоду (в форме универсального базового дохода или по какой-то другой схеме), но совершенные технологии, лучшее здравоохранение и т. п.

М. Ф.: А если сильный ИИ первым создаст Китай? Имеют ли значение культурные ценности страны, в которой развивается технология?

Н. Б.: Я думаю, не очень важно, в какой культуре сильный ИИ появится первым. Куда важнее вопрос, насколько компетентны люди или группы, которые его развивают, и имеют ли они возможность быть осторожными. Это проблема любой гонки. Стремясь к результату, люди пренебрегают правилами безопасности. И побеждает тот, кто тратит на безопасность меньше всего усилий.

Хотелось бы, чтобы тот, кто первым разработает суперинтеллект, имел возможность в конце сделать паузу месяцев на шесть, а лучше на пару лет, чтобы перепроверить свои системы и установить любые дополнительные средства защиты, которые сможет придумать. И только после этого медленно и осторожно стал расширять возможности системы до сверхчеловеческого уровня. Поэтому важно максимально смягчать конкуренцию.

М. Ф.: Если интеллект сможет рекурсивно улучшать сам себя, первопроходец получает огромное преимущество. Соответственно, существует огромный стимул именно для гонки.

Н. Б.: Да, это так. Но я думаю, что тема гарантированного достижения глобального блага может снизить интенсивность гонки. Нужно, чтобы все участники осознавали, что проигравших не будет.

М. Ф.: Это потребует международного сотрудничества, в котором человечество пока не очень преуспело. Если сравнить с запретом на химическое оружие и с актом о нераспространении ядерного оружия, получится, что в случае с ИИ проверить соблюдение соглашения будет еще сложнее.

Н. Б.: В чем-то это окажется сложнее, в чем-то проще. Люди играют в эти игры из-за ограниченных ресурсов. У кого-то ресурсы есть, а у кого-то еще нет. ИИ может привести к изобилию во многих отношениях, что позволит облегчить установление договоренностей.

М. Ф.: Думаете, мы решим эти проблемы?

Н. Б.: Внутри у меня надежда и страх. Но хотелось бы подчеркнуть именно положительные стороны, как в краткосрочной, так и в долгосрочной перспективе. Из-за моей работы и книги меня всегда спрашивают о рисках и недостатках технологии, но я надеюсь, что она сможет стать благом для всего мира.

Ян Лекун

“Человек может научиться водить автомобиль за 15 часов тренировок, ни во что не врезавшись. Если использовать существующие методы обучения с подкреплением, машине, чтобы научиться ездить без водителя, придется 10 тысяч раз упасть с обрыва, прежде чем она поймет, как этого избежать".


Вице-президент и основатель лаборатории исследования ИИ в FACEBOOK (FAIR), профессор computer science в Нью-йоркском Университете


Вместе с Джеффри Хинтоном и Иошуа Бенджио Ян Лекун входит в группу исследователей, усилия и настойчивость которых привели к нынешней революции в отношении к нейронным сетям и глубокому обучению. Работая в Лабораториях Белла, он изобрел сверточные нейронные сети. Диплом инженера-электрика получил в Париже в ESIEE, а докторскую степень в области computer science – в Университете Пьера и Марии Кюри. После аспирантуры работал в Лаборатории Джеффри Хинтона в Университете Торонто.


Мартин Форд: Взрыв интереса к глубокому обучению последние 10 лет – это следствие одновременного совершенствования нейронных сетей, увеличения мощности компьютеров и количества доступных данных?

Ян Лекун: Да, но процесс был более обдуманным. Появившийся в 1986–87 гг. алгоритм обратного распространения дал возможность обучать многослойные нейронные сети. Это вызвало волну интереса, которая продержалась вплоть до 1995 г. В 2003 г. Джеффри Хинтон, Иошуа Бенджио и я придумали план, как возобновить интерес сообщества к этим методам, потому что были уверены в их неминуемой победе. Так что можно сказать, что имел место умышленный сговор.

М. Ф.: Вы уже тогда понимали все перспективы? Сейчас ИИ и глубокое обучение считают синонимами.

Я. Л.: И да, и нет. Мы знали, что методы лягут в основу компьютерного зрения, распознавания речи и, возможно, пары других вещей, но никто не ожидал, что они распространятся на понимание естественного языка, робототехнику, анализ медицинской визуализации и даже поспособствуют появлению беспилотных автомобилей. В начале 1990-х гг. я думал, что движение к этим вещам будет более плавным, а появятся они немного раньше. Нас же ждала революция, случившаяся примерно в 2013 г.

М. Ф.: А как возник ваш интерес к ИИ и машинному обучению?

Я. Л.: Я с детства интересовался наукой, техникой и глобальными вопросами о зарождении жизни, интеллекта, происхождении человечества. Идея ИИ привела меня в восторг. Но в 1960–70 х гг. во Франции этим никто не занимался, поэтому после школы я пошел учиться на инженера.

В 1980 г. мне очень понравилась книга по философии Language and Learning: The Debate Between Jean Piaget and Noam Chomsky («Язык и обучение: дискуссия между Жаном Пиаже и Ноамом Хомским»), в которой создатель теории когнитивного развития и лингвист обсуждали природу и воспитание, а также зарождение языка и интеллекта.

На стороне Пиаже выступал профессор MIT Сеймур Пейперт, который стоял у истоков машинного обучения и в конце 1960-х гг. фактически способствовал прекращению работ с нейронными сетями. И вот спустя 10 лет он превозносил так называемый персептрон – очень простую модель машинного обучения, которая появилась в 1950-х гг. и над которой он работал в 1960-х гг. Так я впервые познакомился с концепцией обучения машин и был ею абсолютно очарован. Способность к обучению я считал неотъемлемой частью интеллекта.

Студентом я прочитал по машинному обучению все, что удалось найти, и сделал несколько проектов по этой теме. Оказалось, на Западе никто не работает с нейронными сетями. Над тем, что позже стало называться этим термином, трудились несколько японских исследователей. У нас же эта тема никого не интересовала, отчасти из-за вышедшей в конце 1960-х гг. книги Пейперта и Минского.

Я начал самостоятельные исследования и в 1987 г. защитил докторскую диссертацию Modeles connexionnistes de l'apprentissage («Коннекционистские модели обучения»). Мой руководитель Морис Милгрэм этой темой не занимался и прямо сказал мне, что может официально стать моим консультантом, но ничем не сможет помочь технически.

В начале 1980-х гг. я обнаружил сообщество людей, которые работали над нейронными сетями, и связался с ними. В итоге параллельно Дэвиду Румельхарту и Джеффри Хинтону я открыл такую вещь, как метод обратного распространения ошибки.

М. Ф.: То есть в начале 1980-х гг. в Канаде велись многочисленные исследования в этой области?

Я. Л.: Нет, все происходило в США. В Канаде такие исследования тогда еще не велись. В начале 1980-х гг. Джеффри Хинтон был сотрудником Калифорнийского университета в Сан-Диего, где работал с такими специалистами по когнитивной психологии, как Дэвид Румельхарт и Джеймс Макклелланд. В результате появилась книга, объясняющая психологию при помощи простых нейронных сетей и компьютерных моделей. Затем Джеффри стал доцентом в Университете Карнеги – Меллона. В Торонто он переехал только в 1987 г. Тогда же в Торонто перебрался и я, и в течение года работал в его лаборатории.

М. Ф.: В начале 1980-х гг. я был студентом, изучавшим вычислительную технику, и не помню, чтобы где-то применялись нейронные сети. Сейчас ситуация резко изменилась.

Я. Л.: Нейронные сети не просто оказались на обочине науки. В 1970-х гг. и начале 1980-х гг. их фактически предали анафеме. Статьи отклонялись за одно упоминание нейронных сетей.

Известна статья Optimal Perceptual Inference («Оптимальный персептивный вывод»), которую в 1983 г. опубликовали Джеффри Хинтон и Терри Сейновски. Чтобы описать в ней одну из первых моделей глубокого обучения и нейронной сети, они использовали кодовые слова, даже в названии.

М. Ф.: Вы известны как автор сверточной нейронной сети. Объясните, пожалуйста, что это такое?

Я. Л.: Изначально эта нейронная сеть была оптимизирована под распознавание объектов на изображениях. Но оказалось, что ее можно применить к широкому кругу задач, например распознаванию речи и машинному переводу. Идеей для ее создания послужили особенности зрительной коры мозга животных и людей, изученные в 1950–60-х гг. Дэвидом Хьюбелом и Торстеном Визелом, позднее получившими Нобелевскую премию в области нейробиологии.

Сверточная сеть – это особый способ соединения нейронов, которые не являются точной копией биологических нейронов. В первом слое – слое свертки – каждый нейрон связан с небольшим количеством пикселов изображения и вычисляет взвешенную сумму своих входных данных. В процессе обучения веса меняются. Группы нейронов видят небольшие участки изображения. Если нейрон обнаруживает определенный признак на одном участке, другой нейрон обнаружит точно такой же признак на соседнем участке, а все остальные нейроны – в остальных участках изображения. Математическая операция, которую нейроны выполняют вместе, называется дискретной сверткой. Отсюда название.

Затем идет нелинейный слой, где каждый нейрон включается или выключается, в зависимости от того, выше или ниже заданного порога оказалась вычисляемая слоем свертки взвешенная сумма. Наконец, третий слой выполняет операцию субдискретизации, чтобы убедиться, что небольшое смещение или деформация входного изображения не сильно меняет результат на выходе. Это обеспечивает независимость от деформаций входного изображения.

По сути, сверточная сеть – это стек, организованный из слоев свертки, нелинейности и субдискретизации. Когда они сложены, появляются нейроны, распознающие объекты. Например, нейрон, который включается при нахождении лошади на изображении, другой нейрон – для автомобилей, третий – для людей и так далее, для всех нужных вам категорий.

При этом то, что делает нейронная сеть, определяется силой связей между нейронами, то есть весами. И эти веса не запрограммированы, а являются результатом обучения.

Сети показывается изображение лошади, и, если она не отвечает «лошадь», ее информируют, что это неправильно, и подсказывают правильный ответ. После этого с помощью алгоритма обратного распространения ошибки сеть корректирует веса всех соединений, чтобы в следующий раз при демонстрации такого же изображения результат был ближе к нужному. При этом приходится демонстрировать ей тысячи изображений.

М. Ф.: Это обучение с учителем? Как я понимаю, сейчас это доминирующий подход.

Я. Л.: Именно так. Почти все современные приложения глубокого обучения используют обучение с учителем. Магия в том, что обученная сеть по большей части дает правильные ответы даже для изображений, которых ей раньше не показывали. Но нуждается в огромном количестве примеров.

М. Ф.: А чего можно ожидать в будущем? Можно ли будет учить машину как ребенка, которому достаточно один раз показать кошку и назвать ее?

Я. Л.: На самом деле вы не совсем правы. Первые тренировки сверточной сети действительно проходят на миллионах изображений различных категорий. А потом, если нужно добавить новую категорию, например научить компьютер распознавать кошек, для этого достаточно нескольких образцов. Ведь сеть уже обучена распознавать объекты практически любого типа. Дополнения к обучению касаются пары верхних слоев.

М. Ф.: Это уже похоже на то, как учатся дети.

Я. Л.: Нет, к сожалению, это совсем не похоже. Дети получают большую часть информации до того, как кто-то скажет им: «Это кошка». В первые несколько месяцев жизни дети учатся, не имея понятия о языке. Они узнают устройство мира, просто наблюдая за миром и немного взаимодействуя с ним. Такой способ накопления знаний машинам недоступен. Как это назвать, непонятно. Некоторые используют провокационный термин «обучение без учителя». Иногда это называют предвосхищающим, или индуктивным, обучением. Я называю это самообучением. При обучении этого типа не идет речи о подготовке к выполнению какой-то задачи, это просто наблюдение за миром и тем, как он функционирует.

М. Ф.: А обучение с подкреплением в эту категорию попадает?

Я. Л.: Нет, это совсем другая категория. По сути, выделяют три основные категории: обучение с подкреплением, обучение с учителем и самообучение.

Обучение с подкреплением происходит методом проб и ошибок и хорошо работает для игр, где можно делать сколько угодно попыток. Хорошая производительность AlphaGo была достигнута после того, как машина сыграла больше игр, чем все человечество за последние три тысячи лет. К задачам из реального мира такой подход нецелесообразен.

Человек может научиться водить автомобиль за 15 часов тренировок, ни во что не врезавшись. Если использовать существующие методы обучения с подкреплением, машине, чтобы научиться ездить без водителя, придется 10 тысяч раз упасть с обрыва, прежде чем она поймет, как этого избежать.

М. Ф.: Мне кажется, что это аргумент в пользу моделирования.

Я. Л.: Скорее, это подтверждение того, что тип обучения, которым пользуются люди, сильно отличается от обучения с подкреплением. Это похоже на обучение с подкреплением на базе моделей. Ведь человек, садясь за руль впервые, имеет модель мира и может предсказывать последствия своих действий. Как заставить машину самостоятельно изучать прогностические модели – это главная нерешенная проблема.

М. Ф.: Именно с этим связана ваша работа в Facebook?

Я. Л.: Да, это одна из вещей, над которыми мы работаем. Еще мы обучаем машину наблюдать за разными источниками данных. Строим модель мира, надеясь на отражение в ней здравого смысла, чтобы потом использовать ее как прогностическую.

М. Ф.: Некоторые считают, что одного глубокого обучения недостаточно, и в сетях изначально должна быть структура, отвечающая за интеллект. А вы, похоже, убеждены, что интеллект может органически появиться из относительно универсальных нейронных сетей.

Я. Л.: Вы преувеличиваете. С необходимостью структуры согласны все, вопрос в том, как она должна выглядеть. А говоря о людях, которые считают, что должны быть структуры, обеспечивающие логическое мышление и способность к аргументации, вы, вероятно, имеете в виду Гари Маркуса и, возможно, Орена Этциони. С Гари мы спорили на эту тему сегодня утром. Его мнение не очень хорошо воспринимается в сообществе, потому что, не сделав ни малейшего вклада в глубокое обучение, он критически писал о нем. Орен работал в этой сфере некоторое время и при этом высказывается значительно мягче.

Фактически, сама идея сверточных сетей возникла как попытка добавить в нейронные сети структуру. Вопрос в том, какую: позволяющую машине манипулировать символами или, например, соответствующую иерархическим особенностям языка?

Многие мои коллеги, в том числе Джеффри Хинтон и Иошуа Бенджио, согласны с тем, что рано или поздно мы сможем обойтись без структур. Они могут принести пользу в краткосрочной перспективе, потому что пока не придуман способ самообучения. Этот момент можно обойти, привязав все к архитектуре. Но микроструктура коры, как визуальной, так и префронтальной, кажется полностью однородной.

М. Ф.: А мозг использует что-то похожее на метод обратного распространения ошибки?

Я. Л.: Это неизвестно. Может оказаться, что это не обратное распространение в том виде, как мы его знаем, а похожая на него форма аппроксимации оценки градиента. Над биологически правдоподобными формами оценки градиента работал Иошуа Бенджио. Существует вероятность того, что мозг оценивает градиент какой-либо целевой функции.

М. Ф.: Над какими еще важными вещами ведется работа в компании Facebook?

Я. Л.: Мы занимаемся множеством фундаментальных исследований, а также вопросами машинного обучения, поэтому в основном имеем дело с прикладной математикой и оптимизацией. Ведется работа над обучением с подкреплением и над так называемыми порождающими моделями, которые представляют собой форму самообучения или предвосхищающего обучения.

М. Ф.: Разрабатывает ли компания Facebook системы, умеющие поддерживать разговор?

Я. Л.: Фундаментальные темы исследований я перечислил выше, но есть еще и множество областей их применения. Facebook активно ведет разработки в области компьютерного зрения, и можно утверждать, что у нас лучшая в мире исследовательская группа. Мы много работаем и над обработкой текстов на естественном языке. Сюда относится перевод, обобщение, категоризация (выяснение, о какой теме идет речь) и диалоговые системы для виртуальных помощников, систем вопросов и ответов и т. п.

М. Ф.: Как вы думаете, появится ли однажды ИИ, который сможет пройти тест Тьюринга?

Я. Л.: В какой-то момент это случится, но я не считаю тест Тьюринга хорошим критерием: его легко обмануть, и он в некоторой степени устарел. Многие забывают или отказываются верить, что язык – это вторичное явление по отношению к интеллекту. Посмотрите на орангутанов. Они в изрядной степени обладают здравым смыслом, имеют хорошие модели мира и могут создавать инструменты, как люди. Но при этом у них нет языка. Они не социальные животные и едва взаимодействуют с другими представителями вида, если не брать невербальное общение матери и детеныша. Существует целый пласт интеллекта, не имеющий ничего общего с языком. И сводя проверку ИИ к прохождению теста Тьюринга, мы этот пласт игнорируем.

М. Ф.: Какие препятствия стоят на пути к созданию сильного ИИ?

Я. Л.: Я думаю, что мы пока не видим всего массива проблем, с которым нам предстоит столкнуться в процессе работы. Но первым делом нужно выяснить, каким способом дети и животные в первые дни, недели и месяцы жизни познают устройство мира.

Именно в это время ребенок узнает, что мир трехмерен. Замечает, что при движении головой объекты перемещаются перед ним. Получает представление о постоянстве предметов, когда видит, что спрятанный объект никуда не исчезает. Постепенно узнает о существовании гравитации, инерции и жесткости – это базовые свойства, которые постигаются в основном путем наблюдения. У младенца нет средств воздействия на мир, но он много наблюдает и получает при этом огромное количество информации. Это делают и детеныши животных, но больше следуют инстинктам. Пока мы не выясним, как провести такое обучение, к созданию сильного ИИ не приблизимся. Есть и технические подзадачи, в которые я не буду углубляться, например предсказание в условиях неопределенности, но они уже вторичны.

М. Ф.: Но вы считаете, что сильный ИИ достижим?

Я. Л.: Конечно.

М. Ф.: И он обязательно появится?

Я. Л.: Я в этом не сомневаюсь.

М. Ф.: У него будет сознание или же это будет зомби, не имеющий сознательного опыта?

Я. Л.: Мы понятия не имеем, что такое сознание. Более того, я считаю, что в итоге вопрос наличия сознания окажется непринципиальным. Еще в XVII в., когда люди поняли, что на сетчатке глаза формируется перевернутое изображение, они были озадачены тем, что мы видим все неперевернутым. Когда поняли, как именно обрабатывается картинка, оказалось, что на самом деле не имеет значения, в каком порядке идут пикселы. Здесь то же самое. Я считаю сознание субъективным опытом, который появляется как побочный продукт интеллекта.

Есть несколько гипотез о том, как возникает иллюзия наличия сознания. По крайней мере, я считаю это иллюзией. Например, в префронтальной коре мозга есть механизм, позволяющий людям моделировать мир. Заметив какую-то ситуацию, мы подстраиваем под нее модель мира. Сознательное состояние – это своего рода форма внимания. Если бы наш мозг был больше и имел набор из нескольких механизмов для моделирования мира, мы обладали бы другим сознанием.

М. Ф.: Давайте поговорим о том, какие опасности несет ИИ. Считаете ли вы, что мы на пороге экономического спада с массовым исчезновением рабочих мест?

Я. Л.: Эти вопросы меня тоже интересуют, хотя я и не экономист. Экономисты называют ИИ технологией общего назначения (general-purpose technology, GPT). С их точки зрения эта технология затронет всю экономику, как электричество или паровой двигатель.

Меня беспокоит проблема безработицы. Технологии развиваются быстрее, чем у населения появляются навыки, необходимые в новой экономической модели. Но экономисты утверждают, что скорость распространения технологий фактически ограничена долей людей, которые не умеют ими пользоваться. Другими словами, имеет место саморегуляция: чем больше людей остается не у дел, тем медленнее распространяются технологии. Вспомните, как обстояли дела с компьютерными технологиями.

М. Ф.: Но можем ли мы опираться на исторические случаи, рассматривая машины, у которых будут когнитивные способности? Мне кажется, на этот раз человечеству грозит более серьезный кризис.

Я. Л.: Я не думаю, что появление ИИ приведет к массовой безработице. Конечно, сейчас экономический ландшафт сильно изменился. Сто лет назад большая часть населения работала на полях, а теперь этим занимается 2 %. Как сказал один экономист, «перед нами всегда будут проблемы, которые нужно решать, а значит, работа не закончится». Грядущие ИИ-системы усилят человеческий интеллект так же, как механические машины увеличили физическую силу.

М. Ф.: Думаю, для водителей или работников фастфуда переход получится болезненным.

Я. Л.: Надо учитывать, что ценность товаров и услуг тоже поменяется. Все, произведенное машиной, станет дешевле, а сделанное людьми – дороже.

Например, проигрыватель Blu-Ray можно купить за 46 долларов. Если подумать о том, какая сложная технология лежит в его основе, цена кажется безумно низкой. Это «синие» лазеры, которых не было 20 лет назад. Невероятно точный сервомеханизм, обеспечивающий позиционирование лазера с точностью до микрона. Сжатие видео H.264 и сверхбыстрые процессоры. Но он стоит 46 долларов, потому что в основном производится машинами. Теперь зайдите в интернет и найдите керамическую салатницу ручной работы. Технологии производства керамики 10 тысяч лет, но по первым же ссылкам вы найдете товар, который стоит примерно 500 долларов.

Поездки на такси будут дешевыми, потому что машиной управляет ИИ-система, но повысятся цены на еду в ресторанах, где готовит повар, а обслуживают официанты.

М. Ф.: Но ведь далеко не все люди обладают востребованными навыками или талантами. Что вы думаете об идее универсального базового дохода?

Я. Л.: У меня нет определенного мнения по этому поводу, так как я не экономист, но все экономисты, с которыми я разговаривал, выступали против универсального базового дохода. Все они считали, что правительства должны принять меры для компенсации возрастающего в результате технического прогресса неравенства. Все должно упираться в фискальную политику, то есть налогообложение, перераспределение богатства и доходов.

Неравенство в доходах особенно заметно в США, в меньшей степени – в Западной Европе. Коэффициент Джини – статистический показатель степени расслоения общества – во Франции или Скандинавии составляет около 25 или 30. В США он равен 45, и это уровень стран третьего мира. Экономист из MIT Эрик Бринолфссон вместе со своим коллегой Эндрю Макафи написал пару книг о влиянии технологий на экономику. Они говорят, что средний доход американских домохозяйств не изменился с 1980-х гг., то есть со времен рейганомики и снижения налогов на высокие доходы. А вот производительность росла более или менее непрерывно. В Западной Европе ничего подобного не было. Так что все зависит от налоговой политики. Существуют простые меры, которыми правительства могут компенсировать дестабилизацию, просто в США этого не делается.

М. Ф.: Какие еще опасности может принести ИИ?

Я. Л.: Начну с того, что нет смысла бояться, что мы создадим интеллект человеческого уровня, а он вырвется из-под нашего контроля, и роботы захотят захватить мир. Желание захватить мир связано не с интеллектом, а с тестостероном. В американской политике много примеров, явно показывающих, что стремление к власти не связано с интеллектом.

М. Ф.: Но, например, с точки зрения Ника Бострома проблема в том, что ИИ может начать добиваться своей цели способом, который навредит людям.

Я. Л.: То есть мы достаточно умны, чтобы создавать машины с интеллектом, а потом зачем-то приказываем им создать бесконечное количество скрепок? С моей точки зрения это нереально.

М. Ф.: Я думаю, что Ник специально привел преувеличенно карикатурный пример. Такие сценарии кажутся надуманными, но, когда речь заходит о суперинтеллекте, нельзя исключать, что машина может начать действовать непостижимыми для людей способами.

Я. Л.: Такие сценарии предполагают, что каким-то образом мы заранее проектируем целевую функцию, то есть внутренние мотивы машин, и в случае ошибки они начнут делать сумасшедшие вещи. Люди устроены по-другому. Внутренние целевые функции в нас не встроены. Разумеется, есть инстинкты, заставляющие есть, дышать и размножаться, но многое в нашем поведении и системе ценностей появляется как следствие обучения. То же самое можно сделать с машинами. Сформировать их систему ценностей, научить вести себя в обществе и приносить пользу человечеству. Не проектированием, а обучением, что гораздо проще. Мы же учим этому детей. Что мешает так же поступить с роботами или системами ИИ?

Мне эти вопросы кажутся преждевременными. Грубо говоря, у нас еще не изобретен двигатель внутреннего сгорания, а мы уже беспокоимся, что не сможем изобрести тормоз и ремень безопасности. При этом изобрести двигатель куда сложнее.

М. Ф.: Что вы думаете о сценарии с рекурсивными улучшениями, в результате которых ИИ многократно превзойдет людей?

Я. Л.: Я в него не верю. Очевидно, что непрерывное улучшение неизбежно. Но чем выше будет интеллект машин, тем больше они начнут помогать в проектировании следующего поколения.

Существует дифференциальное уравнение, описывающее развитие технологий, экономику, потребление ресурсов, коммуникации, сложность технологий и т. п. Оно содержит целый ряд замедляющих коэффициентов, которые почему-то игнорируются сторонниками сценария быстрого взлета. Любой физический процесс в какой-то момент должен перейти в стадию насыщения, например по причине истощения ресурсов. Не будет такого, что кто-то раскроет секрет сильного ИИ и мы начнем переходить от машин с интеллектом крысы к машинам с интеллектом орангутана, через неделю они станут умнее нас, а месяц спустя – намного умнее.

Кроме того, превосходство в области интеллекта не означает превосходства во всем. Вирусы при всей своей глупости убивают людей. Если мы сможем создать систему ИИ, то, вероятно, сможем создать и более специализированный ИИ, предназначенный для уничтожения первого. И он будет крайне эффективно справляться с задачей, так как специализированные машины эффективнее универсальных. Я уверен, что в каждую проблему уже встроено решение.

М. Ф.: Тогда о чем имеет смысл беспокоиться в ближайшие десятилетия?

Я. Л.: Прежде всего о проблемах в экономике. Все они решаемы, но нужно преодолеть политические препятствия, особенно в таких странах, как США, где не принимается идея о перераспределении доходов. Еще есть проблема с распространением технологии. Желательно, чтобы она приносила пользу всему миру, а не только развитым странам. Я думаю, что ускорение технического прогресса и появление ИИ заставят правительства больше вкладывать в образование, особенно в непрерывное образование, потому что людям придется искать новые рабочие места. Иначе нас ждет дестабилизация. Предвзятость, которая попадает в машину на уровне данных, в случае обучения с учителем может усугубиться.

М. Ф.: Я надеюсь, что предвзятость в алгоритме исправить проще, чем в человеке.

Я. Л.: Именно поэтому я смотрю на ситуацию с оптимизмом. Бороться с предвзятостью машин действительно проще. У людей необъективность и пристрастность иногда принимают твердую форму.

М. Ф.: Беспокоит ли вас применение ИИ военными, например создание автономного оружия?

Я. Л.: И да, и нет. Разумеется, технологию ИИ можно использовать для создания оружия, но, к примеру, я совершенно не согласен со Стюартом Расселом, который считает, что это непременно будет оружие массового уничтожения. Я думаю, что все будет с точностью до наоборот. ИИ начнут применять для так называемых хирургических действий. Зачем разрушать бомбой целое здание, если можно послать беспилотник, который просто усыпит человека, которого нужно захватить?

М. Ф.: Беспокоит ли вас то, что ИИ может первым создать Китай? В этой стране больше данных при меньших ограничениях на конфиденциальность. Дает ли им это преимущество?

Я. Л.: Не думаю. Современный прогресс в науке обусловлен не широкой доступностью данных. Сколько бы человек ни проживало в Китае, доля тех, кто связан с технологиями и занимается исследованиями, относительно мала.

Разумеется, их количество будет расти. Китай делает успехи в этом направлении. Но мне кажется, что принятые там стиль управления и тип образования могут через некоторое время задушить творческие порывы. Но в Китае есть и хорошие специалисты, которые могут внести вклад в развитие ИИ.

В 1980-х гг. Запад точно так же испытывал страх перед быстро распространяющимися японскими технологиями. Но в какой-то момент все стабилизировалось. Потом мы боялись корейцев, теперь вот китайцев. В течение следующих десятилетий в китайском обществе могут произойти большие перемены, что может полностью изменить ситуацию.

М. Ф.: Нуждается ли ИИ в регулировании со стороны государства?

Я. Л.: Я не думаю, что государство должно вмешиваться в исследования и процесс разработки ИИ, а вот конкретные варианты применения этой технологии, безусловно, потребуют регулирования. Но это требование связано не с ИИ, а с областью применения приложений. Представьте, что ИИ применяется для разработки лекарств. Процесс тестирования, выпуска и применения препаратов, содержащих наркотические вещества, уже регулируется. Когда на дорогах появятся беспилотные автомобили, они будут подчиняться ПДД. Разумеется, могут появиться и сферы, в которых все настолько изменится благодаря ИИ, что придется дорабатывать существующие правила. Но пока никакого регулирования в связи с ИИ не требуется.

М. Ф.: То есть вы не согласны с риторикой Илона Маска?

Я. Л.: Совершенно не согласен. Я несколько раз общался с ним, и не знаю, откуда взялись его взгляды. Маск умный парень, мне очень нравятся некоторые его проекты, но я не понимаю его мотивации. Он хочет спасти человечество, возможно, поэтому ему нужна еще одна экзистенциальная угроза. Он искренне обеспокоен, но пока никто из нас не смог его убедить, что сценарии в стиле Ника Бострома человечеству не грозят.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации