Текст книги "Искусство большего. Как математика создала цивилизацию"
Автор книги: Майкл Брукс
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]
Польза дробей
Если оценивать названия книг, то “Наставление, как достигнуть знания всех темных вещей” – это отпад. По названию можно подумать, что это книга из сырого подвала какой-нибудь лавки колдовских товаров, в которой объясняется, как призывать духов для осуществления всяческих козней. Но это не так. На самом деле это древнеегипетский учебник математики.
На Западе он более известен как папирус Ринда – по фамилии шотландского юриста, который около 1858 года приобрел его в Фивах. Большая часть рукописи (длина всего документа составляет 5,5 метра) хранится в Британском музее в Лондоне. Остаток – в Бруклинском музее в Нью-Йорке. Она была создана древнеегипетским писцом Ахмесом около 3,5 тысячи лет назад. Ахмес (имя которого значит “рожденный на луне”) скопировал тысячелетний текст с описанием математических приемов, применявшихся древнеегипетскими жрецами.
Древнеегипетское царство зависело от расчетов, связанных с ежегодным разливом Нила. Инженеры снимали показания глубиномеров и сообщали об изменениях уровня воды. Жрецы-астрономы вели календари, чтобы египтяне могли подготовиться ко дню гелиакического восхода Сириуса – моменту, когда звезда оказывалась достаточно далеко от Солнца относительно Земли, чтобы снова появиться на земном небосводе. В этот день заканчивалась подготовка к очистке каналов и ремонту стоков.
Благодаря расчетам египтяне прекрасно справлялись с тем, чтобы направлять разливающиеся воды Нила в каналы и на сельскохозяйственные угодья, где плодородные наносы оседали на земле. Как только вода уходила в землю или возвращалась по каналам обратно в основное русло реки, начинался новый земледельческий сезон, но сначала происходили разделы и перераспределения угодий.
При разливе вода смывала все границы и межевые отметки, поэтому писцам приходилось записывать, сколько земли домохозяйства обрабатывали в прошлом году. После этого администраторы выделяли им эквивалентный участок только что удобренной земли, площадь которого определяли с помощью действий, которые мы сегодня сочли бы примитивной арифметикой. Они, вероятно, были довольно примитивны и для древних египтян, но явно считались достаточно важными, поскольку писцы регулярно копировали ветшающие документы с описанием процесса.
Значительная часть папируса Ринда, по сути, представляет собой введение в науку о дробях. Возможно, вы удивитесь, узнав, что дроби изобрели не чтобы пытать школьников, а чтобы управлять экономикой. Цивилизации, которой нужно было знать, сколько зерна содержится в цилиндрическом хранилище, и выполнять волю правительства при разделе земли, распределении продовольствия и оплате труда, целых чисел – тех, что нам уже знакомы, – было недостаточно.
С помощью целых чисел наш мозг соотносит объекты окружающей среды с абстрактными понятиями “единицы”, “двойки” и так далее, и именно ими мы оперируем, когда считаем на пальцах (которые, если нам повезло, существуют также в виртуальной форме у нас в голове). Дроби – дело другое. Это способ делить целые числа, сравнивая одно с другим. И возни с ними немало: идея о том, что целые числа делятся на части, – ужасающий скачок вперед для мозга, который не был приспособлен в рамках эволюции представлять такие вещи.
Если в школе дроби вам никак не давались, вы совсем не одиноки. Хорошую компанию вам, например, составил бы Леонардо да Винчи. Несмотря на свои великие достижения в искусстве, инженерии и астрономии, он совершенно не умел работать с дробями[19]19
Duvernoy S. Leonardo and theoretical mathematics. Nexus Network Journal. 10,1 (2008): 39–49.
[Закрыть]. Его записи показывают, что он ошибался всякий раз, когда ему приходилось перемножать их или делить. Так, он просто не мог поверить, что частное при делении на дробь величиной меньше единицы (например, на 2/3) оказывается больше делимого[20]20
Если вы сочувствуете Леонардо, в этом нет ничего удивительного. Разумеется, можно просто принять, что при делении на число меньше единицы частное оказывается больше делимого. Не помешает, впрочем, разобраться в этом на примере. Допустим, мы делим 10 шоколадок между 5 хоккейными командами. Каждая команда получает по 2 шоколадки. Теперь допустим, что мы делим шоколадки между 2 командами. В таком случае каждая команда получает по 5 шоколадок. Чем меньше оказывается делитель, тем больше становится частное. Так продолжается, пока делитель не достигнет 1. Рассмотрим числа меньше 1. Допустим, мы делим 10 шоколадок между 1/3 команды. Треть хоккейной команды – это 2 человека. Следовательно, 10 шоколадок делится между 2 игроками, то есть каждый игрок получает по 5 шоколадок. Но это равнозначно тому, как если бы вся команда получила 5 × 6 = 30 шоколадок. Итак, при делении 10 на 1/3 получается 30.
[Закрыть].
Да Винчи, несомненно, пришлось бы туго в вашей школе. По программе американские школьники должны овладеть дробями к 12–13 годам и научиться, например, расставлять по возрастанию дроби 1/2, 5/9 и 2/7. А вам такое по плечу? Большинству 12– и 13-летних школьников это не под силу.
Вот другой пример: какое из чисел – 1, 2, 19 или 21 – ближе к сумме 12/13 и 7/8? Три четверти 12– и 13-летних американских школьников дают неверный ответ[21]21
McNamara J., Shaughnessy M. M. Student errors: what can they tell us about what students DO Understand? Math Solutions, 2011.
[Закрыть]. Самая распространенная ошибка – складывать числители и знаменатели (верхние и нижние числа) по отдельности, то есть обращаться с ними как с натуральными числами. Удивляться здесь нечему, ведь именно этому вас и учили до сих пор. Вместо этого вам нужно либо давать этим числам приблизительную оценку (и 12/13, и 7/8 близки к 1, поэтому их сумма будет близка к 2), либо приводить дроби к общему знаменателю и затем складывать друг с другом скорректированные числители. Стоит задуматься об этом, как дроби сразу кажутся чем-то жутким и беспощадным. Мы уже знаем, что умение работать с натуральными числами далось человечеству большими стараниями, но в случае с дробями все эти навыки приходится отправлять на помойку[22]22
Ответ на первый вопрос: 2/7, 1/2, 5/9. Ответ на второй вопрос: 2. Прийти к ним можно либо путем аппроксимации (и 12/13, и 7/8 близки к 1, поэтому их сумма близка к 2), либо путем приведения дробей к общему знаменателю. Превратим 12/13 в 96/104, умножив числитель и знаменатель на 8. Затем превратим 7/8 в 91/104, умножив числитель и знаменатель на 13. Сложим числители. 96 + 91 = 187, а значит, в сумме дроби дают 187/104. Это приблизительно 1,8, что ближе всего к 2.
[Закрыть].
Сколько бы сложностей с ними ни возникало, цивилизация за цивилизацией понимала, что дроби стоят того, чтобы над ними попотеть. Вавилоняне осознали это первыми, около 2000 года до нашей эры, а за ними последовали древние египтяне, индусы, греки и китайцы. А это значит, если я не ошибся в расчетах, что вид, который живет на Земле уже 300 тысяч лет, применяет дроби (по очень грубой оценке) на протяжении лишь последней сотой части своего существования. Если вы еще не убедились в том, что даже в базовой математике нет ничего естественного и безусловного, то вот вам доказательство.
Дело в том, что ведение учета невозможно без двух других математических инноваций: отрицательных чисел и понятия нуля. И хотя сегодня они общеприняты и кажутся простыми, обе идеи поначалу вызывали споры, а потому сегодняшнее положение они смогли занять лишь через несколько сотен лет после своего появления.
Необходимость в отрицательных числах
Странно понимать, что мы тысячелетиями производили вычитание, хотя никто не мог ответить на вопрос “Сколько будет 1 минус 2?”. Но виноват в этом опять же наш мозг. Мы просто не можем представить себе минус одно яблоко, поэтому нам нечего и надеяться на врожденное понимание отрицательных чисел. Они стали еще одним огромным скачком, еще одной концепцией, которую человеку пришлось создать с нуля. Однако, как и дроби, отрицательные числа оказались слишком полезными, чтобы их не изобрести.
История у отрицательных чисел получилась весьма запутанной. Трактат “Артхашастра”, составленный древнеиндийским учителем Каутильей, вероятно, около 300 года до нашей эры, свидетельствует, что бухгалтерское дело в Индии было в то время уже достаточно развито: индусам были знакомы понятия активов, долга, выручки, расходов и доходов, и есть основания предположить, что индийские счетоводы, возможно, уже тогда обозначали долги отрицательными числами. В сочинении “Математика в девяти книгах” китайский математик Чжан Цан проводил расчеты с отрицательными числами. Мы точно не знаем, когда оно было написано – вероятнее всего, между 200 годом до нашей эры и 50 годом нашей эры, – но в нем говорится, что красные палочки обозначают положительные числа, а черные палочки соответствуют отрицательным числам. Однако, несмотря на применение отрицательных чисел в арифметике, Чжан Цан не мог смириться с тем, что их можно получать и при таких операциях, как решение уравнений. Судя по всему, в его представлении они были чисто практическим инструментом коммерции и торговли.
В 628 году нашей эры индийский математик Брахмагупта также предлагал выражать долг отрицательными числами. Он даже представил правила умножения (произведение) и деления (частное) при работе с положительными числами (достатками) и отрицательными числами (долгами):
Произведение или частное двух достатков – один достаток.
Произведение или частное двух долгов – один достаток.
Произведение или частное одного долга и одного достатка – долг.
Произведение или частное одного достатка и одного долга – долг.
Выражаясь современным языком, мы сказали бы:
При умножении или делении двух положительных чисел получается положительное число.
При умножении или делении двух отрицательных чисел получается положительное число.
При умножении или делении отрицательного числа на положительное число получается отрицательное число.
При умножении или делении положительного числа на отрицательное число получается отрицательное число.
Возможно, эти правила знакомы вам в другой формулировке: “Минус на минус дает плюс, а плюс на минус дает минус”.
Очевидно, к этому моменту индийские счетоводы уже свободно обращались с отрицательными числами. Но в западном мире прогресс шел гораздо медленнее. Проблема была в том, что Запад унаследовал математику от древних греков, а те обожали целые числа. Они могли делить их, получая дроби, но, какими бы маленькими ни становились числа, они никогда не оказывались отрицательными.
Первое осторожное упоминание отрицательных чисел в западном мире было сделано в “Книге абака”, написанной в 1202 году. Вам, возможно, знакомо имя ее автора – Фибоначчи. На самом деле его звали иначе, а это прозвище ему придумал биограф несколько столетий спустя. Но Леонардо Пизанский действительно был сыном Гильермо Боначчи (отсюда и “фи” – сын – Боначчи), и прозвище так прочно прикрепилось к нему, что сейчас именно оно считается одним из величайших имен в математике.
На заре своей карьеры Фибоначчи служил на итальянской таможне и работал в Алжире. Сопровождая отца в поездках в такие страны, как Сирия и Египет, он рано познакомился с математикой, выходящей за итальянскую традицию, и узнал множество операций и идей, которые казались радикальными, революционными, а иногда просто полезными. В “Книге абака” содержится немало математических изобретений, задач, решений и курьезов, включая правила (основанные на темпе бесконтрольного увеличения популяции кроликов) составления числовой последовательности, которая теперь носит имя Фибоначчи[23]23
Последовательность Фибоначчи начинается с 0 и 1, а каждое следующее число в ней получается путем сложения двух предыдущих. Первые 12 чисел таковы: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и 89.
[Закрыть]. Но также в книге рассматривалось использование отрицательных чисел как общепризнанного математического инструмента. В качестве примера Фибоначчи предложил задачу, в которой четыре человека в заданных пропорциях делят деньги из кошелька:
есть четыре человека; у первого с кошельком вдвое больше второго и третьего, у второго с кошельком втрое больше третьего и четвертого, у третьего с кошельком вчетверо больше четвертого и первого. У четвертого с кошельком впятеро больше первого и второго…
Обозначив четырех мужчин буквами от A до D, а кошелек – буквой P, получим такую “систему уравнений”:
A + P = 2 (B + C)
B + P = 3 (C + D)
C + P = 4 (D + A)
D + P = 5 (A + D)
Эти уравнения устанавливают числовые отношения между всеми неизвестными, и Фибоначчи утверждает, что задача имеет целый ряд решений, но минимальные значения таковы: “У второго – 4, у третьего – 1, у четвертого – 4, в кошельке – 11, а дебет первого – 1”. Любопытно, что здесь появляется понятие “дебет”. Фибоначчи подчеркивает, что “задача не имеет решения, если не допустить, что у первого человека может быть дебет”, и показывает, что наличие дебета предполагает осуществление арифметических действий с отрицательными числами.
Хотя, написав книгу, Фибоначчи сумел распространить некоторые математические идеи в европейской среде, с отрицательными числами у него почти ничего не вышло. Запад не принимал их еще несколько сотен лет. Так, французский математик Блез Паскаль полагал, что, если вычесть 4 из 0, получится 0, – и презрительно отзывался обо всех, кто считал иначе. В своих “Мыслях” он сказал: “Я знаю людей, которые не могут понять, что если от нуля отнять четыре, останется ноль”[24]24
Pascal B. Pensées, www.gutenberg.org/files/18269/18269-h/18269-h.htm. Перевод Ю. Гинзбург.
[Закрыть]. И это в середине XVII века, в эпоху микроскопов, телескопов, законов Ньютона и электричества. Даже в период научных открытий и появления технологических инноваций некоторые из лучших западных умов не желали признавать существование отрицательных чисел.
Ситуация начала меняться, лишь когда Джон Валлис, Савильский профессор геометрии Оксфордского университета, понял, что людям думается проще, когда они могут представить картину происходящего. В 1685 году он опубликовал “Трактат по алгебре”, в котором выстроил числа в ряд и позволил им уйти в отрицательную область. Он отметил, что в абстрактной форме осознать это сложно. Но если представить какую-нибудь физическую величину, например расстояние, все сразу станет понятно. Разумеется, он выразился несколько иначе. Вот его слова:
Нельзя, однако, сказать, что гипотеза (об отрицательных числах) бесполезна или абсурдна, если правильно ее трактовать. Хотя в чисто алгебраической записи она добавляет величину, которая меньше нуля, в физическом приложении она обозначает величину столь же реальную, как если бы знаком ее был +, только трактуемую в противоположном смысле[25]25
Wallis J. A Treatise of Algebra, Both Historical and Practical. Philosophical Transactions of the Royal Society of London. 15, no. 173 (1685): 1095–1106.
[Закрыть].
Иными словами, это положительное число наоборот. По сути, так бы сказали и мы. В качестве “физического приложения” он измеряет расстояние по прямой от заданной точки, а затем обратно – и дальше. Он спрашивает, как далеко от стартовой позиции окажется человек, если отойдет на 5 ярдов от точки A, а затем вернется на 8 ярдов назад. Он получает ответ –3, который, несомненно, дали бы и вы.
Числовая прямая Джона Валлиса
Любопытно читать длинное объяснение, сопровождающее утверждение Валлиса. “Получается, что он прошел на три ярда меньше, чем ничего”, – говорит он и пускается в рассуждения, всячески разжевывая свою мысль. Если сегодня для ответа достаточно было бы поставить галочку в нужной клетке детского задачника, то Валлис прикладывает немало усилий, чтобы разложить все по полочкам, и еще на целых 17 строк расписывает значимость ответа –3. Он явно понимал, насколько радикальна его мысль.
Сегодня знак минуса кажется нам лишь камешком в гигантской пирамиде математических инструментов. Мы настолько привыкли к нему и так хорошо понимаем его смысл, что теперь нам сложно увидеть в нем принципиальную инновацию. Признание существования отрицательных чисел не только дало нам способ подсчитывать долги, но и позволило простым и естественным образом математически описывать множество различных явлений. К примеру, физические силы: работая с положительными и отрицательными числами, мы можем прогнозировать дальность полета артиллерийских снарядов с учетом гравитации. Мы также можем возводить крепкие, устойчивые архитектурные сооружения, в которых будут сбалансированы все силы и нагрузки. Всякий раз, когда друг другу противостоят две вещи – космический корабль и сила тяготения, доход и расход, ветер в парусах и сопротивление океана, которое судну приходится преодолевать, рассекая волны, – отрицательные числа упрощают расчеты.
Однако, несмотря на силу отрицательных чисел, одни они не могли подарить нам современный мир. Возможно, вы заметили, что на числовой прямой Валлиса нет чисел – есть лишь отрезки, отмеченные буквами A, B, C и D. Буквы соответствуют тому, что мы обозначили бы числами 0, 5, 3 и –3, и Валлис неспроста решил отказаться от них. Еще один важнейший математический инструмент – ноль – пока не получил признания.
Значимое ничто
История нуля восходит к моменту, когда царь Шульги ввел в своем математическом государстве “позиционную систему счисления”. Мы очень быстро усваиваем, что, записывая число, такое как 1234, мы можем присваивать отдельным цифрам разные значения в зависимости от того, какую позицию они занимают. Низшую позицию здесь занимает цифра 4, которая обозначает четыре элемента, например четыре яблока. Если выражаться математическим языком, наша система имеет основание 10 и называется десятичной, поскольку мы группируем числа в десятки, и потому цифра в следующей позиции обозначает три десятка, то есть 30. Двигаясь дальше влево, мы получаем результат умножения предыдущей позиции на десять, то есть десять десятков, или сотню. В числе 1234 их две. Наконец, остается одна группа из десяти сотен, то есть тысяча. В итоге получается число 1234.
Позиционная система счисления царя Шульги была шестидесятеричной, а не десятичной. Сложно сказать, почему именно такая техника записи чисел обрела в древности такую популярность. Одни историки математики видят причину в том, что число 60 дает целые частные при делении на любое из целых чисел с 1 до 6 (и еще на шесть чисел). Благодаря этому с ним легко работать, особенно при делении товаров, цен и мер. Другие предполагают, что удобство шестидесятеричной системы объясняется примерным числом дней в году. Какой бы ни была причина, эта система оставила наследие: именно в ближневосточных царствах, которые в итоге образовали Вавилон, круг разделили на 360 градусов, градус и час – на 60 минут, а минуту – на 60 секунд.
Вавилонская шестидесятеричная система похожа на нашу десятичную: например, число 34 в ней записывается тремя символами, обозначающими десятки, и четырьмя символами, обозначающими единицы. Но условных знаков в ней хватает лишь для записи чисел до 59, поэтому десятичное число 424 000 в шестидесятеричной системе состояло бы из сорока единиц, 46 групп по шестьдесят, 57 групп по шестьдесят на шестьдесят (602) и 1 группы по шестьдесят на шестьдесят на шестьдесят (603).
Такая запись (как и наша) удобна, пока в числе нет отсутствующих “групп”. Но как же записать в десятичной системе число 4005, в котором нет ни сотен, ни десятков? Нам нужно было найти способ обозначать “отсутствие” при записи числа. Так мы и начали использовать знак, который сегодня называем нулем.
Нулем он был не всегда. В этой истории много белых пятен, но, судя по всему, в Вавилоне пустая позиция обозначалась наклонным клинописным символом (хотя даже это оспаривается)[26]26
Seife C. Zero: The Biography of a Dangerous Idea. New York: Viking, 2000.
[Закрыть]. Майя и инки также обозначали пустую позицию абстрактным символом или глифом. Ни один из этих символов, однако, не был знакомым нам нулем, который, как считается, пришел к нам из Индии, где точкой – шуньей – обозначалась пустота. Самый ранний из известных нам документов, в которых этой круглой заглушкой обозначаются пустые позиции, – манускрипт Бакхшали, индийский текст, написанный на 70 листах бересты. Он датируется 224–383 годами нашей эры и, возможно, служил учебным пособием для буддийских монахов. Но шунья не сразу стала математическим нулем. В написанном в 628 году трактате Брахмагупты, где признается существование отрицательных чисел, также впервые используется ноль – в этом случае индийская шунья, – который обозначает не просто пробел. Он входит в числовую последовательность и сам по себе считается величиной, которая подчиняется тем же законам арифметики, что и другие величины. Брахмагупта объясняет, как ноль взаимодействует с другими числами, как положительными, так и отрицательными:
Долг минус ноль – это долг.
Достаток минус ноль – это достаток.
Ноль минус ноль – это ноль.
Ноль минус долг – это достаток.
Ноль минус достаток – это долг.
При умножении нуля на долг или достаток получается ноль.
При умножении нуля на ноль получается ноль.
Запад с нулем познакомил персидский математик и астроном X века Мухаммад ибн Муса аль-Хорезми. В своих книгах он использовал цифры, которые теперь называются арабскими или индо-арабскими, и включал в их число ноль, подчеркивая его значимость для позиционной системы счисления. Он называл его “сифр”, что в переводе значит “пустой”. В латыни это слово превратилось в zephyrum, и от него итальянцы образовали слово zero, то есть “ноль”.
Но аль-Хорезми использовал ноль не только для записи чисел. Как и Брахмагупта, он применял его в качестве алгебраического инструмента, тем самым закрепляя его значимость при проведении манипуляций с числами, и называл его “десятой цифрой с форме круга”. Аль-Хорезми явно считал ноль одной из цифр, и ноль играет ключевую роль в его “Краткой книге о восполнении и противопоставлении”. Именно от его арабского названия – “Китаб аль-джебр ва-ль-мукабала” – произошло слово “алгебра”, а слово “алгоритм” стало производным от имени автора: аль-Хорезми, несомненно, оказался весьма влиятелен. Он считал, что пользоваться его трактатом сможет кто угодно, ведь в нем содержались числовые инструменты, применимые “при дележе наследств, составлении завещаний, разделе имущества и судебных делах, в торговле и всевозможных сделках, а также при измерении земель, проведении каналов, строительстве и прочих разновидностях подобных дел”[27]27
Перевод цитируется по изданию: Мухаммад ибн Муса ал-Хорезми. Математические трактаты. Ташкент: Издательство “Фан” Узбекской ССР, 1983.
[Закрыть]. Однако, несмотря на широкий спектр возможных применений, западные умы не спешили принимать концепцию нуля.
Сегодня ноль кажется нам настолько очевидным и знакомым инструментом, что сложно представить себе системы счисления, которые обходились бы без него. Когда в X веке французский монах Герберт Орильякский прибыл в Испанию, чтобы изучить исламскую математику, он познакомился с нулем, но оставил его без внимания. Герберт оценил математические идеи аль-Хорезми и распространил многие из них среди европейских купцов. И все же ноль он в Европу не принес, а предпочел вместо этого научить людей искусству счета на абаке.
Даже через двести лет после путешествия Герберта ноль все еще не принимали: считается, что английский историк Вильям Мальмсберийский называл его “опасным сарацинским колдовством”[28]28
Kaplan R. The Nothing That Is: a natural history of zero. Oxford: Oxford University Press, 2000.
[Закрыть]. И даже когда Фибоначчи продемонстрировал европейцам силу нуля, он все же поостерегся включать его в числовой ряд. В “Книге абака” Фибоначчи пишет: “Индийских цифр девять: 9 8 7 6 5 4 3 2 1. С помощью этих девяти цифр и знака 0… можно записать любое число”. Он называет ноль “знаком”, и это свидетельствует, что он, в отличие от аль-Хорезми, пока не решался включить его в число цифр.
Сложно сказать, почему именно. Отчасти из-за неприятия идеи о том, что отсутствие чего-либо можно рассматривать аналогично присутствию. В математической философии Древней Греции отрицательным числам не находилось места среди священных целых положительных чисел, и точно так же она не терпела попытки превратить ничто в какую-то сущность, заслуживающую внимания. Аристотель в своем трактате “Физика” отметил, что невозможно осуществлять осмысленное деление на ноль, а следовательно, ноль нельзя считать числом[29]29
Physics by Aristotle, http://classics.mit.edu/Aristotle/physics.html.
[Закрыть]. Но важнее, пожалуй, то, что нулю не находилось места на абаке – главном счетном инструменте образованной публики в средневековой Европе.
Абак не всегда был таким, каким мы представляем его сейчас: с бусинами или камушками, нанизанными на нитки. Считается, что его название произошло от древних ближневосточных слов “пыль” и “доска”, и можно предположить, что изначально на плоской поверхности рассыпали пыль, на которой затем писали пальцем или раскладывали камни, а после этого стирали написанное и начинали счет заново.
Устройство абака позволяет обходиться без нуля. Видя ровные ряды камней или отметок, человек мгновенно получает позиционную информацию, не нуждаясь в специальном знаке для обозначения пустого разряда. Освоив все алгоритмы работы с абаком, он, конечно, уже не захочет разбираться в новомодном способе записи чисел.
Раньше умение считать на абаке было весьма востребованным навыком. В нем было даже нечто соблазнительное. При работе над “Рассказом мельника”, который входит в сборник “Кентерберийские рассказы”, Джеффри Чосер постарался сделать главного героя беззастенчивым (во всех смыслах) интеллектуалом. У Душки Николаса были астролябия для проведения астрономических измерений и греческий учебник, которым он руководствовался при работе. Чосер отмечает, что у изголовья его кровати стояли счеты с приведенными в порядок костяшками: он всегда был готов приступить к расчетам. По сути, он был занудой. При этом он сумел наставить рога богатому, но заурядному плотнику, у которого снимал комнату, и по меркам современной культуры это весьма неожиданный поворот. Но в “Рассказе мельника” Чосер делает Николаса неотразимым в глазах прекрасной молодой жены плотника.
Ученые предполагают, что в Николасе воплотились все черты, которые ценил близкий друг Чосера король Ричард II. Чосер написал “Кентерберийские рассказы”, когда входил в ближний круг короля и, что более интересно в нашем случае, служил главным таможенным контролером в лондонском порту. Счеты появились в рассказе неспроста: в 1380-х ими владели лишь образованные люди, в число которых входил и Чосер.
Сегодня в мире используются разные счетные доски: китайский суаньпань, японский соробан, русские счеты и так далее. Во многих регионах младших школьников по-прежнему учат с их помощью визуализировать основные арифметические действия, и есть свидетельства тому, что работа со счетной доской перестраивает мозг человека[30]30
Weng J. et al. The effects of long-term abacus training on topological properties of brain functional networks. Scientific Reports. 7, no. 1 (2017): 8862.
[Закрыть]. Лучшие современные счетоводы – главным образом школьники из Восточной Азии – так умело используют счеты, что многим из них сам инструмент уже не нужен. Они переставляют костяшки в уме, подобно тому, как опытный шахматист разыгрывает партию в голове, не используя ни доску, ни фигуры. Опытные счетоводы не только складывают и вычитают на счетах, но и извлекают с их помощью квадратные корни. Однако, несмотря на чудеса абака, уже многие века мы обходимся без него – главным образом потому, что ноль указал нам на его несовершенства. Математическая запись, в которой есть необходимое количество нулей, позволяет нам работать с числами любой величины и проводить расчеты любой сложности.
Насколько нам известно, впервые на Западе ноль и арабские цифры ввели в официальный обиход в 1305 году на предприятии Галлерани в Пизе[31]31
Goldthwaite R. The practice and culture of accounting in Renaissance Florence. Enterprise & Society. 16, no. 3 (2015): 611–47.
[Закрыть]. Римские цифры, однако, остались в моде и все следующее столетие господствовали в сфере счетоводства: купцы и банкиры не слишком любят перемены. Но постепенно люди стали понимать, что римские цифры и другие системы без нуля усложняют арифметику. Появление арабских цифр позволило проводить письменные расчеты, поддающиеся проверке. Записывая числа с помощью цифр от 1 до 9 с добавлением 0, мы получили возможность разрабатывать алгоритмы – рецепты для расчетов, – облегчающие умножение и деление огромных чисел. Со временем необходимость в счетах исчезла, и уже к 1500 году администраторы банка Медичи ввели четкое правило: в их банковских книгах должны были использоваться только арабские цифры[32]32
Gleeson-White J. Double Entry: how the merchants of Venice created modern finance. New York: W. W. Norton & Co, 2012.
[Закрыть]. Медленно, но верно их влияние росло. Через несколько сотен лет арабские цифры, включая ноль, обойтись без которого так и не удалось, захватили весь мир.
Не случайно это совпало с беспрецедентным ускорением развития человеческого общества. Когда в наш инструментарий вошли ноль и отрицательные числа, мы получили возможность вести учет чисел, которые хлынули к нам в эпоху международной торговли и процветания, и свидетельствами тому стали банк Медичи, Великая французская революция и блестящие финансовые нововведения Александра Гамильтона.
Бухгалтерский учет
Ускорение, как ни странно, началось после перехода к двойной записи. В простейшей форме это способ вести бухгалтерию безошибочно. Каждая транзакция записывается на двух отдельных счетах, чтобы можно было сверять их друг с другом. Основы этого метода прекрасно изложены в опубликованной в 1494 году “Сумме” Луки Пачоли, о которой мы упоминали, когда рассматривали знаки для счета на пальцах: “Из всякой статьи, составленной тобою в Журнале, всегда следует сделать две в Главной книге; одну в «Дать» и другую в «Иметь». Должник всегда обозначается словом «на», а веритель – «от»… Тот и другой образуют отдельные статьи, причем статья должника помещается по левой, а верителя – по правой стороне”[33]33
Schemmen M. The Rules of Double-Entry Bookkeeping (a Translation of Particularis de Computis et Scripturis). IICPA Publications, 1494. “Сумма” Пачоли цитируется в переводе Э. Вальденберга.
[Закрыть].
Первыми такую систему, вероятно, применили корейские купцы. Согласно документам, хранящимся в банке “Дэхан Чеонил”, они использовали так называемый четырехсторонний кэсонский метод ведения учета при торговле с Китаем и Аравией в XI веке. На четырех сторонах записывались имя получателя, имя отправителя, количество полученного товара или денег и количество переданного товара или денег. Все транзакции обязательно записывались дважды.
К несчастью, непосредственных подтверждений этому нет: документы банка “Дэхан Чеонил”, по сути, не слишком отличаются от записанных баек, а самые старые из сохранившихся корейских торговых записей относятся к середине XIX века. Но у нас есть созданный в XV веке текст, в котором описывается метод двойной записи. Хорватский математик Бенко Котрульевич (Бенедетто Котрульи), родившийся в Дубровнике в 1416 году, в 1458 году написал трактат “О торговле и совершенном купце”[34]34
Anzovin S., Podell J. Famous First Facts, International Edition: a record of first happenings, discoveries, and inventions in world history. New York: H. W. Wilson, 2000.
[Закрыть]. Котрульевич предлагает систему, в которой каждая транзакция упоминается в книге дважды. Купив мерную рейку, в одной колонке надлежало записать ее цену в качестве кредита, а уплаченную сумму внести в другую колонку в качестве дебета.
Впрочем, Европа пользовалась этой системой и до публикации книги Котрульевича. Об этом нам говорит целый ряд примеров, включая некоторые финансовые документы венецианского купца Джакомо Бадоера[35]35
Peragallo E. Jachomo Badoer, Renaissance man of commerce, and his ledger. Accounting and Business Research. 10, sup. 1 (1980): 93–101.
[Закрыть]. Его учетные книги, составленные с применением метода двойной записи (или чего-то подобного), относятся к периоду 1436–1439 годов, полностью написаны арабскими цифрами с нулями и документируют его транзакции в Константинополе. Оттуда он экспортировал специи, шерсть, рабов и другие товары в Венецию, где его брат занимался импортом и продажами.
Бадоер был лишь одним из сотен, если не тысяч, предпринимателей, которые работали в финансовом центре, сформировавшемся в XV веке на севере Италии. Именно там пересекались торговые пути между Востоком и Западом, там останавливались крестоносцы на пути в Иерусалим и обратно, и там в торговых операциях приходилось пользоваться множеством валют. Внедрение системы, позволяющей отслеживать все числа – и включающей концепцию долга, выражаемую отрицательными числами, – не могло не подстегнуть развитие предпринимательства.
Двойная запись не только стимулировала торговлю, но и изменила принципы роста и работы предприятий. В основе этого метода лежит бухгалтерское уравнение Активы = Обязательства + Собственный капитал. Иными словами, состояние предприятия оценивается по сумме его долгов и текущих активов, которые пересчитываются после каждой транзакции. Это позволяет любому, кто связан с предприятием, сразу понимать, какова его стоимость. Следовательно, если вы решаете, стоит ли ссуживать компании деньги или предоставлять в аренду имущество, вы можете сразу понять, с чем имеете дело, оценив задолженности, операционные издержки, активы, ссуды и чистый капитал. Не нужно больше ни верить владельцу на слово, ни полагаться на репутацию семьи. Если баланс сходится и увиденное вас устраивает, можно проводить транзакцию. То же относится и к покупке бизнеса. Поскольку бухгалтерия с применением двойной записи основана на принципе, в соответствии с которым бизнес существует независимо от владельца, владелец может в любой момент назначить за него цену и продать свое дело. Сложно даже представить себе, насколько революционной была эта идея, когда система впервые получила широкое распространение. Больше не было нужды ни сохранять дело в семье, ни придерживаться выбранного курса: можно было открыть фирму и считать ее своим свободным капиталом. Если вам хотелось открыть еще одно дело в дополнение к первому, учетные книги могли служить доказательством вашей предпринимательской хватки и даже предоставляться в качестве гарантии при получении ссуды.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?