Электронная библиотека » Ник Бостром » » онлайн чтение - страница 4


  • Текст добавлен: 5 января 2016, 14:40


Автор книги: Ник Бостром


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 38 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Будущее искусственного интеллекта – мнение специалистов

Успех, достигнутый на двух магистральных направлениях: во-первых, создание более прочного статистического и информационно-теоретического основания для машинного обучения; во-вторых, практическая и коммерческая эффективность различных конкретных приложений, узкоспециальных с точки зрения решаемых проблем и областей применения, – привел к тому, что пошатнувшийся было престиж исследований искусственного интеллекта удалось несколько восстановить. Но, похоже, у научного сообщества, имеющего отношение к этой теме, от прошлых неудач остался довольно горький опыт, вынуждающий многих ведущих исследователей отказываться от собственных устремлений и больших задач. Поэтому один из основателей направления Нильс Нильсон укоряет своих нынешних коллег в отсутствии той творческой дерзости, которая отличала поколение первопроходцев:

Соображение «благопристойности», на мой взгляд, оказывает дурное влияние на некоторых исследователей, выхолащивая саму идею искусственного интеллекта. Я будто слышу, как они говорят: «ИИ критиковали за отсутствие результатов. Теперь, добившись видимого успеха, мы не хотим рисковать собственной репутацией». Подобная осмотрительность приведет к тому, что все интересы ученых будут ограничены созданием программ, предназначенных предоставлять помощь человеку в его в интеллектуальной деятельности, то есть уровнем, который мы называем «слабый ИИ». Это неизбежно отвлечет их от усилий реализовать машинный аналог человеческого разума – то есть то, что мы называем «сильный ИИ»{75}75
  См.: [Nilsson 2009, p. 319].


[Закрыть]
.

Нильсону вторят такие патриархи, как Марвин Мински, Джон Маккарти и Патрик Уинстон{76}76
  См.: [Minsky 2006; McCarthy 2007; Beal, Winston 2009].


[Закрыть]
.

В последние годы наблюдается возрождение интереса к искусственному интеллекту, который вполне может обернуться новыми попытками создать универсальный ИИ (по Нильсону – сильный ИИ). Эти проекты будут поддерживаться, с одной стороны, производством новейших аппаратных средств, с другой – научным прогрессом в информатике и программировании в целом, во многих специализированных предметных сферах в частности, а также в смежных областях, например нейроинформатике. Себастиан Трун и Питер Норвиг подготовили в Стэнфордском университете на осень 2011 года бесплатный онлайновый вводный курс по искусственному интеллекту. Реакцию на объявление о нем можно рассматривать как самый убедительный показатель неудовлетворенного спроса на качественную информацию и образование – на курс записались около 160 тысяч человек со всего мира (окончили его 23 тысячи){77}77
  По данным Питера Норвига (из личного общения). В принципе, любые курсы по информационным технологиям и машинному обучению очень популярны. Может быть, это объясняется неожиданно возросшим массовым интересом к аналитике больших данных (big data) интересом, инициированным в свое время Google и весьма подогреваемым огромными призовыми суммами Netflix.


[Закрыть]
.

Существует множество вариантов экспертных оценок относительно будущего, уготованного искусственному интеллекту. Разногласия касаются и времени его появления, и того вида, в каком он когда-нибудь предстанет перед миром. Как заметили авторы одного недавнего исследования, прогнозы перспектив развития ИИ «различны настолько, насколько они категоричны»{78}78
  См.: [Armstrong, Sotala 2012].


[Закрыть]
.

Мы не в состоянии охватить полную картину всех современных положений об интересующей нас теме, однако некоторое, пусть даже поверхностное, представление дают скупые опросы специалистов и высказанные ими частные мнения. Например, не так давно мы попросили представителей нескольких экспертных сообществ ответить на вопрос, когда они ожидают появления искусственного интеллекта человеческого уровня (ИИЧУ) причем уровень определялся как «способность освоить большинство профессий, по крайней мере тех, которыми мог бы владеть среднестатистический человек». Респондентов просили строить свои предположения на основании того, что «научная деятельность в этом направлении будет продолжаться без серьезных сбоев»{79}79
  См.: [Müller, Bostrom <В печати>].


[Закрыть]
. Ответы специалистов показаны в табл. 2. По данным выборки получились следующие средние оценки:

• 2022 год – средний прогноз с 10-процентной вероятностью;

• 2040 год – средний прогноз с 50-процентной вероятностью;

• 2075 год – средний прогноз с 90-процентной вероятностью.

Поскольку размер выборки слишком мал, а с точки зрения генеральной совокупности опрошенных ее нельзя считать репрезентативной, то результаты стоит рассматривать с некоторой долей скептицизма. Однако они согласуются с результатами других опросов{80}80
  См.: [Baum et al. 2011; Sandberg, Bostrom 2011].


[Закрыть]
.

Данные упомянутого опроса также соответствуют мнению примерно двух десятков исследователей, интервью с которыми появились за последние несколько лет. Назову только Нильса Нильсона. Ученый, многие десятилетия плодотворно трудившийся над фундаментальными вопросами ИИ (методы поиска, автоматическое планирование, системы представления знаний, робототехника), написавший несколько учебников, недавно завершивший самую подробную историю исследований ИИ{81}81
  См.: [Nilsson 2009].


[Закрыть]
, – когда его спросили о сроках появления ИИЧУ, Нильсон дал следующее заключение{82}82
  Безусловно, и в этом случае сохранялось условие, что научная деятельность будет продолжаться «без серьезных сбоев», а в мире не случится никаких цивилизационных катастроф. В интервью Нильсон использовал следующее определение ИИЧУ: «ИИ, способный выполнять приблизительно 80 % работы не хуже человека или даже лучше» [Kruel 2012].


[Закрыть]
:

• 2030 год – средний прогноз с 10-процентной вероятностью;

• 2050 год – средний прогноз с 50-процентной вероятностью;

• 2100 год – средний прогноз с 90-процентной вероятностью.


Таблица 2. Когда будет создан искусственный интеллект человеческого уровня?{83}83
  В таблице показаны результаты четырех отдельных опросов, в последней строке даны средние показатели. Первые два опроса проводились среди участников нескольких научных конференций. PT-AI – конференция «Философия и теория ИИ» (Салоники, 2011); опрос состоялся в ноябре 2012 года; всего участников – 88 человек, количество респондентов – 43 человека. AGI – конференции «Универсальный искусственный интеллект» и «Универсальный искусственный интеллект – степень воздействия и угрозы» (Оксфорд, декабрь 2012); всего участников – 111 человек, количество респондентов – 72 человека. EETN – съезд Греческой ассоциации искусственного интеллекта (апрель, 2013); всего участников – 250 человек, количество респондентов – 26 человек. TOP100 – опрос ведущих специалистов по искусственному интеллекту в соответствии с индексом цитирования (май 2013); всего в списке – 100 человек, количество респондентов – 29 человек.


[Закрыть]


Судя по опубликованным интервью, названное профессором Нильсоном распределение вероятности вполне репрезентативно – многие эксперты думали так же. Однако еще раз хочу подчеркнуть: мнения расходились очень сильно, поскольку некоторые специалисты-практики горячо верили, что ИИЧУ будет создан за период 2020–2040 годов, а некоторые ученые были убеждены, что либо этого не случится никогда, либо это произойдет, но в неопределенно далеком будущем{84}84
  См.: [Kruel 2011] – в работе собраны интервью с 28 специалистами по ИИ и в смежных областях.


[Закрыть]
. Кроме того, одни интервьюируемые считали, что определение «человеческого уровня» по отношению к искусственному интеллекту сформулировано некорректно и может вводить в заблуждение, а другие – по каким-то своим соображениям – просто воздержались от прогнозов.

На мой взгляд, прогнозы, отодвигающие создание ИИЧУ на более поздние сроки (по средним цифрам, полученным в результате опросов), определенно пессимистичны. 10-процентная вероятность появления ИИЧУ в 2075, и тем более в 2100 году (даже при условии, что «научная деятельность в этом направлении будет продолжаться без серьезных сбоев») представляется слишком низкой.

История показывает, что исследователи не могут похвастаться способностью предсказывать ни успехи в разработках искусственного интеллекта, ни формы его воплощения. С одной стороны, выяснилось, что некоторые задачи, скажем, игра в шахматы, могут быть решены при помощи удивительно простых программ, и скептики, заявлявшие, будто машины «никогда» не смогут делать те или иные вещи, раз за разом оказываются посрамлены. С другой – наиболее типичной ошибкой специалистов является недооценка трудностей, связанных с разработкой устойчивой интеллектуальной системы, способной справляться с задачами реальной жизни, и переоценка возможностей их собственных проектов или методов.

В ходе одного из опросов были заданы еще два вопроса, актуальные для нашего исследования. Респондентов спросили, сколько, по их мнению, потребуется времени после создания ИИЧУ, чтобы машина смогла развить сверхразум. Ответы приведены в табл. 3. Второй вопрос касался темы долговременного воздействия на человечество, которое будет оказывать ИИЧУ. Ответы суммированы на рис. 2.


Таблица 3. Сколько времени пройдет между созданием искусственного интеллекта человеческого уровня и появлением сверхразума?


Рис. 2. Долговременное воздействие искусственного интеллекта человеческого уровня{85}85
  На диаграмме показаны перенормированные медианные оценки. Средние значения несколько отличаются. Например, средние значения для варианта «чрезвычайно негативное» были равны 7,6 % (в Tоп-100) и 17,2 % (в объединенной оценке по всем опросам).


[Закрыть]


Мое мнение снова расходится с теми, которые были высказаны в ходе опроса. Я считаю гораздо более вероятным, что сверхразум появится сравнительно быстро после создания ИИЧУ. Кроме того, мой взгляд на последствия этого события также принципиально другой: вероятность чрезвычайно сильного воздействия – позитивного или негативного – на человечество гораздо более высока, чем вероятность нейтрального влияния. Причины этого вскоре станут ясны.

Не стоит полагаться всерьез ни на экспертные опросы, ни на интервью – в силу больших погрешностей данных методов. Небольшая выборка, ее возможные ошибки, а самое главное, ненадежность, изначально присущая субъективным мнениям, – все это не позволяет нам прийти к строгим умозаключениям. Однако пусть поверхностные – за неимением более достоверных аналитических данных, – но какие-то выводы мы в состоянии сделать. Во-первых, искусственный интеллект человеческого уровня имеет довольно высокую вероятность быть созданным к середине нынешнего столетия и имеет ненулевую вероятность быть созданным немного ранее или много позже. Во-вторых, после его создания, скорее всего, довольно быстро появится сверхразум. В-третьих, появление сверхразума может привести к огромным последствиям – как чрезвычайно позитивным, так и чрезвычайно негативным, вплоть до гибели человечества{86}86
  В литературе встречается огромное количество подтверждений ненадежности прогнозов экспертов во многих областях, поэтому есть все основания полагать, что подобное положение истинно и для сферы изучения искусственного интеллекта. В частности, делающие прогнозы люди, как правило, слишком уверенные в своей правоте, считают себя более точными предсказателями, чем это есть на самом деле, и поэтому присваивают слишком низкую вероятность возможности, что их любимая гипотеза может оказаться ложной [Tetlock 2005]. (О других документально зафиксированных заблуждениях см., например: [Gilovich et al. 2002].) Однако неопределенность – неотъемлемая черта человеческой жизни, и многие наши действия неизбежно основаны на вероятностных прогнозах, то есть ожиданиях того, какие из возможных событий произойдут скорее всего. Отказ от более четко сформулированных вероятностных прогнозов не устранит эпистемологическую проблему, а лишь задвинет ее в тень [Bostrom 2007]. Вместо этого нашей реакцией на чрезмерную самонадеянность должны стать как расширение доверительных интервалов, или интервалов правдоподобия, так и борьба с собственными предубеждениями путем рассмотрения проблемы с различных точек зрения и тренировки интеллектуальной честности. В долгосрочной перспективе можно также работать над созданием методик, подходов к обучению и институтов, которые помогут нам достичь лучших проверочных образцов. См. также: [Armstrong, Sotala 2012].


[Закрыть]
.

Полученные выводы по меньшей мере говорят нам, что тема заслуживает тщательного рассмотрения.

Глава вторая
Путь к сверхразуму

На сегодняшний день, если брать уровень общего интеллектуального развития, машины абсолютно уступают людям. Но однажды – по нашему предположению – разум машины превзойдет разум человека. Каков будет наш путь от нынешнего момента до того, который нас ожидает? В этой главе описаны несколько возможных технологических вариантов. Сначала мы рассмотрим такие темы, как искусственный интеллект, полная эмуляция головного мозга, усовершенствование когнитивных способностей человека, нейрокомпьютерный интерфейс, сети и организации. Затем оценим перечисленные аспекты с точки зрения вероятности, смогут ли они служить ступенями восхождения к сверхразуму. При нескольких вариантах пути шанс когда-нибудь достигнуть места назначения явно повышается.

Предварительно определим понятие сверхразума. Это любой интеллект, значительно превосходящий когнитивные возможности человека фактически в любых областях{87}87
  Во-первых, этому определению сверхразума наиболее близка формулировка, опубликованная в работах: [Bostrom 2003 c; Bostrom 2006 a]; во-вторых, оно вполне отвечает формализованному условию Шейна Легга: «Интеллект оценивается способностью агента добиваться своей цели в широком диапазоне условий» [Legg 2008]; в-третьих, оно очень напоминает описание, сделанное Ирвингом Гудом, которое приведено нами в главе 1 настоящего издания: «Давайте определим сверхразумную машину как машину, которая в значительной степени превосходит интеллектуальные возможности любого умнейшего человека» [Good 1965, p. 33].


[Закрыть]
. В следующей главе мы более подробно обсудим, что такое сверхразум, разложим его на составляющие и дифференцируем все возможные его воплощения. Но сейчас позволим себе ограничиться такой общей и поверхностной характеристикой. Заметьте, в данном описании не нашлось места ни претворению сверхразума в жизнь, ни его квалиа[7]7
  Квалиа (от множ. числа лат. qualia – «свойства, качества») философский термин, обозначающий субъективные ощущения, свойства чувственного опыта.


[Закрыть]
, то есть будет ли он наделен субъективными переживаниями и опытом сознания. А ведь в определенном смысле, особенно этическом, вопрос весьма немаловажный. Однако сейчас, оставив в стороне интеллектуальную метафизику{88}88
  По той же причине не буду выстраивать никаких предположений, сможет ли сверхразумная машина обрести «истинную интенциональность», то есть иметь самосознание и действовать преднамеренно (при всем уважении к Джону Сёрлу, она, похоже, и на это способна), поскольку данный вопрос не имеет отношения к предмету нашей книги. Также не собираюсь занимать ничью сторону – ни адептов интернализма, ни последователей экстернализма – в яростно ведущихся среди философов дискуссиях на такие темы, как содержание сознания и расширение сознания, см.: [Clark, Chalmers 1998].


[Закрыть]
, мы уделим внимание двум вопросам: предпосылкам возникновения сверхразума и последствиям этого явления.

Согласно нашему определению, шахматная программа Deep Fritz не является сверхинтеллектуальной, поскольку «сильна» лишь в очень узкой – игра в шахматы – области. И тем не менее очень важно, чтобы сверхразум имел свои предметные специализации. Поэтому каждый раз, когда речь зайдет о том или ином сверхинтеллектуальном поведении, ограниченном предметной областью, я буду отдельно оговаривать его конкретную сферу деятельности. Например, искусственный интеллект, значительно превышающий умственные способности человека в сферах программирования и конструирования, получит название инженерного сверхинтеллекта. Но для обозначения систем, в целом превосходящих общий уровень человеческого интеллекта – если не указано иное, – остается термин сверхразум.

Как мы достигнем того времени, когда окажется возможным его появление? Какой путь выберем? Давайте рассмотрим некоторые возможные варианты.

Искусственный интеллект

Дорогой читатель, не стоит ожидать от этой главы концептуальной разработки вопроса, как создать универсальный, или сильный, искусственный интеллект. Проекта по его программированию просто не существует. Но даже будь я счастливым обладателем такого плана, то, безусловно, не стал бы обнародовать его в своей книге. (Если причины этого пока не очевидны, надеюсь, в последующих главах мне удастся недвусмысленно разъяснить собственную позицию.)

Однако уже сегодня можно распознать некоторые обязательные характеристики, присущие подобной интеллектуальной системе. Совершенно очевидно, что способность к обучению как неотъемлемое свойство ядра системы должна закладываться при проектировании, а не добавляться в качестве запоздалого соображения позднее в виде расширения. То же самое касается способности эффективно работать с неопределенной и вероятностной информациями. Скорее всего, среди основных модулей современного ИИ должны быть средства извлечения полезной информации из данных от внешних и внутренних датчиков и преобразования полученных концепций в гибкие комбинаторные представления для дальнейшего использования в мыслительных процессах, основанных на логике и интуиции.

Первые системы классического искусственного интеллекта по преимуществу не были нацелены на обучение, работу в условиях неопределенности и формирование концепций – вероятно, из-за того, что в те времена были недостаточно развиты соответствующие методы анализа. Нельзя сказать, что все базовые идеи ИИ являются принципиально новаторскими. Например, мысль использовать обучение как средство развития простой системы и доведения ее до человеческого уровня была высказана еще Аланом Тьюрингом в 1950 году в статье «Вычислительная техника и интеллект», где он изложил свою концепцию «машина-ребенок»:

Почему бы нам, вместо того чтобы пытаться создать программу, имитирующую ум взрослого, не попытаться создать программу, которая бы имитировала ум ребенка? Ведь если ум ребенка получает соответствующее воспитание, он становится умом взрослого человека[8]8
  А. Тьюринг. Может ли машина мыслить? / Пер. с англ. Ю. А. Данилова. М.: Гос. изд-во физико-математической литературы, 1960. С. 34.


[Закрыть]
{89}89
  См.: [Turing 1950, p. 456].


[Закрыть]
.

Тьюринг предвидел, что для создания «машины-ребенка» потребуется итеративный процесс:

Вряд ли нам удастся получить хорошую «машину-ребенка» с первой же попытки. Надо провести эксперимент по обучению какой-либо из машин такого рода и выяснить, как она поддается научению. Затем провести тот же эксперимент с другой машиной и установить, какая из двух машин лучше. Существует очевидная связь между этим процессом и эволюцией в живой природе…

Тем не менее можно надеяться, что этот процесс будет протекать быстрее, чем эволюция. Выживание наиболее приспособленных является слишком медленным способом оценки преимуществ. Экспериментатор, применяя силу интеллекта, может ускорить процесс оценки. В равной степени важно и то, что он не ограничен использованием только случайных мутаций. Если экспериментатор может проследить причину некоторого недостатка, он, вероятно, в состоянии придумать и такого рода мутацию, которая приведет к необходимому улучшению[9]9
  А. Тьюринг. Может ли машина мыслить? С. 35.


[Закрыть]
{90}90
  См.: [Turing 1950, p. 456].


[Закрыть]
.

Мы знаем, что слепые эволюционные процессы способны привести к появлению общего интеллекта человеческого уровня – по крайней мере один раз это уже случилось. Вследствие прогнозирования эволюционных процессов – то есть генетического программирования, когда алгоритмы разрабатываются и управляются разумным человеком-программистом, – мы должны получить аналогичные результаты с гораздо большей эффективностью. Именно на это положение опираются многие ученые, среди которых философ Дэвид Чалмерс и исследователь Ханс Моравек{91}91
  См.: [Chalmers 2010; Moravec 1976; Moravec 1988; Moravec 1998; Moravec 1999].


[Закрыть]
, утверждающие, что ИИЧУ не только теоретически возможен, но и практически осуществим уже в XXI столетии. По их мнению, в деле создания интеллекта, оценивая относительные возможности эволюции и человеческой инженерной мысли, мы обнаружим, что последняя во многих областях значительно превосходит эволюцию и, скорее всего, довольно скоро обгонит ее в оставшихся. Таким образом, если в результате эволюционных процессов когда-то появился естественный интеллект, то из этого следует, что человеческие замыслы в области проектирования и разработок вскоре смогут привести нас к искусственному интеллекту. Например, Моравек писал еще в 1976 году:

Существование нескольких примеров интеллекта, появившегося в условиях такого рода ограничений, должно вселять в нас уверенность, что очень скоро мы сможем достичь того же. Ситуация аналогична истории создания машин, которые могут летать, хотя они тяжелее воздуха: птицы, летучие мыши и насекомые продемонстрировали эту возможность явно задолго до того, как человек сделал летательные аппараты{92}92
  См.: [Moravec 1976]; аналогичную аргументацию приводит и Чалмерс, см.: [Chalmers 2010].


[Закрыть]
.

Впрочем, следует быть осторожнее с выводами, построенными на подобной цепочке рассуждений. Конечно, нет сомнений, что полет нечеловеческих живых существ, которые тяжелее воздуха, стал возможен в результате эволюции намного раньше того, как в этом преуспели люди – правда, преуспели при помощи механизмов. В поддержку этого можно вспомнить и другие примеры: гидролокационные системы; магнитометрические системы навигации; химические средства ведения войны; фотодатчики и прочие приспособления, обладающие механическими и кинетическими характеристиками эффективности. Однако с таким же успехом мы перечислим области, в которых результативность человеческих усилий еще очень далека от эффективности эволюционных процессов: морфогенез; механизмы самовосстановления; иммунная защита. Таким образом, аргументация Моравека все-таки не «вселяет в нас уверенность», что ИИУЧ будет создан «очень скоро». В лучшем случае верхним пределом сложности создания интеллекта может служить эволюция разумной жизни на Земле. Но этот уровень пока недосягаем для нынешних технологических возможностей человечества.

Еще один довод в пользу развития искусственного интеллекта по модели эволюционного процесса – это возможность запускать генетические алгоритмы на довольно мощных процессорах и в итоге добиться результатов, соизмеримых с теми, которые получились в ходе биологической эволюции. Таким образом, эта версия аргументации предполагает усовершенствовать ИИ посредством определенного метода.

Насколько справедливо утверждение, что довольно скоро в нашем распоряжении окажутся вычислительные ресурсы, достаточные для воспроизведения соответствующих эволюционных процессов, вследствие которых образовался человеческий интеллект? Ответ зависит от следующих условий: во-первых, будет ли в течение следующих десятилетий достигнут значимый прогресс компьютерных технологий; во-вторых, какая потребуется вычислительная мощность, чтобы механизмы запуска генетических алгоритмов были аналогичны естественному отбору, приведшему к появлению человека. Надо сказать, что выводы, к которым мы приходим по цепочке наших рассуждений, крайне неопределенны; но, несмотря на такой обескураживающий факт, все-таки представляется уместным попробовать дать хотя бы приблизительную оценку этой версии (см. врезку 3). За неимением других возможностей даже ориентировочные расчеты привлекут внимание к некоторым любопытным неизвестным величинам.

Суть в том, что вычислительная мощность, требуемая лишь для воспроизведения нужных эволюционных процессов, приведших к появлению человеческого интеллекта, практически недостижима и надолго останется таковой, даже если закон Мура будет действовать еще целое столетие (см. рис. 3 ниже). Однако существует вполне приемлемый выход: мы очень сильно повлияем на эффективность, когда вместо прямолинейного повторения естественных эволюционных процессов разработаем поисковый механизм, ориентированный на создание интеллекта, задействуя самые разные очевидные преимущества по сравнению с естественным отбором. Безусловно, оценить количественно полученный выигрыш в эффективности сейчас очень трудно. Мы даже не знаем, о каких порядках величины идет речь – пяти или двадцати пяти. Следовательно, если построенная на эволюционной модели аргументация не будет разработана должным образом, мы не сможем удовлетворить свои ожидания и никогда не узнаем, насколько сложны дороги к искусственному интеллекту человеческого уровня и как долго нам ожидать его появления.

Врезка 3. Оценка усилий по воспроизведению эволюционного процесса

Не все достижения антропогенеза, имеющие отношение к человеческому разуму, имеют ценность для современных специалистов, работающих над проблемой эволюционного развития искусственного интеллекта. В дело идет лишь незначительная часть того, что получилось в итоге естественного отбора на Земле. Например, проблемы, которые люди не могут не принимать во внимание, являются результатом лишь незначительных эволюционных усилий. В частности, поскольку мы можем питать наши компьютеры электричеством, у нас нет необходимости заново изобретать молекулы системы клеточной энергетической экономики для создания разумных машин – а ведь на молекулярную эволюцию метаболического механизма, вполне возможно, потребовалась значительная часть общего расхода мощности естественного отбора, находившейся в распоряжении эволюции на протяжении истории Земли{93}93
  Более подробно эта тема раскрывается в статье: [Shulman, Bostrom 2012].


[Закрыть]
.

Существует концепция, что ключом к созданию ИИ является структура нервной системы, появившаяся меньше миллиарда лет назад{94}94
  В своей диссертации Шейн Легг предлагает этот подход в качестве аргумента, что люди на воспроизведение эволюционного пути потратят гораздо меньше времени и меньше вычислительных ресурсов (при этом сам автор отмечает, что ресурсы, потребовавшиеся в ходе биологической эволюции, нам недоступны), см.: [Legg 2008]. Эрик Баум утверждает, что часть работы, связанной с созданием ИИ, проделана намного раньше без вмешательства человека, например: само строение генома уже содержит важную информацию об эволюционных алгоритмах, см.: [Baum 2004].


[Закрыть]
. Если мы примем данное положение, количество «экспериментов», необходимых для эволюции, значительно сократится. Сегодня в мире существует приблизительно (4–6) × 1030 прокариотов, но лишь 1019 насекомых и меньше 1010 представителей человеческого рода (кстати, численность населения накануне неолитической революции была на порядки меньше){95}95
  См.: [Whitman et al. 1998; Sabrosky 1952].


[Закрыть]
. Согласитесь, эти цифры не столь пугающи.

Однако для эволюционных алгоритмов требуется не только разнообразие вариантов, но и оценка приспособленности каждого из вариантов – обычно наиболее затратный компонент с точки зрения вычислительных ресурсов. В случае эволюции искусственного интеллекта для оценки приспособленности требуется, по всей видимости, моделирование нейронного развития, а также способности к обучению и познанию. Поэтому лучше не смотреть на общее число организмов со сложной нервной системой, а оценить количество нейронов в биологических организмах, которые нам, возможно, придется моделировать для расчета целевой функции эволюции. Грубую оценку можно сделать, обратившись к насекомым, которые доминируют в наземной биомассе (на долю одних только муравьев приходится 15–20 %){96}96
  См.: [Schultz 2000].


[Закрыть]
. Объем головного мозга насекомых зависит от многих факторов. Чем насекомое крупнее и социальнее (то есть ведет общественный образ жизни), тем больше его мозг; например, у пчелы чуть меньше 106 нейронов, у дрозофилы – 105 нейронов, муравей со своими 250 тысячами нейронов находится между ними{97}97
  См.: [Menzel, Giurfa 2001; Truman et al. 1993].


[Закрыть]
. Мозг большинства более мелких насекомых содержит всего несколько тысяч нейронов. Предлагаю с предельной осторожностью остановиться на усредненном значении (105) и приравнять к дрозофилам всех насекомых (которых всего в мире – 1019), тогда суммарное число их нейронов составит 1024. Добавим еще порядок величины за счет ракообразных, птиц, рептилий, млекопитающих и т. д. – и получим 1025. (Сравним это с тем, что до возникновения сельского хозяйства на планете было меньше 107 человек, причем на каждого приходилось примерно 1011 нейронов – то есть в общей сложности сумма всех нейронов составляла меньше чем 1018, хотя человеческий мозг содержал – и содержит – намного больше синапсов.)

Вычислительные затраты на моделирование одного нейрона зависят от необходимой степени детализации модели. Для крайне простой модели нейрона, работающей в режиме реального времени, требуется примерно 1000 операций с плавающей запятой в секунду (далее – FLOPS). Для электро– и физиологически реалистичной модели Ходжкина – Хаксли нужно 1 200 000 FLOPS. Более сложная мультикомпонентная модель нейрона добавила бы два-три порядка величины, а модель более высокого уровня, оперирующая системами нейронов, требует на два-три порядка меньше операций на один нейрон, чем простые модели{98}98
  См.: [Sandberg, Bostrom 2008].


[Закрыть]
. Если нам нужно смоделировать 1025 нейронов на протяжении миллиарда лет эволюции (это больше, чем срок существования нервных систем в их нынешнем виде) и мы позволим компьютерам работать над этой задачей в течение года, то требования к их вычислительной мощности попадут в диапазон 1031–1044 FLOPS. Для сравнения, самый сверхмощный компьютер в мире китайский Tianhe-2 (на сентябрь 2013 года) способен выдавать всего 3,39 × 1016 FLOPS. В последние десятилетия обычные компьютеры увеличивали свою производительность на порядок примерно раз в 6,7 года. Даже если вычислительная мощность станет расти по закону Мура в течение целого столетия, то это окажется недостаточным, чтобы преодолеть существующий разрыв. Использование более специализированных вычислительных систем или увеличение времени вычислений способны снизить требования к мощности всего на несколько порядков.

Оценка количества нейронов носит условный характер еще по одной причине. Природа, создавая человеческий разум, вряд ли ставила перед собой какую-то определенную задачу. Иными словами, целевая функция эволюционной системы отбирала организмы не только ради развития у них интеллекта или его предшественника – «конкретного мышления»{99}99
  Обсуждение этой точки зрения, а также анализ функций, определяющих приспособленность организма лишь на основании критерия его умственных способностей, см. в диссертации Легга [Legg 2008].


[Закрыть]
. Даже если организмы с лучшими способностями к обработке информации при определенных условиях извлекали дополнительные выгоды, то это обстоятельство не являлось главным фактором отбора особи, поскольку развитое мышление могло означать (и часто означало) возникновение дополнительных издержек: затрату большего количества энергии или более медленное созревание, – что перевешивало преимущества разумного поведения. Высокая смертность также снижала ценность интеллекта – чем короче средняя продолжительность жизни, тем меньше времени для того, чтобы «окупились» повышенные способности к обучению. Сниженное давление отбора замедляло распространение инноваций, основанных на интеллекте, и, как следствие, уменьшало возможность отбора последующих инноваций. Более того, эволюция могла тормозиться в локальных оптимумах, которые исследователи в состоянии заметить и обойти за счет изменения баланса между поиском и памятью или за счет плавного повышения сложности тестов на интеллект{100}100
  Более системное и подробное описание способов, с помощью которых специалисты смогут превзойти имеющиеся на сегодня результаты эволюционного отбора, см. в статье «Мудрость природы» [Bostrom, Sandberg 2009 b].


[Закрыть]
. Как уже говорилось ранее, эволюция тратит значительную часть мощности отбора на свойства, не имеющие отношения к интеллекту, – скажем, на эволюционную конкуренцию между иммунной системой и паразитами, названную «гонка Черной королевы». Эволюция продолжает растрачивать ресурсы на заведомо обреченные мутации и неспособна принимать во внимание статистическое сходство различных мутаций. Приведенные здесь примеры не должны отпугивать специалистов, разрабатывающих эволюционные алгоритмы для создания интеллектуальных программ, так как неэффективность естественного отбора (с точки зрения развития интеллекта) довольно легко преодолима.

Вполне вероятно, что устранение такого рода неэффективности поможет сэкономить несколько порядков требуемой мощности в 1031–1044 FLOPS, рассчитанной ранее. К сожалению, трудно сказать, сколько именно. Трудно дать даже приблизительную оценку – можно только гадать, будет ли это пять порядков, десять или двадцать пять{101}101
  Обсуждая целевую функцию, мы говорим лишь о вычислительных ресурсах, необходимых для моделирования нервной системы живых существ, и не учитываем затраты на моделирование их тел или их виртуальной окружающей среды. Вполне возможно, что расчет целевой функции для тестирования каждого организма потребует гораздо меньше операций, чем нужно для симулирования всех нейронных вычислений, аналогичных нейронным процессам, происходящим в мозгу существа за срок его жизни. Сегодня программы ИИ часто разрабатывают для действий в совершенно абстрактной среде (программы для доказательства теорем – в символических математических мирах; программы-агенты – в турнирных мирах простых игр).
  Скептики могут настаивать, что для эволюции общего интеллекта абстрактной среды будет недостаточно, а виртуальное пространство должно детально напоминать тот мир, в котором развивались наши предки. Создание реалистичного виртуального мира потребовало бы гораздо больших инвестиций в вычислительные мощности, чем симуляция придуманного игрового мира или области для абстрактных задач (в то время как реальный мир достался эволюции «на дармовщину»). В предельном случае требования к полной точности на микроуровне приводят к тому, что потребность в вычислительных ресурсах вырастает до несуразно большой величины. Однако такой экстремальный пессимизм практически ничем не подкреплен: маловероятно, что наилучшие условия – с точки зрения эволюционирования интеллекта – должны максимально точно имитировать природу. Напротив, вполне возможно, что для симуляции естественного отбора искусственного интеллекта гораздо эффективнее будет использовать специальную среду, совершенно не похожую на ту, которая окружала наших предков, такую, которая специально разработана для стимулирования приспособления на основе нужных нам критериев (например, способности к абстрактному мышлению и общим навыкам решения задач, а не наличия максимально быстрой инстинктивной реакции или высокооптимизированной зрительной системы).


[Закрыть]
.

Рис. 3. Производительность сверхмощных компьютеров. В прямом смысле то, что называют «закон Мура», – это наблюдение, согласно которому количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается примерно каждые два года. Однако часто закон обобщают, считая, что так же по экспоненте растут и другие показатели производительности компьютеров. На нашем графике показано изменение во времени пиковой скорости наиболее сверхмощных компьютеров в мире (по логарифмической вертикальной шкале). В последние годы скорость последовательных вычислений расти перестала, но за счет распространения параллельных вычислений общее количество операций продолжает увеличиваться с прежним темпом{102}102
  См.: [Wikipedia, 2012 b].


[Закрыть]
.


Есть еще одно осложнение, связанное с эволюционными факторами, выдвигаемыми в качестве последнего аргумента. Проблема заключается в том, что мы не в состоянии вычислить – даже очень приблизительно – верхнюю границу трудности получения интеллекта эволюционным путем. Да, на Земле когда-то появилась разумная жизнь, но из этого факта еще не следует, будто процессы эволюции с высокой степенью вероятности приводят к возникновению интеллекта. Подобное заключение было бы в корне ошибочным, поскольку не учитывается так называемый эффект наблюдения при отборе, подразумевающий, что все наблюдатели находятся на планете, где зародилась разумная жизнь, независимо от того, насколько вероятно или невероятно такое событие на любой другой планете. Предположим, для появления разумной жизни, помимо систематических погрешностей естественного отбора, требуется огромное количество удачных совпадений – настолько большое, что разумная жизнь появилась всего лишь на одной из 1030 планет, где существуют простые гены-репликаторы. В таком случае исследователи, запуская генетические алгоритмы в попытке воспроизвести созданное эволюцией, могут столкнуться с тем, что понадобится сделать примерно 1030 итераций, прежде чем они найдут комбинацию, в которой все элементы сложатся правильно. Кажется, это вполне согласуется с нашим наблюдением, что жизнь зародилась и развивалась здесь, на Земле. Обойти данный гносеологический барьер отчасти можно путем тщательных и до некоторой степени громоздких логических ходов – анализируя случаи конвергентной эволюции характеристик, имеющих отношение к интеллекту, и принимая во внимание эффект наблюдения при отборе. Если ученые не возьмут на себя труд провести такой анализ, то в дальнейшем уже никому из них не придется оценивать максимальное значение и выяснить, насколько предполагаемая верхняя граница необходимой вычислительной мощности для воспроизведения эволюции интеллекта (см. врезку 3) может оказаться ниже тридцатого порядка (или какой-то другой столь же большой величины){103}103
  Об эффекте наблюдения при селективном отборе см.: [Bostrom 2002 a] – общее описание; [Shulman, Bostrom 2012] – с точки зрения обсуждаемой здесь темы; [Bostrom 2008 b] – короткое определение на доступном для неспециалиста языке.


[Закрыть]
.

Перейдем к следующему варианту достижения нашей цели: аргументом в пользу осуществимости эволюции искусственного интеллекта служит деятельность головного мозга человека, на которую ссылаются как на базовую модель для ИИ. Различные версии такого подхода отличаются лишь степенью воспроизведения – насколько точно предлагается имитировать функции биологического мозга. На одном полюсе, представляющем собой своеобразную «игру в имитацию», мы имеем концепцию полной эмуляции мозга, то есть полномасштабного имитационного моделирования головного мозга (к этому мы вернемся немного позже). На другом полюсе находятся технологии, в соответствии с которыми функциональность мозга служит лишь стартовой точкой, но разработка низкоуровневого моделирования не планируется. В конечном счете мы приблизимся к пониманию общей идеи деятельности мозга, чему способствуют успехи в нейробиологии и когнитивной психологии, а также постоянное совершенствование инструментальных и аппаратных средств. Новые знания, несомненно, станут ориентиром в дальнейшей работе с ИИ. Нам уже известен пример ИИ, появившегося в результате моделирования работы мозга, – это нейронные сети. Еще одна идея, взятая из нейробиологии и перенесенная на машинное обучение, – иерархическая организация восприятия. Изучение обучения с подкреплением было обусловлено (по крайней мере частично) той важной ролью, которую эта тема играет в психологических теориях, описывающих поведение и мышление животных, а также техники обучения с подкреплением (например, TD-алгоритм). Сегодня обучение с подкреплением широко применяется в системах ИИ{104}104
  См.: [Sutton, Barto 1998; Schultz et al. 1997].


[Закрыть]
. В будущем подобных примеров, безусловно, будет больше. Поскольку набор базовых механизмов функционирования мозга весьма ограничен – на самом деле их очень небольшое количество, – все эти механизмы рано или поздно будут открыты благодаря постоянным успехам нейробиологии. Однако возможен вариант, что еще раньше придет к финишу некий гибридный подход, сочетающий модели, разработанные, с одной стороны, на основе деятельности головного мозга человека, с другой – исключительно на основе технологий искусственного интеллекта. Совсем не обязательно, что полученная в результате система должна во всем напоминать головной мозг, даже если при ее создании и будут использованы некоторые принципы его деятельности.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации