Электронная библиотека » Отто Фриш » » онлайн чтение - страница 5


  • Текст добавлен: 28 октября 2019, 12:21


Автор книги: Отто Фриш


Жанр: Биографии и Мемуары, Публицистика


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 20 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Наконец, и это важнее всего, если еще дальше развивать аналогию между гравитацией и электромагнетизмом, окажется, что между ними существует одно очень большое и глубокое различие.

Чтобы объяснить причину этого различия, потребуется не так уж мало писать на доске. Однако чтобы понять, в чем заключается суть различия, много писать, по-моему, не придется.

Я буду применять слово «пространство» для обозначения четырехмерного многообразия, состоящего из привычного трехмерного мира, к которому добавлено четвертое измерение – время; последнее нельзя полностью и безоговорочно отделять от пространственных интервалов, поскольку эти понятия взаимосвязаны, как мы уже выяснили при рассмотрении равномерного движения. При исследовании пространства с помощью простых линеек и часов оказывается, что это реальное пространство не есть пространство Евклида, это не есть пространство геометров-классиков, поскольку оно имеет некую структуру и некие присущие ей искажения. Это не есть пространство, которое изображается на бумаге и измеряется при помощи линейки. Весьма трудно представить, по крайней мере мне, четырехмерные континуумы, в особенности если одно из измерений не расстояние, а время. Но можно ведь представить обычную двухмерную плоскость и предположить, что четырехмерный континуум – аналогичная математическая абстракция, которая легко поддается математическому описанию, но которую визуально представить себе намного труднее.

То, о чем мы говорим, не есть аналог плоской поверхности, а аналог чего-то имеющего своеобразно изогнутую форму. Локально, в пределах небольших размеров любая искривленная поверхность, если у нее нет хребта, ровная и выглядит как плоскость. Но если по ней пройти некоторое расстояние, то присущее пространству искажение начинает явственно выступать. Например, сумма углов треугольника не составит развернутый угол (180°), и теорема Пифагора не будет правильной. Кроме того, здесь возникнут многие геометрические осложнения. В достаточно сильном и неупорядоченном гравитационном поле такого рода искажения выражаются в характере пространства и времени, и их даже можно обнаружить путем конкретных измерений. Отсюда вытекает, что, если принять гравитационную аналогию электромагнетизма, можно прийти к результатам, подобных которым нет в электромагнетизме. И если внимательно к ним присмотреться, можно обнаружить, что это и есть теория Эйнштейна или же что-то весьма близкое и подобное теории Эйнштейна.

Но сорок пять лет назад Эйнштейн шел не этим путем. Он разработал свое описание гравитации на основе нескольких довольно общих идей. Одна из них – это идея о том, что силы гравитации определяются материей и находят свое выражение в геометрии пространства – времени. Каковы же определяющие свойства материи? Конечно, не цвет, а те свойства, которые явно относятся к ее массе, энергии, импульсу или инерции, и другие, связанные с этими характеристики, дающие вместе целостное представление о материи. В данном случае я бы добавил, что электричество и магнетизм, поскольку они обладают энергией, также дают свой вклад в гравитационные поля. Другой важный момент заключается в том, что неотъемлемые свойства геометрии целиком определяют силы гравитации, которые действуют на тела. Мы употребили термин «неотъемлемые», чтобы подчеркнуть, что нас не интересует вопрос о геометрической интерпретации в терминах пространственных координат; нас интересует вопрос о тех свойствах, которые определяют структуру пространства – времени. Таким образом, с одной стороны, «неотъемлемая» геометрия определяется распределением материи, а с другой – реакция материи на тяготение целиком определяется геометрией.

В самом деле, материальное тело в пространстве – времени движется по наиболее «прямой» линии, определяемой характером геометрии.

Из этих двух основных моментов и исходил Эйнштейн, но они не привели его ни к чему определенному.

Кроме того, Эйнштейн рассмотрел те предельные случаи, для которых ему был известен правильный ответ. Один из них – теория тяготения Ньютона, которая, как я уже сказал, верна для не слишком сильных полей, если последние не подвергаются со временем слишком большим изменениям. Второй случай соответствует утверждению, что пространство и время в пределах достаточно малой области должны быть плоскими и в этой области справедливы преобразования Лоренца специальной теории относительности.

Это и есть четыре элемента, так называемые четыре постулата Эйнштейна. Пятый постулат, который никто никогда не сможет истолковать, состоит в том, что теория должна быть простой. В этом случае я бы сказал, мы стоим перед тем фактом, что лишь изобретя правильную систему обозначений и исходя из правильных математических идей, можно сделать вывод о простоте или сложности той или иной теории. После долгих мучений и многих лет безуспешных попыток, т. е. после многих лет, в течение которых изложенные мною идеи физики стали уже ясными, Эйнштейн наконец натолкнулся на раздел математики, созданный другими учеными, который явился идеальным средством для изложения на бумаге вопросов гравитации и общей теории относительности[3]3
  Этим разделом математики является тензорный анализ. – Прим. ред.


[Закрыть]
.

И все те, кто сегодня тщетно пытается придать этой теории более прозаический характер, не могут не восхищаться богатством воображения, смелостью и красотой того, что сделал Эйнштейн. Что же касается правильности или ошибочности его теории – это уже другой вопрос.

Она, безусловно, правильна во всех тех частностях, о которых я говорил. Но пока что имеется очень немного экспериментальных данных, подтверждающих специфические черты этой теории, черты, которые не имеют ничего общего ни с электромагнитной теорией, ни с плоской пространственно-временной структурой, ни с теорией Ньютона. Мы, быть может, долго ждали того, что мы уже узнали, но я не встречал ни одного физика, который бы не считал, что в действительности теория Эйнштейна родилась все-таки на основании замечательных догадок. Однако нет никаких данных, которые опровергли бы эту теорию. Таким образом, проблема пространства – времени еще не завершена. Я не беру на себя смелость говорить о том, что будет дальше, но ясно, что нерешенные вопросы есть еще в двух крайних областях.

Одна из них касается масштаба того огромного, что охватывает все, что мы видим в телескопы и слышим с помощью радиотелескопов. Имеются в виду расстояния, превышающие пять – десять миллиардов световых лет, которые сейчас являются пределом. Мы видим, что Вселенная стремительно расширяется; мы еще не установили в деталях ее пространственную структуру. Вопрос о том, является ли пространство (сейчас я не говорю о времени) конечным или бесконечным, полностью открыт, так как ответа на него сегодня нет, да и вряд ли будет в ближайшем будущем. Эйнштейн считал, что пространство конечно, но это было потому, что он считал все устойчивым и статичным. Изучая пространство, мы видим, что характерной особенностью является движение; чем глубже мы заглядываем, тем больше возникает новых вопросов, тем стремительнее удаляются от нас объекты; и мы не в состоянии ответить, прекратится ли этот процесс или будет длиться вечно, и есть ли предел тому расстоянию, которое мы можем наблюдать.

Другая область – это еще один нерешенный вопрос, о котором я уже упоминал. Дело в том, что когда мы переходим к весьма малым размерам (я имею в виду не размеры атомов и даже ядер, а размеры тех объектов, из которых они состоят), то нельзя с точностью установить, до какого предела возможно различать близлежащие точки в пространстве и времени и в какой мере разделение таких точек имеет смысл. Но скажу одно. Здесь дело не в искривлении пространства, ибо в этом случае гравитация представляет силу, которой вполне можно пренебречь; кроме того, предполагается, что скорость света и в этом случае является конечным пределом, ограничивающим скорость распространения всех физических возмущений или сигналов. Исходя из этого предположения, можно сделать далеко идущие выводы, и по сей день ни один из этих выводов не был опровергнут опытом, являющимся одним из могучих орудий современной физики.

Атом и поле

Моя сегодняшняя лекция посвящена квантовой теории, которая берет начало от двух параллельных и даже взаимно дополняющих друг друга исторических источников. Первый из них – это свойства электромагнитного излучения (но не те, которые имеют значение для теории относительности), второй – стремление познать структуру атома. Говоря о структуре атома, я имею в виду атомы, с которыми имеет дело химик или специалист в области спектроскопии, а не атомы, с которыми имеет дело физик, работающий на гигантском ускорителе. Второе направление также представляет интерес, но фактически оно возникло в течение последних десятилетий и как следует не разработано, тогда как квантовая теория приобрела почти законченный вид еще тридцать пять лет назад.

Касаясь вопроса об электромагнитном излучении, следует прежде всего еще раз несколько подробнее остановиться на том, что переменное магнитное поле создает электрическое поле, переменное же электрическое поле генерирует магнитное, и этот процесс перекачки порождает электромагнитные волны. Эти волны обладают весьма важными, глубокими, хотя и несколько абстрактными свойствами, которые являются общими для всех других явлений, именуемых физиками волновыми процессами. Всякая электромагнитная волна характеризуется векторами электрической и магнитной напряженности, которые колеблются во взаимно перпендикулярных плоскостях; в частности, они могут совершать периодические во времени колебания, принимая то положительное, то отрицательное направление и обращаясь в нуль при переходе от одного к другому; эти векторы могут колебаться в противоположных фазах, так что когда напряженность электрического поля равна нулю, напряженность магнитного поля максимальна, и наоборот; и все это движется со скоростью света в направлении, перпендикулярном к напряженности как электрического, так и магнитного полей. Это один из видов электромагнитных волн, рассмотрением которых мы и ограничимся.


Рис. 1


Волна характеризуется тремя параметрами: длиной волны λ, частотой колебаний v и скоростью распространения c. Длина волны измеряется расстоянием между двумя соседними максимумами вектора электрической напряженности. Частота определяется скоростью изменения электрического поля в данной точке со временем. Произведение этих двух величин есть скорость распространения волны, равная для электромагнитной волны скорости света, так что c = λv. Можно определить длину и частоту любой волны, например звуковой волны или волны, образующейся на поверхности воды. Произведение этих величин тоже определяет скорость волны, т. е. соответственно скорость звука и скорость движения гребня волны, распространяющейся в воде.

Важное свойство любого волнового процесса, будь то распространение электромагнитных волн, распространение звука, колебание водной поверхности (в последнем случае особенно легко наблюдать явление, о котором идет речь ниже), заключается в следующем. Если две волны перекрываются в некоторой области пространства и времени, то они взаимодействуют и соответствующие возмущения складываются. Например, напряженность электрического поля, обусловленного двумя электромагнитными волнами, равна сумме напряженностей электрических полей каждой волны в отдельности. То же относится и к напряженности магнитного поля.

Это означает, что при наложении двух волн электрические поля могут либо складываться (рис. 2, б), либо гасить друг друга (рис. 2, а) в зависимости от взаимного расположения волн.

Весьма важно отметить, что интенсивность света или электромагнитного излучения, переносимая ими энергия и многие количественные характеристики вызываемых ими эффектов пропорциональны не напряженности электрического поля, а квадрату напряженности.


Рис. 2


Глядя на рис. 2, вы видите, что волны при интерференции могут складываться, в результате чего амплитуда волны удваивается (рис. 2, б) и, следовательно, учетверяется ее интенсивность; но волны могут также и гасить друг друга, как показано на рис. 2, а, где одна волна с достаточно большой положительно амплитудой полностью гасится другой, с такой же по величине, но отрицательной амплитудой.

Таковы общие свойства волн, которые я считал нужным изложить, и сделал это, надеюсь, не совсем необоснованно. На них мы будем ссылаться в течение всей сегодняшней лекции. Следует помнить, что эти свойства характерны для всех видов волн: волн на поверхности воды, звуковых и всех электромагнитных, в том числе самых длинных радиоволн, используемых для радиопередач, микроволн, тепловых, световых, ультрафиолетовых, рентгеновских, вплоть до самых высокочастотных, которые могут вообще существовать.

Одно из следствий этого свойства волн заключается в том, что световые волны от разных источников могут интерферировать. Для иллюстрации приведу лишь два примера. К одному из них мы еще вернемся.


Рис. 3


На рис. 3 показаны источник S – диафрагма с очень узкими щелями – и выходящие из этих щелей расходящиеся световые волны. Кривые линии обозначают гребни световых волн: в точках совпадения гребней свет особенно интенсивен, а в точках совпадения гребня со впадиной волны света нет вообще. Таким образом, наличие этих двух отверстий создает чередование ярких и затемненных областей, явление, которому нельзя было бы дать объяснения, рассматривая распространение света от каждой щели в отдельности, и которое характеризуется длиной волны и расстоянием между щелями. Если бы было много щелей, расположенных на одном и том же расстоянии друг от друга, свет распространялся бы от них в определенных направлениях, определяемых соотношением между длиной волны и расстоянием, разделяющем щели. Такой набор щелей называется решеткой.

Сотни экспериментов показали, насколько изящно можно объяснить явления распространения света, такие как отражение, прохождение через щели, дифракция на решетке и дисперсия, с помощью простых представлений об интерференции световых волн. До сегодняшнего дня не возникает ни малейшего сомнения в правильности такого описания. К нему прибегают всякий раз при проектировании радиолокационной антенны, а также при анализе вопросов электромагнитного излучения и его распространения вблизи различных объектов. Свет или радиоволны от различных зазоров сходятся, причем результирующая интенсивность зависит от разности фаз взаимодействующих волн. В этом аспекте волны являются абстрактными в том смысле, что движение материи отсутствует и нет никакого движущегося эфира. В то же время эти волны конкретны, поскольку существуют электрические и магнитные поля, те самые, о которых столько мечтал Фарадей, поля, поддающиеся измерению. Гребень каждой волны соответствует значению максимальной напряженности электрического поля в определенный момент времени, а каждая впадина – значению максимальной напряженности магнитного поля в каждый момент времени. (Проводить такие измерения для световых волн чрезвычайно утомительно, но когда речь идет о длинных радиоволнах, то дело сводится к довольно простому эксперименту, который хотя многому и не научит, но зато подтвердит здравость вашего ума.) Но вот на рубеже прошлого и нынешнего веков этой гармоничной картине природы электромагнитного излучения был нанесен сильный удар, после которого она уже не смогла приобрести прежний вид. Чтобы объяснить случившееся, лучше было бы вообще не касаться истории, но я расскажу, как открыл это Планк.

В газе, состоящем из молекул, каждая молекула в среднем обладает одной и той же энергией, которая является мерой температуры газа. Если вы имеете электромагнитное поле в некотором замкнутом объеме, то может показаться, что волна данной длины должна обладать примерно той же энергией, как и любая другая, и эта энергия пропорциональна температуре материи, образующей замкнутое пространство и излучающей указанные волны. Уже с первого взгляда это представляется абсурдным, поскольку согласно теории относительности не существует предельной длины волны, ибо достаточно сесть в скорый поезд – и волны станут короче. Следовательно, в любом ограниченном объеме пространства тепловое равновесие между материей и излучением может наступить только при бесконечно большом содержании энергии. Энергия попросту будет выкачиваться из материи, пока все не станет абсолютно холодным, поскольку вся энергия будет передана электромагнитному полю[4]4
  Так как электромагнитное поле является одной из форм материи, под словом «материя» следует понимать «вещество». – Прим. ред.


[Закрыть]
. Как известно, это не соответствует истине.

В поисках объяснения Планк воспользовался следующими известными ему фактами. Он знал, что для электромагнитных волн чрезвычайно низких частот закономерность, согласно которой все электромагнитные волны в замкнутом пространстве обладают одинаковой энергией, соответствует истине. Он знал также, что, когда дело касается чрезвычайно высоких частот, имеет место совершенно иное явление; при этом энергия, которой обладает волна, равна энергии, которая была бы необходима для образования так называемого кванта энергии, характеризуемого величиной hv. Планк ввел постоянную h, чтобы связать оба изученных режима. С тех пор она известна под названием постоянной Планка. Как видите, эта постоянная такова, что, будучи умножена на частоту, она дает величину энергии. Называемая также квантом действия, она будет встречаться снова и снова, являясь как бы эмблемой атомной физики.

Планк получил формулу, которая примирила противоречия, возникавшие ранее при описании свойств равновесного излучения в замкнутом пространстве, а также довольно точно определил величину введенной им постоянной. Но при этом ему пришлось исходить из возможного, но формального предположения, что свет излучается не непрерывно, подобно волне, а в виде отдельных порций энергии, кратных частоте и равных hv. Он не верил в эту возможность и в течение многих лет пытался вывести свою формулу без такого сенсационного предположения, которое полностью противоречило представлению о свете как о волне. Ведь согласно его гипотезе свет не мог излучаться подобно радиоволнам, возбуждаемым, например, при движении зарядов; процесс испускания света должен был сопровождаться излучением порций энергии; а если отсутствует возможность излучения такого количества энергии, то ничего не происходит; если же излучение энергии возможно – происходит испускание кванта света, и если существуют условия для многократного повторения процесса, то это и происходит многократно. Естественно было думать, что Планк мог допустить ошибку в таком сложном, запутанном, имеющем статистический характер вопросе; и он сам долгие годы упорно надеялся, что так оно и есть.

Но в этом он был неправ. Его надежде был нанесен тяжкий удар, когда в год создания специальной теории относительности Эйнштейном была написана еще одна работа, которая оказалась даже более ошеломляющей. Эта работа очень тесно связана с открытием Планка.

Если направить на металлическую поверхность не слишком красный свет, то электроны, находящиеся в металле, будут вылетать из него. В лаборатории было открыто довольно странное явление: если, например, удвоить интенсивность света, то это повлияет не на скорость электронов, а на их число. Конечно, если мыслить свет как электромагнитную волну, интенсивность которой возрастает, то можно ожидать, что на электроны будет оказано более сильное воздействие. Однако ничего подобного не происходит. Энергия электронов не зависит от интенсивности света, а связана с его частотой и постоянной Планка весьма простым соотношением


E = hv − В.


Здесь световая энергия hv – та же энергия, которую Планк ввел пятью годами раньше; Е – кинетическая энергия вырванного из металла электрона; величина В не является фундаментальной и равна той работе, которую необходимо затратить, чтобы выбить электрон из металла. Эта формула получила очень точное и изящное подтверждение. И Эйнштейн сказал: «Это решает дело. Совершенно очевидно, что существуют кванты энергии света». Свет поглощается порциями, кратными hv, после чего энергия просто уносится электроном, – а это и есть объяснение формулы.

Но это открытие, разумеется, не упразднило опыт, накопленный за целое столетие изучения волновых явлений. С помощью интерферометров, призм, микроскопов и радиоволн ученые продолжали изучать свет как явление распространения волн. С другой стороны, возникло представление о прерывной структуре света, о световой частице (по крайней мере по отношению к явлениям поглощения и излучения света), и от этого нельзя было отмахнуться. Более того, оно даже подтвердилось экспериментами с чрезвычайно жестким излучением, а именно с рентгеновским. В самом деле, сталкиваясь с электронами, рентгеновское излучение ведет себя так, как если бы у него была энергия, определяемая соотношением E = hv, и импульс p = h/λ, равный той же самой постоянной h, деленной на длину волны. Таким образом, наблюдалось, что при столкновении с электроном свет ведет себя как частица, которая обладает импульсом и энергией, связанными этими простыми соотношениями с его частотой и длиной волны; эти соотношения, в свою очередь, согласуются с правилами взаимосвязи энергии и количества движения электромагнитной волны, но, включая постоянную h, подразумевают дискретную передачу энергии и импульса электрону при соударении с ним света. Указанный эксперимент, получивший название эффекта Комптона, привел в 1923 году к решающему заключению о двойственной природе света.

Вполне возможно, что во всем этом так и не удалось бы сразу разобраться, если бы не возник еще один столь же загадочный аспект; в данном случае речь пойдет не о непосредственном поведении света, а о поведении материи в масштабе атома. Позвольте напомнить вам, что в самом конце прошлого века Томсон открыл универсальную составляющую обычной материи – электрон, несущий отрицательный заряд. По сравнению с атомом он очень легок, его масса приблизительно в две тысячи раз меньше массы самого легкого атома – атома водорода. Заряд его равен единице, которая присуща исключительно атомному миру. Томсон правильно предположил, что число электронов в атоме связано с его химическими свойствами и его местом в периодической системе. Таким образом, атом водорода обладает одним электроном, атом гелия – двумя, а атом урана – девяносто двумя. Томсон знал, что атомы нейтральны, но не знал, где находится нейтрализующий положительный заряд. Тогда он предположил, что заряд, вероятно, распределен по всему объему атома, т. е. по сфере диаметром в одну сотую часть миллионной доли сантиметра. Такова была томсоновская модель атома. Она не вызывала никаких вопросов, поскольку была довольно неопределенной, и особенно спорить о ней было бесполезно. Но Томсону удалось доказать, что некоторые закономерности (местоположение определенных чисел и наличие периодов), которые встречаются в периодической системе, вытекают из этой модели. Однако модель просуществовала недолго, так как работа Резерфорда, начатая в Макгилле и продолженная в Манчестере, была наконец успешно завершена. Резерфорд доказал, что положительный заряд не распределен по всему объему атома. И сделал он это блестяще. Изучая естественную радиоактивность урана, радия и других тяжелых элементов, он уточнил их родственные связи, определив, какие химические элементы получаются в результате естественного распада тех или других элементов, и установил последовательность процессов распада. Он выделил три типа радиоактивности: излучение тяжелых частиц с положительным зарядом, являющихся ядрами гелия, – он назвал их альфа-частицами; излучение легких отрицательно заряженных частиц, т. е. электронов; и, наконец, излучение нейтральных частиц, которые оказались световыми квантами очень высокой частоты. Вначале он только предполагал, что альфа-частицы – это ядра гелия, но его интересовал вопрос, как ведут себя эти частицы при прохождении через вещество. Оказалось, они вели себя не так, как если бы положительный заряд был равномерно размазан по всему объему атома, внутри которого распределены чрезвычайно легкие электроны, согласно томсоновской модели.

В таком случае не было бы столь большой силы, которая могла отклонить альфа-частицы, поскольку распределенный заряд не может иметь достаточное количество сконцентрированного электричества, а электроны обладают слишком малой массой для того, чтобы они могли «играть в мяч» альфа-частицей, которая в семь тысяч раз тяжелее их. Резерфорд установил, что альфа-частицы хотя и не часто, но регулярно отклонялись на большой угол, и отсюда сделал вывод, что положительный заряд сконцентрирован в некотором малом объеме; точнее, он сконцентрирован вместе с основной массой атома в области более чем в десять тысяч раз меньшей по размерам, чем сам атом. Так он открыл атомное ядро, которое несет положительный заряд, определяющий химические и основные физические свойства атома.

Это была захватывающая история, но она явилась только началом действительно очень больших загадок. Представьте себе самый простой по своей структуре атом – атом водорода. Он обладает протоном, единственной ядерной частицей в центре, несущей единичный положительный заряд, а также электроном, и вместе они образуют систему с четко определенными размерами. Этот размер является стандартным, радиус атома в обычных условиях остается неизменным. При бомбардировке атом водорода излучает совершенно определенный спектр. Ни одно из этих свойств нельзя было понять на основе ньютоновских представлений о движении и о взаимодействии заряженных частиц, так как Резерфорд доказал, что поле вблизи протона является электрическим. Это поле по форме является точным подобием гравитационного поля вокруг Солнца; силы уменьшаются обратно пропорционально квадрату расстояния. Все силы направлены к протону, поскольку в данном случае это силы притяжения, ибо электрон и протон несут противоположные заряды. Следовательно, это опять та же проблема планетарного движения. Однако нам известно, что планетарные движения бывают в той или иной степени различными: планеты описывают любые эллипсы в любой плоскости с любым эксцентриситетом и любых размеров. Поэтому весьма странно, что все атомы водорода имеют одинаковый размер и ведут себя одинаково. С точки зрения классической физики невозможно объяснить, почему один атом водорода не должен отличаться от любого другого по размеру, форме и поведению.

Более того, хотя я подробно не говорил об этом, известно, что заряженная частица, описывающая круговую или эллиптическую орбиту, испытывает ускорение, а ускоряемая заряженная частица излучает световые волны и поэтому теряет энергию. Однако атом водорода, если только он не подвергается бомбардировке, может годами и столетиями пребывать в неизменном состоянии. Он не теряет энергии, а электрон не приближается по спирали к ядру, чтобы окончательно в нем исчезнуть.

И наконец, законы, определяющие цвет света, излучаемого при движении по такой классической орбите, хотя и несколько сложнее законов, определяющих звуковые частоты скрипичной струны, но все же по форме напоминают их. Поэтому должна бы существовать основная частота, определяемая периодом вращения электрона по орбите, а также обертоны или гармоники, т. е. частоты, кратные основной; наблюдаемые же в атомном спектре (включая водород) частоты не являются ни гармониками, ни суммой целых кратных основной частоты, а скорее сложными сочетаниями разностей между числами, которые не соотносятся гармонично. Конкретно все наблюдаемые частоты можно представить соотношением


V = vi – vj ,


где Vi и Vj – два числа некоторой последовательности v1, v2, v3… Для водорода эти числа были найдены Бальмером, а вообще каждый атом характеризуется своим набором подобных чисел. Другими словами, уникальность атомных систем (что труднее доказать для атома с 92 электронами, но тем не менее это остается верным), выраженная в законе испускания света при возбуждении, стабильность этих систем и единообразие их размера никак не вытекали из каких-либо данных, известных физике в то время.

Это чрезвычайно затруднительное положение побудило Бора сделать одно удивительное рискованное предположение, которое при всей осторожности Бора выглядело весьма революционным. Бор заявил: «По причинам, нам еще не понятным, атом характеризуется не классическими орбитами, а рядом состояний, которые, по существу, стационарны и которые со временем не меняются». Из них наиболее обычным и важным является состояние, характеризуемое наименьшей энергией, так называемое основное состояние. Оно длится вечно, если только атом не подвергается никакому возмущающему воздействию. Эти состояния характеризуются различными энергиями. Состояния с большей энергией, нежели основное состояние, могут быть неустойчивыми. Из такого состояния может произойти самопроизвольный переход в состояние с более низкой энергией. Следует помнить, что каждая частота, излучаемая данным атомом, может быть выражена как v = v1 − v2. Более наглядно это можно записать, умножив обе части равенства на постоянную Планка h:


hv = hv1 − hv2.


Тогда каждый член данного равенства представляет собой энергию; можно предположить, что величины hv1 и hv2 – это энергии двух состояний атома, а величина hv есть энергия кванта света, который излучается при переходе из одного состояния в другое. «Я не могу описать эти переходы, – заявил Бор. – Они не есть движения в классическом смысле. Это нечто новое, чего я не понимаю». Далее Бор сказал: «В некоторых случаях я могу привести правило, так как я произвел расчет энергий, характеризующих эти состояния, и это я могу выразить в терминах свойств соответствующих классических орбит». Но Бор не утверждал, что эти состояния имеют нечто общее с орбитами. Во-первых, орбита – движение, и поэтому должны иметь место какие-то изменения во времени. А стационарное состояние есть стационарное состояние, которое со временем совершенно не меняется.

Теперь мы подошли к вопросу о кризисе квантовой теории. Но прежде чем мы закончим наш рассказ, мы увидим, насколько расширилось представление о познании в науке; увидим, что мы достигли широкого обобщения понятия объективного познания; увидим, что мы имеем гораздо лучшую аналогию логических категорий, чем та, которую можно было бы построить на основе ньютоновской физики.

Рассматриваемый нами кризис возник в процессе двух исследований, которые оказались очень тесно связаны друг с другом. Во-первых, было установлено, что хотя все электромагнитные волны, включая и световые, будучи способными интерферировать и дифрагировать, носят волновой характер, тем не менее во взаимодействии с материей они проявляют также и дискретную природу – ведут себя как световые кванты с определенной энергией и определенным импульсом, – и в этом взаимодействии они либо отдают свою энергию, либо получают энергию от материи, либо испытывают упругие столкновения с атомами материи. Во-вторых, в результате открытия Резерфордом атомного ядра встал вопрос, как же все-таки ведут себя электроны вблизи ядра. Они не движутся по планетарным орбитам, ничего не излучают, и их поведение не похоже на поведение планеты в миниатюрной Солнечной системе; но они в большей части находятся в стационарных, по существу стабильных, состояниях, а по утверждению Бора, при самой низкой энергии – в полностью стабильном состоянии. Переход их из одного состояния в другое не есть движение в обычном понимании движения в пространстве и времени; различие между энергиями двух стационарных состояний проявляется в виде излучения соответствующего кванта света. Для определения энергии этих состояний Бор установил ряд правил, не совсем точных и не всегда применимых; я не буду их записывать.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации