Текст книги "Искусственный интеллект. Этапы. Угрозы. Стратегии"
Автор книги: Ник Бостром
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 38 страниц) [доступный отрывок для чтения: 12 страниц]
Нейрокомпьютерный интерфейс
Периодически выдвигаются предложения использовать прямой нейрокомпьютерный интерфейс, в частности, имплантаты, что позволит человеку использовать всю мощь электронных вычислений: идеальное хранение информации, быстрые и точные арифметические расчеты, широкополосную передачу данных – в результате такая гибридная система будет принципиально превосходить по всем характеристикам деятельность головного мозга{150}150
См., например: [Warwick 2002]. Стивен Хокинг даже предположил, что этот шаг будет необходимым для достижения прогресса в области машинного интеллекта: «Мы должны как можно быстрее разработать технологию прямого соединения мозга и компьютера, чтобы искусственный мозг внес свой вклад в повышение интеллектуальных способностей человека вместо того, чтобы ему противостоять» (цит. по статье: [Walsh 2001]). С ним согласен Рэй Курцвейл: «Что касается… рекомендации Хокинга о прямом соединении мозга с компьютером, то я согласен, что это и оправданно, и желательно, и неизбежно [sic], и я многие годы говорю об этом» [Kurzweil 2001].
[Закрыть]. Возможность прямого подключения компьютера к биологическому мозгу была не раз доказана, но, несмотря на это, кажется маловероятным, что прямые нейронные интерфейсы получат в обозримом будущем широкое распространение{151}151
См.: [Lebedev, Nicolelis 2006; Birbaumer et al. 2008; Mak, Wolpaw 2009; Nicolelis, Lebedev 2009]. Более личный взгляд на проблему улучшения когнитивных способностей за счет имплантации можно найти в книге Майкла Хорста «Обновление. Как, став частью компьютера, я почувствовал себя человеком» [Chorost 2005, ch. 11].
[Закрыть].
Прежде всего заметим, что в результате имплантации электрода в мозг возникает значительный риск медицинских осложнений – инфекции, смещение электрода, кровоизлияния, ухудшение умственных способностей. На сегодняшний день лечение пациентов с болезнью Паркинсона является едва ли не самой яркой демонстрацией той пользы, которую приносит стимуляция мозга. В этом случае используется довольно простой имплантат, на самом деле не соединенный непосредственно с мозгом, а всего лишь создающий электрический разряд, воздействующий на субталамическое ядро, или ядро Льюиса. На демонстрационном видеоролике показан сидящий в кресле полностью обездвиженный болезнью человек, который после подключения электрода мгновенно возвращается к жизни: он начинает двигать руками, встает и идет по комнате, поворачивается на месте и даже делает пируэт. Но у этой совершенно простой и на удивление успешной процедуры тоже есть негативные стороны. В одном исследовании у экспериментальных пациентов с болезнью Паркинсона, по сравнению с контрольной группой, при имплантации электрода в мозг отмечены ухудшения следующих функций: беглой речи, избирательного внимания, цветовой и словесной памяти. Испытуемые пациенты часто жаловались на снижение умственных способностей{152}152
См.: [Smeding et al. 2006].
[Закрыть]. Если речь идет о людях с тяжелыми заболеваниями, то можно мириться и с рисками, и с побочными эффектами. Совсем другой вопрос – здоровые граждане, соглашающиеся на нейрохирургические манипуляции. В таких случаях любое вмешательство должно приводить к существенному улучшению функций головного мозга.
Пожалуй, такое усовершенствование когнитивных способностей обернется более сложным делом, чем генная терапия, – это тоже дает право сомневаться, что путь киборгизации приведет нас к сверхразуму. Пациенты, страдающие параличом, могут получить пользу от имплантата, который заменит их пораженные нервы или активирует спинномозговые центры, отвечающие за двигательную функцию{153}153
См.: [Degnan et al. 2002].
[Закрыть]. Пациенты, испытывающие проблемы со зрением или слухом, безусловно, выигрывают от имплантации искусственной улитки или сетчатки глаза{154}154
См.: [Dagnelie 2012; Shannon 2012].
[Закрыть]. Пациенты с болезнью Паркинсона или хронической мышечной болью, без сомнения, испытывают облегчение от глубокой стимуляции мозга, возбуждающей или подавляющей активность в отдельных его областях{155}155
См.: [Perlmutter, Mink 2006; Lyons 2011].
[Закрыть]. Гораздо более трудная задача – обеспечить непосредственное широкополосное взаимодействие между мозгом и компьютером для заметного повышения интеллектуальных способностей, которого невозможно добиться иными, более доступными средствами. Большинство потенциальных преимуществ, которые появятся в распоряжении здоровых людей в результате имплантации электродов, возможно получить с меньшим риском, затратами и неудобствами, просто используя обычные органы движения и чувств при взаимодействии с компьютерами, находящимися вне пределов нашего тела. Чтобы выйти в интернет, нам не нужно подключать к себе оптоволоконный кабель. Человек не только наделен сетчаткой глаза, способной передавать данные с впечатляющей скоростью около десяти миллионов бит в секунду, но и обладает «предустановленным программным обеспечением» в виде зрительной коры головного мозга, которая отлично приспособлена для извлечения значения из этих массивов информации и взаимодействия с другими областями мозга для ее дальнейшей обработки{156}156
См.: [Koch et al. 2006].
[Закрыть]. Даже если появился бы относительно простой способ закачивать в наш мозг больше информации, эти дополнительные данные ненамного повысили бы скорость, с которой мы думаем и учимся, если только «апгрейду» не подвергнется весь нейронный механизм их обработки. А поскольку он включает в себя практически весь мозг, в действительности потребовалось бы «протезирование» мозга целиком – иначе говоря, создание универсального искусственного интеллекта. Впрочем, существуй искусственный интеллект человеческого уровня – зачем тогда понадобилась бы нейрохирургия? Ведь компьютер может быть помещен не только в костяную коробку, но и в металлический корпус. Таким образом, если мы вновь обращаемся к искусственному интеллекту, то непременно свернем на путь, уже рассмотренный нами ранее.
Ученые предлагают использовать нейрокомпьютерный интерфейс для считывания информации из головного мозга человека для коммуникации его с другими людьми или компьютерами{157}157
См.: [Schalk 2008]; обзор современных исследований и тенденций см: [Berger et al. 2008]. В книге «Киборг» Кевина Уорика приведены убедительные доводы в пользу этой системы как метода, повышающего интеллектуальные способности [Warwick 2002].
[Закрыть]. Система, позволяющая передвигать курсор на экране с помощью мысли, помогла бы пациентам с синдромом «запертого человека»[11]11
Синдром «запертого человека» (синдром изоляции, синдром деэфферентации) синдром, который характеризуется отсутствием адекватной реакции больного на внешние, в том числе и словесные, стимулы из-за тетраплегии и паралича бульбарной, мимической и жевательной мускулатуры. Причинами развития синдрома могут быть инфаркт основания мозга, кровоизлияние в мозг, полиомиелит, некоторые яды.
[Закрыть] устанавливать связь с внешним миром{158}158
Некоторые примеры см.: [Bartels et al. 2008; Simeral et al. 2011; Krusienski, Shih 2011; Pasqualotto et al. 2012].
[Закрыть]. Ширина полосы передачи данных в таких экспериментах пока очень мала: пациент мучительно долго набирает букву за буквой со скоростью несколько слов в минуту. Можно легко представить усовершенствованную версию, по всей вероятности, с имплантами следующего поколения, которые – для трансляции внутренней речи – будут вживлять в центр Брока (участок коры головного мозга, находящийся в задненижней части третьей лобной извилины, отвечающий за моторную, фонологическую и синтаксическую организацию речи){159}159
См.: [Hinke et al. 1993].
[Закрыть]. Сегодня системы обратной связи интересны скорее с точки зрения оказания помощи пациентам с мышечной атрофией и людям, перенесшим инсульт. Эта новейшая технология пока мало применима к здоровому человеку, хотя, по сути, повторяет тот же набор функций, который обеспечивается простым наличием микрофона и программой распознавания речи, то есть продуктом, уже присутствующим на нашем рынке и отличающимся в лучшую сторону такими своими характеристиками, как неболезненное и удобное применение, дешевизна и отсутствие риска, связанного с нейрохирургическим вмешательством (а также не порождающим фантазий в духе Оруэлла на тему подслушивающего устройства внутри черепной коробки). Кроме того, когда наше тело и компьютер никак не связаны физически, то последний удобнее ремонтировать и оснащать новым ПО.
Но как быть с неизбывной человеческой мечтой, чтобы люди вступали в общение не на вербальном уровне, а напрямую – через мозговую деятельность, как бы «загружая» друг в друга свои образы, мысли, знания и даже опыт? Мы загружаем в компьютеры огромные файлы, в том числе библиотеки с миллионами книг и статей, буквально за считаные секунды или минуты – неужели нам никогда не придется поступать так же, имея дело с собственным мозгом и собственной информацией? Кажущаяся легкость реализации этой идеи, вероятно, базируется на ошибочном представлении о том, как человеческий мозг воспринимает и хранит информацию. Как уже отмечалось, развитие человеческого интеллекта ограничивает не скорость, с которой данные поступают в память, а насколько быстро мозг способен извлекать из них смысловые значения и осознавать их. Возможно, предполагается передавать непосредственно смысл, не оформляя его в сенсорную информацию, которую придется декодировать получателю. Тут возникает две проблемы. Первая заключается в том, что мозг, в отличие от программ, которые мы привычно используем на компьютерах, не использует стандартные форматы хранения и представления данных. Скорее, в каждом мозгу имеются свои уникальные способы представления содержания более высокого уровня. То, какие именно сочетания нейронов используются для передачи той или иной концепции, зависит от уникального опыта конкретного мозга (а также различных генетических факторов и стохастических физиологических процессов). Как в случае искусственных нейронных сетей, так и в биологических нейронных сетях смысловое значение скорее представлено всей структурой и моделями деятельности значительных перекрывающихся регионов, а не отдельными ячейками памяти, уложенными в аккуратные массивы{160}160
Есть некоторые исключения, особенно на ранней стадии обработки зрительной информации. Например, первичная зрительная кора использует ретинотопическое представление, то есть смежные сборки нейронов собирают данные со смежных областей сетчатки (хотя глазные доминантные колонки несколько усложняют эту картину).
[Закрыть]. Поэтому невозможно установить простое соответствие между нейронами двух людей так, чтобы мысли автоматически перетекали от одного к другому. Если нужно передать мысли из одного мозга в другой так, чтобы они были ему понятны, их нужно подвергнуть декомпозиции и перевести в символы в соответствии с некоторой общепринятой системой, которая позволит их правильно интерпретировать мозгом-приемником. Это уже лингвистическая задача.
Теоретически мы в состоянии представить интерфейс, на который было бы можно переложить когнитивную работу по артикуляции и интерпретации мыслей. Он будет должен уметь каким-то образом считывать состояния нейронов в мозге-передатчике и переводить их в понятные модели активации нейронов в мозге-приемнике. Даже если оставить в стороне (очевидные) технические трудности организации надежного одновременного считывания состояния миллиардов отдельных нейронов и записи в них, создание такого интерфейса, вероятно, само по себе является AI-полной задачей искусственного интеллекта. Интерфейс должен включать компонент, способный (в режиме реального времени) ставить в соответствие возникающим в одном мозгу моделям семантически эквивалентные модели в другом мозгу. Для выполнения этой задачи потребуется подробное многоуровневое понимание механизма нейронных вычислений, которое может привести непосредственно к созданию нейроморфного ИИ.
Несмотря на эти оговорки, движение в сторону улучшения интеллектуальных способностей по пути создания киберорганизмов не кажется совершенно бесперспективным. Впечатляющие результаты работ с гиппокампом крыс показали возможность создания нейронного протеза, который может повысить эффективность выполнения простой задачи на запоминание{161}161
См.: [Berger et al. 2012; Hampson et al. 2012].
[Закрыть]. На сегодняшний день имплантат считывает информацию с электродов в количестве от одного десятка до двух десятков, размещенных в области CA3 гиппокампа, и передает ее на такое же количество нейронов, расположенных в области CA1 гиппокампа. Микропроцессор способен различать две модели возбуждения в первой области (соответствующие двум видам информации – «правый рычаг» и «левый рычаг») и научиться тому, как эти модели передаются во вторую область. Такие протезы могут не только восстановить функционирование мозга в ситуации, когда нормальное нейронное взаимодействие между двумя областями нейронов нарушено, но и за счет направленной активации требуемой модели во второй области способны повысить эффективность выполнения задачи по сравнению с обычным для крыс уровнем. Хотя по современным стандартам это и весьма впечатляющее в техническом плане достижение, эксперимент оставляет без ответа множество вопросов. Насколько хорошо этот подход масштабируется? Ведь число комбинаций взаимодействующих областей мозга, а также нейронов на входе и выходе из них, очень велико, поэтому сможем ли мы избежать комбинаторного взрыва при попытке картировать взаимодействия в мозгу? Не получится ли, что хотя эффективность решения тестовой задачи растет, этому сопутствуют некие скрытые издержки, например снижение способности обобщать стимулы или неспособность забыть определенную ассоциацию, после того как среда изменилась? Получит ли человек – располагающий, в отличие от крыс, внешними носителями памяти вроде бумаги и ручки – какую-либо выгоду от появления таких возможностей? Насколько легко будет применить подобный метод к другим областям мозга? В то время как работе описанного протеза помогает сравнительно простая структура областей гиппокампа, обеспечивающая последовательную передачу сигнала в одну сторону (по сути, однонаправленная связь между зонами СА3 и СА1), другие структуры в коре головного мозга используют рекуррентные циклы обратной связи, что значительно повышает сложность схемы связей и, видимо, затруднит расшифровку набора функций встроенных в нее групп нейронов.
В плане развития киборгов есть надежда, что мозг, снабженный имплантатом, поддерживающим связь с внешней средой, со временем научится сопоставлять свое внутреннее состояние и получаемые внешние сигналы. В этом случае имплантату не обязательно обладать интеллектом, скорее, мозг должен будет интеллектуально настроиться на интерфейс, примерно как мозг ребенка постепенно обучается интерпретировать сигналы, поступающие из внешнего мира через рецепторы органов зрения и слуха{162}162
В случаях некоторых имплантатов потребуются две формы обучения: устройство учится интерпретировать нейронные представления организма; сам организм учится пользоваться системой, генерируя соответствующие модели возбуждения, см.: [Carmena et al. 2003].
[Закрыть]. И снова возникает естественный вопрос: принесет ли это какую-нибудь реальную пользу? Предположим, пластичность мозга окажется настолько достаточной, что он научится распознавать модели в рамках некоего нового потока входных сигналов, проецируемых на его кору посредством некоего нейрокомпьютерного интерфейса, – но почему тогда просто не спроецировать ту же самую информацию непосредственно на сетчатку глаза в виде зрительных образов или на улитку в виде звука? Применение низкотехнологичных методов поможет избежать множества проблем – хотя и в том и в другом случаях нашему мозгу, чтобы научиться понимать информацию, придется задействовать механизмы распознавания образов и присущее ему свойство пластичности.
Сети и организации
Еще один потенциальный путь, ведущий к сверхразуму, – постепенное совершенствование сетей и организаций, соединяющих умы людей друг с другом и с различными искусственными объектами и ботами, то есть программами, автоматически выполняющими действия вместо человека. Смысл не в том, чтобы усовершенствовать когнитивные способности отдельных людей и в итоге вывести популяцию сверинтеллектуалов. Идея заключается в другом: создать некое объединение индивидуумов, организованных таким образом, чтобы эта появившаяся сеть по своему развитию могла бы достигнуть сверхинтеллектуального уровня – сеть, которую в следующей главе мы назовем «коллективный сверхразум»{163}163
Некоторые исследователи предлагают рассматривать корпоративные структуры (компании, профсоюзы, правительства, церковь и тому подобное) в качестве агентов искусственного интеллекта, обладающих сенсорными и исполнительными механизмами, способных выражать знания, делать логические выводы и осуществлять действия; см., например: [Kuipers 2012] – ср. с дискуссией на тему, может ли существовать коллективное представление, см.: [Huebner 2008]. В отличие от людей, у агентов искусственного интеллекта совсем другие способности и внутреннее состояние; кроме того, они явно обладают большими возможностями и намного успешнее в установлении связей с окружающей средой.
[Закрыть].
В доисторические и исторические времена коллективный интеллект помог человечеству добиться многого. Источники успеха были самые разные: нововведения в средствах связи – причем сюда надо включить изобретение письменности и печатного дела, не говоря уже о возникновении самих языков; рост населения и увеличение его плотности; усовершенствование форм институциональной организации и стандартов познания; постепенное накопление институционального капитала. Фактически система коллективного интеллекта ограничена возможностями интеллекта ее членов, затратами на передачу информации между ними и различными недостатками и неэффективностью, присущими любым человеческим сообществам. По мере снижения расходов на все виды связи (имеется в виду не только стоимость оборудования, но и время ожидания ответа, затраты времени и внимания, а также другие факторы) появляется возможность создавать более крупные и более сплоченные организации. То же самое происходит и в случае успешной борьбы с отдельных ведомственными крайностями, деформирующими любую организационную жизнь, – разорительные имиджевые игры и статусные притязания; распыление ресурсов; несоблюдение сроков выполнения заданий; сокрытие фактов; фальсификация информации и прочие проблемы, связанные с выбором между свободой воли и навязанными условиями. Даже частичная ликвидация перекосов приносит коллективному интеллекту внушительную пользу.
Существует множество технологических и институциональных новаторских идей, способных влиять на рост нашего коллективного интеллекта. Например, современные рынки прогнозов относительно политики распределения дотаций благоприятствуют утверждению норм справедливости и способствуют выработке перспективных оценок по спорным научным и социальным вопросам{164}164
См.: [Hanson 1995; Hanson 2000; Berg, Rietz 2003].
[Закрыть]. Детекторы лжи (если удастся наладить выпуск надежных и удобных в применении полиграфов) смогут понизить уровень мошенничества в деятельности людей{165}165
Например, что мешает работодателю в его непосильной борьбе против злоупотреблений на рабочем месте прибегать к помощи детектора лжи, проверяя на нем сотрудников в конце каждого дня; причем вопросы могут быть самые простые: не украли ли они что-нибудь и трудились ли они с должным усердием. Интересно было бы поинтересоваться у политических деятелей и руководителей крупных компаний, насколько они действительно искренни в своих заверениях и готовы ли защищать интересы своих избирателей и акционеров. Иметь такую игрушку было бы очень на руку диктаторам – это облегчило бы им задачу выявлять мятежных генералов в ближнем окружении, а также вылавливать по всей стране открытых противников режима и потенциальных оппозиционеров.
[Закрыть]. Более мощным инструментом могут стать детекторы самообмана{166}166
Можно представить методы нейровизуализации, когда с помощью компьютерной или магнитно-резонансной томографии обнаруживают нейронные следы так называемого объясненного сознания. Если в системе детектора лжи не заложена функция регистрации заблуждений, оборудование может давать сбой и ошибаться в случае проверки людей, подверженных самовнушению мыслей, не соответствующих действительности. Лучше всего метод выявления самообмана использовать при обучении рациональному мышлению и при изучении эффективных мер, направленных на избавление от когнитивных искажений.
[Закрыть]. Но и без новоиспеченных игр разума некоторые формы обмана перестают быть актуальными, утрачивая свою привлекательность из-за ряда причин, таких как: доступность информации, рассказывающей о репутации и прошлом человека; промульгация строгих гносеологических правил[12]12
Промульгация (promulgation) официальное провозглашение закона, принятого парламентом или главой государства. Гносеологические правила – адекватное отражение объективной действительности; понятие, относящееся к нормативным правовым актам.
[Закрыть]; приоритет здравого смысла в культуре организаций. В результате систем наблюдения, осуществляемых на добровольной или обязательной основе, будут накоплены огромные объемы информации о поведении человека. На сайтах социальных сетей делятся своей личной информацией уже больше миллиарда людей; совсем скоро все пользователи – с помощью микрофонов и видеокамер, встроенных в смартфоны или оправы очков, – получат возможность загружать непрерывную трансляцию своей жизни. Автоматизированный анализ этих потоков данных породит множество новых применений – разумеется, как во благо, так и во зло{167}167
См.: [Bell, Gemmel 2009]. Одним из начинателей такого подхода к жизни стал исследователь Массачусетского технологического института Деб Рой; Оснастив дом многочисленными видеокамерами, он запечатлел каждую секунду развития своего сына в первые три года жизни. По мнению Роя, аудиовизуальные данные детского поведения и лепета могут быть полезны с точки зрения анализа развития речевых способностей [Roy 2012].
[Закрыть].
Рост уровня коллективного интеллекта может быть также связан с общими организационными и экономическими изменениями и с увеличением среди народонаселения доли больших сообществ социальных сетей, состоящих из образованных людей, постоянно обменивающихся информацией и интегрированных в общемировую культуру{168}168
Рост общей численности народонаселения с точки зрения уровня коллективного интеллекта явится лишь незначительным фактором. В случае создания машинного интеллекта население мира (включая цифровых агентов) в течение очень короткого времени вырастет на много порядков. Но такой путь к сверхразуму предполагает создание универсального искусственного интеллекта или полной эмуляции головного мозга, поэтому сейчас мы не будем затрагивать эту тему.
[Закрыть].
Интернет остается самым динамичным полем действия, передним краем для инноваций и экспериментов. Причем большая часть его потенциала до сих пор еще не раскрыта. Следует укреплять интеллектуальные сети, активно поддерживать формат разумных обсуждений, стараться избегать предубеждений, вырабатывать механизмы для превращения частных суждений в коллективные решения – все это должно внести существенный вклад в развитие коллективного интеллекта как всего человечества в целом, так и отдельных сообществ.
Настало время поговорить о совершенно, казалось бы, фантастической идее, что интернет может в один прекрасный день «проснуться». Может ли он стать чем-то большим, нежели просто местом сосредоточения пока еще слабо выраженного коллективного сверхразумного начала – чем-то вроде виртуальной черепной коробки, вместившей в себя зародыш единого сверхразума? (В знаменитом эссе Вернона Винджа «Далее – технологическая сингулярность», написанном в 1993 году, этот сценарий рассматривается в качестве одного из путей появления сверхразума, писатель даже ввел в оборот термин «технологическая сингулярность»{169}169
См.: [Vinge 1993].
[Закрыть].) Можно возразить, что искусственный интеллект трудно создать даже в результате целенаправленных инженерных усилий, поэтому его спонтанное появление кажется практически невероятным. Однако дело не обстоит так, будто одна из следующих версий интернета внезапно станет сверхразумной исключительно по воле случая. Более правдоподобный сценарий заключается в другом: интернет будет шаг за шагом совершенствоваться, аккумулируя в себе все самое передовое, благодаря усилиям множества людей на протяжении долгих лет – усилиям, направленным на улучшение алгоритмов поиска, отбора и анализа информации, на создание более мощных форматов представления данных, более качественных автономных ПО и более эффективных протоколов, управляющих взаимодействием этих ботов. В конечном счете мириады небольших сдвигов создадут основу для некой единой формы сетевого интеллекта. По крайней мере, вполне возможно, что появится именно такая когнитивная система, выращенная на веб-технологиях, не испытывающая недостатка в вычислительной мощности и других ресурсах, необходимых для взрывного роста, – разве что за исключением одного критически важного ингредиента. И когда этот ингредиент будет найден и брошен в общий котел – все раньше сваренное воспламенится и превратится в сверхразум. Однако этот сценарий опять сворачивает на уже знакомый нам путь появления сверхразума – создание универсального искусственного интеллекта.
Резюме
Итак, к сверхразуму ведут самые разные пути, и этот непреложный факт вселяет некоторую уверенность, что в конечном счете мы до него доберемся. Не удастся пройти одним путем – мы выберем другой.
Однако разнообразные варианты не приведут нас во многие места назначения. Даже если на одной из дорог, не связанной с машинным интеллектом, произойдет заметное улучшение когнитивных способностей – это не означает, что ИИ утратил свое значение. Скорее, наоборот: развившийся сверх меры человеческий и организационный разум ускорит развитие науки и технологий, потенциально приблизив появление радикальных форм создания универсального искусственного интеллекта вроде полной эмуляции головного мозга.
Из всего вышесказанного не следует делать вывод, будто нам все равно, каким маршрутом двигаться к сверхразуму. Выбранный путь может оказать серьезное влияние на конечный результат. Даже если новые полученные возможности не слишком обусловлены вариантом направления, то вопрос, как они станут использоваться и какова будет степень нашего контроля над ними, вполне может зависеть от принятого подхода. Например, усовершенствование человеческого или организационного разума может повысить готовность людей идти на риск и добиваться осуществления такого машинного сверхразума, который будет безопасным и полезным для человечества. (Чтобы дойти до полноценной стратегической оценки этого, придется преодолеть много трудностей – их обсуждением мы займемся лишь в четырнадцатой главе.)
Можно ожидать, что первый настоящий сверхразум (в отличие от незначительного повышения нынешнего уровня когнитивных способностей) появится в результате движения к искусственному интеллекту. Однако этот путь связан с большой неопределенностью. Поэтому трудно точно оценить, насколько он окажется долгим и со сколькими препятствиями мы столкнемся. Некоторыми шансами оказаться самым быстрым способом осуществления сверхразума обладает полная эмуляция головного мозга. Поскольку прогресс на этом пути требует скорее технологических решений, чем теоретических прорывов, есть основания полагать, что в конечном счете успех достижим. И все-таки с большой долей уверенности мы утверждаем, что даже в случае постоянного прогресса в компьютерном моделировании мозга финишную черту первым пересечет искусственный интеллект: причина заключается в том, что нейроморфный искусственный интеллект может быть создан и с помощью частичной эмуляции мозга.
Явно решаема задача биологического улучшения интеллектуальных способностей, особенно основанного на генетической селекции. Многообещающей технологией на сегодняшний день кажется итеративная селекция эмбрионов. Однако в сравнении с возможными прорывами в искусственном интеллекте биологические улучшения будут происходить относительно медленно и постепенно. В лучшем случае они приведут к возникновению сравнительно слабой формы сверхразума (скоро мы снова вернемся к этой теме).
Благодаря реальной возможности биологического улучшения интеллектуальных способностей растет наша уверенность, что в конце концов будет создан и искусственный интеллект, поскольку улучшенные интеллектуально люди – ученые и инженеры – смогут добиться большего и быстрейшего прогресса, нежели их обычные коллеги. Особенно в тех сценариях, где ИИ должен быть создан не раньше середины нашего столетия, огромная роль отводится постепенно растущей когорте усовершенствованных интеллектуально людей.
Нейрокомпьютерные интерфейсы вряд ли станут тем вариантом, который приведет нас к сверхразуму. Усовершенствование сетей и организаций может в долгосрочной перспективе привести к появлению слабых форм коллективного интеллекта, но более вероятно, что оно сыграет стимулирующую роль, как и биологическое улучшение интеллектуальных способностей, постепенно повышая эффективность умственной деятельности людей при решении интеллектуальных задач. В сравнении с биологическими улучшениями прогресс в развитии сетей и организаций произойдет быстрее – на самом деле он уже происходит и уже оказывает на нашу жизнь значительное влияние. Однако усовершенствование сетей и организаций будет иметь меньшее влияние на развитие человеческих возможностей решать интеллектуальные задачи, чем усовершенствование когнитивных способностей. Сети и организации скорее послужат стимулирующим началом развития коллективного интеллекта, нежели качественного интеллекта – разницу между этими понятиями мы рассмотрим в следующей главе.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?