Текст книги "Эдисон"
Автор книги: Михаил Лапиров-Скобло
Жанр: Биографии и Мемуары, Публицистика
сообщить о неприемлемом содержимом
Текущая страница: 10 (всего у книги 17 страниц)
ЭЛЕКТРИЧЕСКАЯ ЖЕЛЕЗНАЯ ДОРОГА
Первая конка в США появилась в 1852 году. Еще до этого изобретатели во многих странах Европы и Америки трудились над проблемой электрической железной дороги. Однако успехи их были невелики, так как в то время не было еще динамо-машин, и для получения электрического тока пользовались аккумуляторными батареями – громоздкими, неудобными и дорогими. Прочным основанием для электрической тяги мог быть только электрический генератор, и создание электрической железной дороги стало на твердую почву лишь после появления первых практически применяемых динамо-машин.
В 1879 году на Промышленной выставке в Берлине появляется первый маленький электропоезд фирмы Сименс. По железнодорожному пути длиною около 500 метров двигался со скоростью около 12 километров в час электрический локомотив с тремя вагончиками. В 1880 году инженер Ф. А. Пироцкий испытал в Петербурге вагон конки с подвесным электродвигателем.
Еще во время своей поездки в 1875 году в Вайоминг Эдисону пришлось наблюдать, как фермеры вынуждены были носить на себе зерно до железной дороги или рынка. Тогда же у Эдисона зародилась мысль о создании небольших электрических железнодорожных путей.
Вернувшись из своего путешествия по Западу,
Эдисон занялся опытами по электрическому свету и динамо-машинам. Однако он не забыл о своем плане электрических железных дорог, и в начале 1880 года, лишь только наладилась реализация изобретенной им лампочки накаливания и были сконструированы первые динамо-машины, Эдисон приступил к сооружению железной дороги в Менло-Парке и к постройке электрического локомотива. На железном четырехколесном шасси была смонтирована динамо-машина мощностью около 12 лошадиных сил, игравшая роль мотора. Электрический ток, доставлявшийся двумя другими эдисоновскими динамо-машинами из машинной мастерской, подводился к рельсам по подземным кабелям.
Железнодорожный путь длиною около 500 метров был проложен петлею, вьющейся вокруг горы. Легкие рельсы прикреплялись болтами к шпалам, лежавшим прямо на земле. Несмотря на короткое расстояние, на пути встречалось несколько крупных откосов и небезопасных закруглений. К электровозу прицеплялись три вагона: один – открытый, другой – товарный и третий – в шутку прозванный «Пульманом» и использованный Эдисоном для испытания тормозной электромагнитной системы. 13 мая 1880 года этот железнодорожный путь был открыт. Мэдкрофт рассказывает, как все «молодцы из лаборатории устроили себе праздник и залезли в вагоны с намерением прокатиться». Сначала все шло хорошо, но что-то оказалось не в порядке, и пришлось передать электровоз в мастерскую для переделки механизмов. Так продолжалось некоторое время: испытания открывали разного рода недостатки. Как и всегда, Эдисон оказался на высоте задачи и преодолел одно за другим все затруднения. Вскоре его электровоз работал вполне исправно.
Технические журналы и повседневная печать много писали об электрической железной дороге Эдисона, и в Менло-Парк прибывали многочисленные посетители, среди них немало инженеров и директоров железнодорожных компаний. Все приезжавшие желали ознакомиться и испытать новый способ передвижения.
Несмотря на незначительную длину этой первой дороги, дело не обошлось без нескольких аварий, по счастью не имевших тяжелых последствий.
Близкий друг Эдисона и его советник по юридическим делам Лоури рассказывает: «Годард и я, мы провели часть дня в Менло. Я ездил по электрической дороге Эдисона со скоростью 60 километров в час. Такую скорость развивали, чтобы показать мне мощность электровоза. Я стал протестовать, находя скорость движения чересчур большой, тем более что приходилось делать крутой поворот. Эдисон заявил, что привык ездить с такой скоростью. Однако поезд на крутом повороте сошел с рельсов, выбросив в грязь механика Крузи, который управлял машиной, и еще одного работника, который попал в кусты и смешно там барахтался. Эдисон же в один миг выпрыгнул из вагона, громко смеялся и нашел все приключение очень забавным. Крузи поднялся быстро на ноги. Его здорово тряхнуло, и на лице появилась кровь. Никогда не забуду выражения его лица и тона, с каким он произнес со своим иностранным акцентом: „О, конечно! Я цел и совершенно невредим“. По счастью, никто не был ранен. В несколько минут мы поставили поезд на рельсы и вскоре снова продолжали свой путь».
Первая электрическая железная дорога действовала в течение всего 1881 года. Много в то время было противников электрических железных дорог. Так, например, председатель Пенсильванского железнодорожного общества Франк Томас отнесся скептически к первому проекту электрических железных дорог, заявив: «Я прекрасно знал, что ничто не в силах заменить пар». Вспоминая об этом, Эдисон шутя говорил: «Я полагаю, что он ошибался».
Совершенно по-иному отнесся к этому вопросу директор Эдисоновского общества электрического освещения и председатель Общества северных тихоокеанских железных дорог Генри Виллард. Он сразу оценил важность нового предложения Эдисона и задумал построить в западных земледельческих районах электрические подъездные пути, по которым стекалась бы пшеница к узловым станциям. Чтобы убедиться в возможности этого, Виллард осенью 1881 года предложил Эдисону удлинить железнодорожный путь в Менло-Парке и попробовать применить более мощные электровозы. Работы начались немедленно, и уже в начале 1882 года был готов весь путь, длиною около 4,5 километра, и необходимый подвижной состав. Согласно условиям, на пути были возвышения, пересечения, мосты, поворотные круги. Усовершенствованная маленькая дорога имела товарные платформы, три разъезда, два депо и была оборудована более полно и прочно, чем раньше. В распоряжении дороги было два электровоза: один – для товарных поездов, а другой – для пассажирских.
Электровоз пассажирского поезда развивал очень большую скорость и способен был перевозить девяносто человек. В течение 1882 года он перевез несколько тысяч пассажиров. Товарный электровоз развивал меньшую скорость, но имел большую грузоподъемность.
Вскоре Вилларду пришла в голову мысль электрифицировать горную ветку. Вот как об этом рассказывает сам Эдисон: «Однажды г. Виллард задумал электрифицировать участок „Нортерн Пасифик Рэйл-роуд“, пересекающий гору. Он запросил меня, возможно ли это сделать. „Конечно, – говорю я, – и даже слишком просто для того, чтобы за это дело взялся я лично: поручите его кому-нибудь другому“. – „Я предпочел бы, чтобы этим занялись именно вы“, – настаивал он. Тогда я изобрел систему, включающую в себя „третий рельс“ и тормозной полоз, – систему, выполненную мною в моих мастерских в Орандже. По завершении всего Виллард пригласил на экспертизу своих инженеров в Нью-Йорк. Я показал им свои проекты, и они в один голос объявили их практически неосуществимыми. „Нью-Йорк Сентрал“ принял теперь эту систему, и она же была применена дорогою Ныо-Хейвен при ее переходе на электрическую тягу».
Капиталисты в большинстве не поняли и не оценили возможной роли и значения электрических железных дорог. Электрификация трамвайных линий начала осуществляться много лет спустя. Убежденность Эдисона, однако, не была поколеблена. Он расширяет и углубляет свои опыты, берет большое число патентов, в том числе и на контактную часть с троллейным проводом, что нашло в дальнейшем применение в электрических трамваях. Все это красноречиво говорит о технической и научной прозорливости Эдисона.
Первая электрическая железная дорога Менло-Парка разрушилась и теперь уже не существует, но первый электровоз, построенный Эдисоном, сохранился и находится в Институте Пратта в Бруклине.
Среди многих замечательных качеств Эдисона немалым является его способность правильно оценивать перспективы своего или чужого изобретения. Он,никогда не был слепым энтузиастом электричества. Когда молодой Генри Форд впервые, в августе 1896 года, познакомился с Эдисоном и рассказал ему о своем газовом двигателе для автомобиля, Эдисон ударил кулаком по столу и сказал:
– Молодой человек, вот это – вещь! Вы правильно взялись за дело, держитесь его. Электрические экипажи приходится держать вблизи силовых станций. Аккумуляторные батареи – слишком тяжелые. Паровые экипажи тоже не будут иметь успеха, потому что они должны иметь котел и топку. Ваш экипаж содержит в себе все, несет собственную силовую станцию; нет топки, нет котла, нет дыма, и нет пара. Вы – на правильном пути.
Это характерно для Эдисона, который, обладая широким кругозором, понимал, что хотя применение электрической энергии может быть расширено почти беспредельно в целом ряде направлений, однако имеются области, в которых электричество не может иметь решающего значения.
«ЭФФЕКТ ЭДИСОНА» И РАДИО
Во время своих опытов еще в 1875 году Эдисон столкнулся с необъяснимым в то время фактом получения искры из изолированных предметов, находящихся вблизи электрического разряда. Работая с электромагнитом, он увидел однажды сильную искру, возникшую на сердечнике в момент выключения тока в обмотке. Заинтересовавшись, он продолжал опыт и убедился, что искра возникает при прикосновении к любой металлической части электромагнита. Возникновение искры не зависело ни от расположения полюсов, ни от изоляции обмотки и не оказывало воздействия ни на лейденскую банку, ни на гальванометр. Эдисон убедился, что имеет дело с каким-то новым явлением, которое решил изучить. Он сделал запись об этом в своей записной книжке, назвав это явление «эфирной силой». Однако в это же время появился патент Белла, и Эдисон с головой ушел в работу над телефоном. Опыты с «эфирной силой» были оставлены. Эдисон тогда не подозревал, что здесь он впервые столкнулся с областью радио. В 1883 году Эдисон, работая над усовершенствованием угольных ламп, обнаружил, что между накаленной нитью и изолированным от нити электродом, введенным в баллон лампы, протекает ток даже в том случае, когда воздух из лампы выкачан. Никакого свечения внутри баллона не наблюдается. Это явление позднее получило название «эффекта Эдисона».
Явление это заинтересовало Эдисона. Не умея его объяснить, он подробно записал его и даже взял на это открытие патент. Он изготовил лампу с добавочным электродом и отправил ее на Филадельфийскую выставку. Эдисон не занялся изучением этого явления, так как все его силы были направлены на внедрение электрического освещения. Сразу же усмотреть в этом явлении открытие огромной важности, которое оно в действительности представляло, Эдисон не смог.
Между тем это была, по существу, первая электронная лампа, и Эдисон наблюдал в ней поток электронов, так называемую термоэлектронную эмиссию. В 1887 году выдающийся английский физик Джозеф Томсон открыл электронную природу «эффекта Эдисона». Таким образом, имя Эдисона связано с величайшим шагом в учении о материи – с открытием электрона. Сам же Эдисон остался в стороне от этих событий и к открытому им явлению больше не возвращался.
В журнале «Инжиниринг» от 12 декабря 1884 года помещена об этом лишь небольшая заметка под названием «Явление в лампочке Эдисона». И только сорок лет спустя в изданном Французским физическим обществом сборнике крупнейших работ, касающихся условий наблюдения наэлектризованных центров, ионов, электронов, мы находим целиком эту небольшую историческую заметку, которая гласит:
«В отделе Эдисона на выставке в Филадельфии демонстрировалось следующее интересное явление.
В лампочке накаливания Эдисона под угольной нитью на равном расстоянии от ее концов помещался изолированный электрод, состоящий из полоски платины; верхний край этого электрода отстоял от нити приблизительно на 1/2г дюйма.
Когда при зажигании лампы между электродом и одним концом нити включался гальванометр, то он показывал ток, направление которого изменялось в зависимости от того, приключался ли гальванометр к положительному или отрицательному полюсу угольной нити. Это указывало на то, что внутри лампы через вакуум проходил ток.
При включении гальванометра к положительному полюсу нити этот ток увеличивался во много раз.
Ток, отмечаемый гальванометром, возрастал также и при увеличении тока накала лампы.
После работы лампы в течение некоторого времени ток в гальванометре, включенном между платиновым электродом и положительным полюсом нити, ослабевал; возможно, что это происходило вследствие явления поляризации, наблюдавшегося Эдландом при его исследованиях разрядов в вакууме.
Когда лампа выключалась на некоторое время, то после этого ток снова восстанавливался. Кроме того, удавалось получить ток, проходящий через стеклянный баллон лампы при помещении платинового электрода с внешней стороны баллона.
В описываемых опытах наблюдается, по-видимому, явление рассеяния заряженных частиц воздуха (или угля) в «прямолинейных» направлениях от нити накала».
В дальнейшем «эффект Эдисона» изучался целым рядом физиков, причем оказалось, что все тела в накаленном состоянии обладают в большей или меньшей степени способностью испускать свободные электроны, перенос которых под влиянием приложенного напряжения образует ток. Были открыты вещества, испускающие очень большое количество электронов при сравнительно небольших нагревах (катод Ве-нельта), однако долгое время это явление не выходило из стен физических лабораторий. Лишь двадцать лет спустя Венельт применил это явление для получения небольших выпрямителей тока, используя униполярную проводимость прибора с одним накаленным и одним холодным катодом. В 1904 году Джон Амброз Флеминг открыл, что электрическая лампа накаливания с угольной нитью, окруженная металлической пластинкой, действует как выпрямитель для высокочастотных колебаний и может быть поэтому использована в качестве детектора для радиосигналов. Незадолго до войны Маркони начал применять в качестве детектора выпрямители Венельта, и, наконец, в 1905 году Ли де Форест один из первых построил трехэлектродную лампу, в которой газовый разряд, обусловленный электронным потоком накаленной нити, управлялся при помощи сеточного электрода. С этого времени начинается эра катодных ламп.
Смело можно сказать, что применение «эффекта», который привлек к себе так мало внимания самого Эдисона, стало одной из характернейших черт современной техники. Однако роль «эффекта Эдисона» была полностью оценена лишь в дальнейшем. Открытие «эффекта Эдисона» явилось фундаментом развития современных электронных ламп – основы крупной радиопромышленности сегодняшнего дня.
14 мая 1885 года, то есть за десять лет до изобретения радио, Эдисон подал заявку для получения патента на «передачу без проводов сигналов азбуки Морзе». В своих проспектах 1886 года Эдисон говорит о том, что это его изобретение, основанное на так называемой «электростатической индукции», имеет огромное значение для железных дорог (связь движущегося поезда с неподвижной станцией), пароходов и т. п.
Система «беспроволочного» поездного телеграфа Эдисона была испытана в 1887 году на дороге и успешно действовала. Вдоль пути был протянут телеграфный провод на столбах, более низких, чем обыкновенные. Один аппарат помещался на сигнальных станциях, расположенных вдоль пути, а другой – в мимо проходящих вагонах. На этих вагонах прокладывались металлические бруски, соединенные с телеграфным аппаратом, несколько измененным прибавлением наушника и телефонной трубки. Такие же приспособления имелись и на сигнальных станциях. При телеграфировании пластинка все время вибрировала. Оператор при помощи ключа разделял эти вибрации на короткие и длинные сигналы азбуки Морзе. Они индуктивно передавались по проволоке в вагон или обратно на расстояние до пятнадцати метров. Телефонная трубка позволяла ясно разобрать полученные сигналы. Это был своеобразный «беспроволочный» телеграф (в общежитии получивший название «кузнечик-телеграф»), но не радиотелеграф.
Эдисон не явился изобретателем радиотелеграфа. Однако следующий факт говорит о весьма существенном значении вышеназванного патента Эдисона. В 1903 году Маркони должен был купить этот патент для того, чтобы основанное им Общество беспроволочной телеграфии могло открыть свои действия в Америке. Характерно, что Эдисон передал этот свой патент именно обществу Маркони, а не другому, которое усиленно этого добивалось. Эдисон полагал, что его патент, очутившись в руках конкурентов молодого Маркони, мог бы причинить последнему много хлопот. Это характеризует отношение Эдисона к изобретателям, которых он ценил, проявляя активный интерес к ним в то время, когда они боролись за свои изобретения. Много лет спустя, когда Маркони в 1930 году передавал по радио приветствия из Лондона одновременно заседавшим Светотехническому конгрессу в Сан-Франциско и Второму мировому энергетическому конгрессу в Берлине, то в своей речи он сказал об Эдисоне: «Я лично никогда не забуду того поощрения и дружбы, которые мистер Эдисон так щедро мне оказывал в начале моих работ».
С именем Маркони связывают изобретение радиотелеграфа. Однако, как это будет дальше описано, наш соотечественник Александр Степанович Попов не только первый осуществил радиопередачу, но и дал основные принципы радиопередачи.
ПУТИ ИЗОБРЕТАТЕЛЬСКОГО ТВОРЧЕСТВА
Царский самодержавный строй не только эксплуатировал, ломал, душил миллионы рабочих и крестьян, выжимал из них все соки. Он коверкал душу, сковывал мысль. Сколько возникших новых смелых научных идей, сколько величайших открытий и исследований не получили развития, были похоронены!
Ряд величайших русских открытий и исследований, которые в руках заграничных изобретателей и ученых знаменовали целую эпоху, на русской почве в условиях царского режима не были доведены до конца.
Не будем касаться всех областей науки и техники. Остановимся лишь на электричестве и электротехнике.
В 1802 году профессор физики Петербургской Военно-медицинской академии Василий Васильевич Петров при опытах с батареей из большого числа элементов (медных и цинковых кружков) получил светящуюся дугу. Между двумя кусками угля при этом появился «весьма яркий белого цвета свет, от которого темный покой довольно ясно освещен быть мог». Эта светящаяся дуга была названа по имени Вольта «вольтовой». Спустя одиннадцать лет это же открытие сделал снова английский физик и химик Дэви.
23 марта 1876 года наш соотечественник Павел Николаевич Яблочков берет во Франции первую привилегию на свою «свечу». Изобретение Яблочкова было прежде всего осуществлено за границей. Выше мы читали об успехе «свечей» Яблочкова на Парижской выставке 1881 года.
Мы знаем, что Эдисон считается изобретателем первой практически пригодной для массового производства электрической лампы накаливания.
Однако и здесь, на путях изобретения лампы накаливания, мы должны отдать первенство Александру Николаевичу Лодыгину. Лампа Эдисона появилась в 1879 году, а между тем 7 августа 1873 года в Петербургском технологическом институте демонстрировалось электрическое освещение при помощи изобретенной Лодыгиным лампы накаливания. Этими же лампами была освещена одна улица Петербурга. Лодыгин получил за свое изобретение Ломоносовскую премию в тысячу рублей. Лампы Лодыгина имели ряд серьезных конструктивных недостатков, весьма несовершенный вакуум и были недолговечны. Попытка Лодыгина практически развить и использовать свое изобретение так и не удалась, как это и следовало ожидать в условиях царской России восьмидесятых годов. Лодыгин настолько бедствовал, что не мог заплатить даже за свой американский патент.
В 1870 году Лодыгин изобрел летательный аппарат тяжелее воздуха, который предложил французскому правительству во время войны с Германией. Самолет был признан удачным, его начали строить, но в связи с разгромом Франции дальнейшие работы были приостановлены.
Интересно отметить, что в номере от 21 декабря 1879 года нью-йоркской газеты «Геральд», где впервые сообщалось об изобретении Эдисона в области электрического освещения (в большой статье под названием «Свет Эдисона»), вспоминаются работы Яблочкова и Лодыгина.
Лампы Лодыгина с вольфрамовой и молибденовой нитью накала демонстрировались на Парижской выставке 1900 года.
В области электричества необходимо отметить еще другие крупные открытия и изобретения, сделанные в России. Вспомним Бориса Семеновича Я'ко-би, электрическая лодка которого уже в 1838 году плавала по Неве с экипажем из четырнадцати человек. Мы выше читали рассказ Оскара Миллера о том, как появившаяся, спустя почти пятьдесят лет, подобная лодка на Темзе в Лондоне вызвала изумление современников.
Шиллинг в 1832 году изобрел и устроил в Петербурге первый электромагнитный телеграф. Лишь в следующем году Гаусс и Вебер установили свой телеграф в Геттингене.
Россия – родина гальванопластики, которая открыта тем же Якоби в 1837 году. Впервые электрический метод рафинации технической меди открыт в России в 1847 году, и лишь впоследствии, в 1865 году, он стал применяться в Америке.
Русский лейтенант Федоровский впервые получил электролитическим путем медные трубы как прямые, так и фасонные, и лишь впоследствии Элмор получил свой заграничный патент на это же изобретение.
25 апреля (7 мая) 1895 года приехавший из Кронштадта молодой физик А. С. Попов делает доклад в заседании Физического отделения Русского физико-химического общества (в Петербурге) на тему «Об отношении металлических порошков к электрическим колебаниям» и о построенном им «приборе для обнаружения и регистрирования электрических колебаний в атмосфере». Прибор Попова с антенной в виде громоотводного провода был, собственно, первой в мире радиостанцией. На всем земном шаре не было еще в то время радиопередатчика, который мог бы подавать далекие сигналы радиоприемнику Попова. И Попов начинает своим прибором принимать те естественные сигналы, которые подаются в атмосфере электрическими возмущениями – грозами. Поэтому прибор Попова и был назван «грозоотметчиком». Его схема стала основой для беспроволочного телеграфа.
Ранние лампы накаливания Эдисона.
Демонстрация освещения Менло-Парка эдисоновскими лампами в канун нового, 1880 года.
12 марта (по старому стилю) 1896 года Попов делает свой второй доклад в физико-химическом обществе в Петербурге. При этом он демонстрирует весьма отчетливый радиоприем на телеграфном аппарате Морзе от передатчика, расположенного в другом здании на расстоянии около 250 метров. Отправительная и приемная антенны представляли собою вертикальные провода, длиною каждым около 10 метров.
Осенью того же года появляются в ежедневной прессе первые сведения о работах Маркони, который в 1896 году вторично изобрел беспроволочный телеграф. Сущность прибора Маркони оставалась в секрете. Специальные журналы терялись в догадках о новом открытии. В октябре 1896 года Попов пишет в местной газете «Котлин», что… «по всей вероятности, прибор г. Маркони сходен с моим». Впоследствии из патентных описаний Маркони выяснилось, что его радиоприемник действительно представлял собою не что иное, как повторение приемника А. С. Попова.
После опубликования сообщений о работах Маркони общественное внимание было привлечено к нарождающемуся новому способу электросвязи. Царское правительство отнеслось совершенно пассивно к изобретению Попова, не учитывая его значения хотя бы для флота.
Но вот в декабре 1899 года у острова Готланд наскочил на камни броненосец береговой обороны «Генерал-адмирал Апраксин». Затертый льдами, он оказался отрезанным от обоих берегов Финского залива. Единственным средством для установления сообщения оставался беспроволочный телеграф. Тогда вспомнили о Попове. Ему отпустили небольшие средства. На финляндском берегу и на острове Готланд были поставлены радиоустановки. Сооружены были антенные мачты, высотою до 54 метров. 7 февраля (25 января по ст. ст.) 1900 года станции стали обмениваться телеграммами, перекрывая расстояние в 44 километра через покрытую снегом поверхность. Таким образом, была установлена первая в России радиотелеграфная станция, которая проработала до апреля 1900 года, когда броненосец был снят с камней.
В то время как морским ведомством были отпущены Попову для продолжения его опытов ничтожные средства, Маркони сразу же обеспечил своим работам серьезную финансовую базу, создав для этой цели в Англии мощную компанию с миллионными капиталами. Радио начинает быстро развиваться заграницею как изобретение Маркони. Ко времени русско-японской войны Россия – родина радио – принуждена была обратиться к иностранным фирмам с заказами на радиооборудование.
Почти каждое большое изобретение проходит от первой зародившейся идеи до воплощения в повседневную практику длинный и далеко не прямой путь. Он пестрит именами исследователей и изобретателей, чьи труды, как эстафета, переходили из рук в руки. Многие шли параллельно, многие уходили в безвестность. Они боролись с косностью, алчностью и бедностью. Почести и богатство получали лишь немногие из пришедших к финишу. Развитие техники при капитализме открыло широкий простор для изобретений, а они, в свою очередь, питали технический прогресс. Диалектика состояла в том, что одновременно с этим анархия производства, борьба частнособственнических интересов, отделение производителя от средств производства тормозили любое изобретение. Лодыгин и Попов не нашли средств для развития своих изобретений. Жестокое сопротивление газовых компаний надолго задержало внедрение электрического освещения. Годами в судах, патентных бюро и на бирже шла борьба между Эдисоном и другими изобретателями электрического освещения. Сам Эдисон развил огромную энергию, чтобы задержать внедрение переменного тока.
Социализм открыл эру гармонического развития техники. Индивидуальная энергия изобретателя сочетается с общей энергией коллектива. Ученый во главе лаборатории, главный конструктор во главе бюро и опытного завода, новатор во главе бригады коммунистического труда – все это звенья одного механизма, деятельность которого планируется государством. В основе массового изобретательства в странах социализма лежит общественная собственность на средства производства. Все это привело Советский Союз на первое место в ведущих областях технического прогресса.
Уже в недрах капитализма вслед за концентрацией и централизацией производства идет процесс консолидации изобретательской деятельности. Новая промышленная революция, связанная с внедрением электричества в силовой аппарат промышленности, еще в последние десятилетия XIX века крайне сузила поле деятельности одиночки изобретателя.
Мы увидим, как с начала XX века Всеобщая электрическая компания больше не полагается на «нерегулярные проявления человеческого гения», а организует систематическую изобретательскую работу по строго методическим принципам под руководством ученых и опытных изобретателей. Инженеры, техники, ученые организуются в институты и научные союзы.
Характерная четкая подпись Томаса Эдисона занимает важное место на воззвании, выпущенном в 1884 году для организационного собрания Американского института инженеров-электриков. Этот документ, занимающий почетное место в стенах института в Нью-Йорке, гласит, что «вполне вероятно, лица, заинтересованные работами в области электричества, науки, просвещения, промышленности, телефонии, телеграфа и других областях, так же как и лица, пользующиеся достижениями электричества, найдут полезным как для себя, так и для общества в целом материально поддерживать, работать и вообще способствовать процветанию нашего общества».
Эдисон был не только организатором института, но при первом же выборе должностных лиц 13 мая 1884 года был выдвинут вице-президентом. Таким образом, в самом начале развития науки об электричестве Эдисон принял близкое участие в создании и организации учреждения, которое, как гласит его устав, должно было явиться «средством развития теории и практики электротехники и связанных с ней прикладных наук и поддержания высокого уровня квалификации его членов».
Как уже говорилось, Эдисон придал изобретательской деятельности индустриальную форму и масштаб. Здесь, на предприятиях Эдисона, изобретения не сопутствовали промышленной деятельности, а были ее основой, здесь они рождались и вслед за собой вызывали к жизни новые промышленные предприятия, распространявшие их по всему свету.
Такая широкая деятельность захватывала подчас и области, весьма далекие друг от друга.
Наряду с крупными работами, открывающими новые страницы науки и техники, с работами, которые при вдумчивом их анализе являются многообразными звеньями единой цепи изобретений и открытий, органически связанных, мы видим у Эдисона отдельные блестки, как бы случайные «отбросы» изобретательского «производства».
Директора Эдисоновской компании были, вероятно, немало смущены, когда однажды наряду с котировкой акций Эдисоновского электрического общества они увидели в газетах объявление об эдисоновских «говорящих куклах» и о новом эдисоновском средстве от невралгии.
Его патентованное медицинское средство называлось «полиформ». Страдая сам от невралгии и не получая помощи от врача, Эдисон решил сделаться сам своим врачом. Его химическая лаборатория стала одновременно и научно-медицинским институтом. Изобретатель делался более настойчивым по мере того, как его невралгия усиливалась. В конце концов он получил средство для наружного употребления, которое помогло ему устранить боль. Довольный своим успехом, но еще не окончательно в нем убежденный, Эдисон решил испытать свои препараты на других больных. В это время случайно в его лабораторию зашел бродяга, просивший милостыню. Этот бродяга был болен. Одна его нога распухла от ревматизма, нервное подергивание искажало его лицо. В этом «многострадальном Иове» Эдисон увидел великолепный объект для дальнейших опытов с своим «полиформом». Хорошо накормив бродягу и дав ему немного денег, Эдисон стал лечить его своим средством. Больной жил некоторое время в Менло-Парке. Ревматизм и невралгия у него исчезли. Слухи об этом распространились, и в лабораторию потянулись больные из окрестных селений за чудодейственным лекарством. Изобретатель всех охотно удовлетворял.
Эдисон и впоследствии не потерял интереса к этому делу и целый ряд лет продолжал распространять «полиформ» в специальных бутылках с выпуклой надписью «Полиформ Эдисона, Менло-Парк, Нью-Джерси, САСШ». На ярлыках бутылок красовался портрет изобретателя с лампой накаливания над его головой и с расположенными вокруг него фонографом, телеграфом, динамо-машиной. Ярлык с его подписью удостоверял: «Этот состав сделан согласно формуле, разработанной мною».
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.