Автор книги: Отто Фриш
Жанр: Биографии и Мемуары, Публицистика
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Как вам известно, между представителями технической интеллигенции происходили глубокие и тяжелые конфликты. Мне кажется, что почти в любой день можно взять газету и прочитать, как одни ученые обвиняют других во лжи. Нас раздирают конфликты, но это не было столь очевидно и ясно в 1945 и 1946 годах. Гонка вооружений, «холодная война», упорный характер политического конфликта, а также огромные, сложные и ужасающие масштабы технического развития не создают благоприятных условий для простого обсуждения проблем физики. К тому же это, конечно, не проблемы физики, и их научным путем не решить Вопрос о нашем назначении на Земле, вопрос о создании правительства, которое осуществляло бы наши цели, вопрос об ответственности ученых не решается в лаборатории и не может быть урегулирован с помощью какого-либо уравнения или математических вычислений. Частично конфликт между специалистами подобен конфликту между всеми людьми: он проистекает из противоположных оценок всего курса и линии поведения противника, что является весьма таинственным предметом даже для экспертов. Частично же это происходит потому, что речь идет о мире, который не имеет аналогичных примеров в прошлом. Мир никогда еще не стоял перед возможностью самоуничтожения – в известном смысле, аннигиляции, – которую можно было бы сравнить с нынешней возможностью. Он также не стоял перед необходимостью принять решение, подобное хоть в какой-то степени тому, которое связано с этой проблемой.
Те из вас, кто участвовал в боях, знают, насколько ход боя отличается от первоначального плана, насколько он бывает запутанным, как трудно предвидеть его исход, даже если он хорошо спланирован. Никто еще не имеет опыта ведения боевых действий в ядерный век. Поэтому есть все основания для ожесточенных споров относительно того, какая доля населения данной страны останется в живых после тех или иных действий, а также относительно того, что, несомненно, сделают наши противники, и относительно их возможных действий. Кроме того, следует заметить, что физики, как и все люди, безусловно, не безгрешны и не свободны от тщеславия. Можно ожидать довольно гнусных дел, и они действительно наблюдаются.
Но я полагаю, что по нескольким важнейшим пунктам, не содержащим ответы на все вопросы, к которым мы питаем законный интерес, мы, физики, довольно точно представляем себе, в чем состоит наш долг. Во-первых, честно сообщить то, что мы знаем все вместе, знаем в той мере, в какой я знаю о преобразовании Лоренца и двойственном характере волны-частицы, знаю на основании глубокой научной убежденности и опыта. Мы считаем, что должны делиться этими сведениями открыто, когда это возможно, должны сообщать их секретно нашим правительствам по их требованию или даже если наши правительства того не требуют, осведомлять их по тем или иным вопросам, как это сделал Эйнштейн в 1939 году.
Все мы считаем своим долгом делать различие между осведомлением в этом чрезвычайно специфическом и гордом, а потому часто абстрактном смысле, и между самыми лучшими нашими предположениями и компетентными оценками предложений, мотивы которых не могут быть нам известны. Еще важнее делать различие между наукой вообще, наукой, где многое уже известно и с каждым днем узнается все больше, и между нашими мечтами и надеждами, которыми мы дорожим, о которых любим говорить и должны говорить, но в иной обстановке и по-иному. Наконец, наш долг при любой возможности вместе с нашими коллегами в соревнующихся, антагонистических и, возможно, враждебных странах, вместе со всеми, с кем у нас есть общие профессиональные, политические и просто человеческие интересы, содействовать росту знаний и международному взаимопониманию.
Мы рассматриваем эту нашу деятельность как вклад в общее дело, вклад, не слишком отличающийся от вклада других людей. Но наш вклад в гораздо большей степени обусловлен растущим пониманием физического мира во все более запутанной, все более замечательной и неожиданной ситуации. Мы рассматриваем эту нашу деятельность как свой вклад в дальнейшее развитие мира, который отличается разнообразием и любит разнообразие, который свободен и дорожит свободой, который свободно изменяется, чтобы приспособиться к неизбежным потребностям перемен как в двадцатом столетии, так и в будущих столетиях, но при этом имеем в виду мир, который, несмотря на все свое разнообразие, свободу и перемены, не должен состоять из национальных государств, вооруженных для войны, а быть миром, который был бы прежде всего миром без войны.
Нильс Бор
Атомная физика и человеческое познание
Предисловие автора к русскому изданию
Мне доставляет большое удовольствие, что это собрание моих работ стало доступно русскому читателю. Я особенно признателен моему старому другу академику Фоку, всегда проявлявшему такой активный интерес к обсуждаемым здесь проблемам, за его инициативу в организации русского издания моих работ и за взятый им на себя тяжелый труд по их переводу.
Копенгаген, март 1961 г.
Введение
Важное значение физической науки для развития общего философского мышления основано не только на ее вкладе в наше непрерывно возрастающее познание той природы, частью которой мы являемся сами; физическая наука важна и тем, что время от времени она давала случай пересматривать и улучшать нашу систему понятий как орудие познания. В нашем столетии изучение атомного строения материи обнаружило неожиданное ограничение области применимости классических физических идей и пролило новый свет на содержащиеся в традиционной философии требования к научному объяснению. Необходимый для понимания атомных явлений пересмотр основ и предпосылок однозначного применения наших элементарных понятий имеет поэтому значение, выходящее далеко за пределы одной только физической науки.
Главное содержание урока, преподанного нам развитием атомной физики, состоит, как известно, в признании свойства цельности и неделимости атомных процессов, обнаруженного благодаря открытию кванта действия. Предлагаемые статьи освещают наиболее существенные стороны ситуации в квантовой физике; в то же время они указывают на черты сходства между этой ситуацией и положением и других областях знаний, выходящих за пределы механистического представления о природе. Мы не рассматриваем здесь какие-либо туманные аналогии, а исследуем условия для надлежащего применения слов и понятий, выражающих наши опытные знания. Такие рассуждения имеют целью не только ознакомление с новой ситуацией в физической науке; ввиду сравнительно простого характера атомных проблем они могут оказаться полезными и для разъяснения предпосылок объективного описания в более широких областях знания.
Хотя собранные здесь статьи, таким образом, тесно связаны между собой, они распадаются на три отдельные группы, относящиеся к 1932–1939, 1949 и 1955–1957 гг. Первые три статьи прямо связаны со статьями прежнего сборника; в них обсуждаются биологические и антропологические проблемы, относящиеся к свойствам целостности, характерным для живых организмов и человеческих культур. Конечно, в этих статьях я ни в какой мере не пытаюсь дать исчерпывающее обсуждение этих тем, но лишь указываю, какими представляются эти проблемы на фоне общего урока атомной физики.
Четвертая статья касается дискуссии между физиками о проблемах теории познания, поставленных квантовой физикой. По характеру самой темы нельзя было избежать некоторых ссылок на математический аппарат, но для понимания аргументации не требуется специальных знаний. Споры привели к разъяснению новых сторон проблемы наблюдения, обусловленных тем обстоятельством, что взаимодействие между атомными объектами и измерительными приборами составляет неотъемлемую часть квантового явления. Поэтому данные, полученные в различных экспериментальных установках, не могут быть объединены в том смысле, как обычно; необходимость принимать во внимание условия, при которых получены те или иные опытные данные, прямо требует дополнительного способа описания.
Последняя группа статей тесно связана с первой, но я надеюсь, что уточненная терминология, которой я в них пользуюсь, чтобы изобразить ситуацию в квантовой физике, сделала общую идею и общий ход рассуждения доступнее. Прилагая эти идеи к более широкой области, я делаю особый упор на предпосылки для однозначного применения понятий, используемых при описании опытных фактов. Самая суть аргументации состоит в том, что для объективного описания и гармоничного охвата опытных фактов необходимо почти во всех областях знания обращать внимание на обстоятельства, при которых эти данные получены.
Свет и жизнь
Как физик, чьи исследования ограничиваются свойствами неодушевленных тел, я не без колебаний принял любезное приглашение выступить с речью перед этим собранием ученых, которые встретились для того, чтобы способствовать нашему познанию благотворного действия света при лечении болезней. Будучи не в состоянии внести новое в эту прекрасную отрасль науки, столь важную для благосостояния человечества, я мог бы, самое большее, поговорить о чисто неорганических световых явлениях, которые во все времена особенно привлекали к себе физиков хотя бы потому, что свет является нашим главным орудием наблюдения. Однако я подумал, что в данном случае, может быть, будет интереснее рассмотреть в таком обсуждении вопрос о том, насколько результаты, достигнутые в более ограниченной области, а именно в физике, могут повлиять на наши взгляды на положение, занимаемое живыми организмами внутри общего здания естественных наук. Несмотря на утонченный и неуловимый характер загадок жизни, эта проблема возникала на каждой стадии развития науки, поскольку самое существо научного объяснения состоит в разложении более сложных явлений на более простые. В данный момент этой старой проблеме придает новый интерес то обстоятельство, что недавнее развитие атомной теории выявило существенную ограниченность механистического описания явлений природы. Это развитие как раз и началось с более пристального изучения взаимодействия между светом и материальными телами; оказалось, что некоторые особенности этого взаимодействия несовместимы с известными требованиями, выполнение которых всегда считалось обязательным для всякого физического объяснения. Как я попытаюсь показать, усилия физиков овладеть положением в какой-то мере похожи на позицию биологов, которую те всегда занимали более или менее интуитивно перед проявлениями жизни. Тем не менее я хочу сразу же подчеркнуть, что аналогия между светом и жизнью существует только в этом чисто формальном отношении, поскольку свет является, пожалуй, наименее сложным из всех физических явлений, а жизнь представляет такое необозримое разнообразие, что едва поддается научному анализу.
С физической точки зрения свет можно определить как передачу энергии на расстояние между материальными телами. Такие эффекты находят себе, как известно, простое объяснение в рамках электромагнитной теории, которую можно считать рациональным расширением классической механики, пригодным для того, чтобы смягчить контраст между действием на расстоянии и действием при соприкосновении. По этой теории свет представляет электрические и магнитные колебания, связанные между собой и отличающиеся от обычных радиоволн только большей частотой колебаний и меньшей длиной волны. В самом деле, практически прямолинейное распространение света, на котором основана локализация тел прямым видением или с помощью оптических приборов, всецело зависит от малости длины волны по сравнению с размерами рассматриваемых тел, а также приборов. В то же время волновой характер распространения света важен в двух отношениях. Он не только дает основу для объяснения цветовых явлений, которые благодаря спектроскопии дали столь важную информацию о строении материальных тел; волновой характер света существенно важен также и для всякого утонченного анализа оптических явлений. В качестве типичного примера я упомяну лишь об интерференционных полосах, которые возникают, если свет от одного источника может идти к экрану двумя различными путями. Здесь мы видим, что эффекты, которые были бы вызваны каждым из двух лучей света в отдельности, усиливаются в тех точках экрана, где фазы обоих цугов волн совпадают, т. е. там, где электрические и магнитные колебания обоих лучей имеют одинаковое направление, тогда как эффекты ослабляются и могут даже совсем исчезнуть в тех точках, где направления этих колебаний противоположны, т. е. там, где оба цуга волн находятся, как говорят, в противофазе. Эти интерференционные полосы представляют такую убедительную проверку волновой картины распространения света, что ее уже нельзя рассматривать как гипотезу в обычном смысле этого слова; эту картину надлежит считать адекватным отчетом о наблюдаемых явлениях.
Несмотря на это, в недавние годы проблема природы света подверглась, как вы все знаете, новому обсуждению в связи с обнаружением в механизме передачи энергии важного свойства атомистичности, совершенно непонятного с точки зрения электромагнитной теории. Действительно, всякая передача энергии светом может быть прослежена вплоть до индивидуальных актов, в каждом из которых передается так называемый световой квант; энергия его равна произведению частоты электромагнитных колебаний на квант действия (постоянную Планка). Очевидная противоположность между такого рода атомистичностью светового эффекта и вытекающей из электромагнитной теории непрерывностью распространения энергии ставит перед нами дилемму такого характера, какой до сих пор не был известен в физике. Так, несмотря на явную недостаточность волновой картины распространения света, не может быть и речи о замене ее какой-нибудь другой картиной, которая опиралась бы на обычные механистические понятия. Следует особо подчеркнуть, что световые кванты не могут рассматриваться как частицы, которым можно было бы приписать точно определенный путь в смысле обычной механики. Если бы мы, желая убедиться в том, что световая энергия идет только по одному из двух путей между источником и экраном, задержали один из лучей непрозрачным телом, то интерференционные полосы исчезли бы начисто; совершенно так же и в любом явлении, для которого существенна волновая природа света, невозможно проследить путь индивидуального светового кванта, не нарушая существенно само исследуемое явление. Действительно, пространственная непрерывность распространения света в нашей картине и атомистичность световых эффектов являются дополнительными аспектами одного и того же явления. Дополнительность мы понимаем в том смысле, что оба аспекта отображают одинаково важные свойства световых явлений, причем эти свойства не могут вступать в явное противоречие друг с другом, поскольку более подробный анализ их на основе понятий механики потребовал бы взаимно исключающих экспериментальных установок. В то же время самая эта ситуация заставляет нас отказаться от полного причинного описания световых явлений и удовольствоваться вероятностными законами, основанными на том факте, что электромагнитное описание передачи энергии остается справедливым в статистическом смысле. Последнее заключение представляет типичное приложение так называемого принципа соответствия, выражающего стремление до предела использовать понятия классических теорий – механики и электродинамики, – несмотря на противоположность между этими теориями и квантом действия.
На первый взгляд такая ситуация может показаться крайне неприятной. Но в науке и раньше случалось, что новые открытия приводили к установлению существенных ограничений для понятий, которые до тех пор считались не допускающими исключений. В таких случаях нас вознаграждает приобретение более широкого кругозора и более широких возможностей устанавливать связь между явлениями, которые прежде могли казаться даже противоречащими друг другу. И в самом деле, ограничение классической механики, символизируемое квантом действия, дало нам ключ к пониманию свойственной атомам устойчивости, на которой существенно основано механистическое описание природы. Конечно, фундаментальной чертой атомной теории всегда была невозможность понять неделимость атомов, оставаясь в рамках механических понятий; это положение практически не изменилось и после того, как неделимость атомов была заменена неделимостью электронов и протонов, из которых построены атомы и молекулы. Но я говорил выше не об устойчивости, свойственной этим элементарным частицам, а об устойчивости состоящих из них атомных структур. Если мы подойдем к этой проблеме с точки зрения механики или электромагнитной теории, то мы не найдем достаточной основы для объяснения не только характерных свойств элементов, но даже и самого существования твердых тел (а на них в конечном счете опираются все измерения, служащие для локализации явлений природы в пространстве и времени). Эти затруднения теперь преодолены благодаря признанию того факта, что всякое поддающееся определению изменение атома есть индивидуальный акт, состоящий в полном переходе атома из одного его так называемого стационарного состояния в другое. Кроме того, раз в процессе перехода, в котором атом поглощает или испускает свет, происходит обмен только одним световым квантом, мы можем при помощи спектроскопических наблюдений непосредственно измерить энергию каждого из этих стационарных состояний. Полученные таким образом сведения были весьма убедительно подтверждены изучением того обмена энергией, который происходит при атомных столкновениях и при химических реакциях.
За последние годы произошло поразительное развитие атомной механики в направлении, указанном принципом соответствия. Благодаря этому наше теоретическое отображение (account) свойств атомов стало столь же полным, как отображение астрономических данных ньютоновой механикой. Несмотря на всю сложность общих проблем атомной механики, для ее развития оказался чрезвычайно важным урок, преподанный нам анализом более простых световых эффектов. Так, между однозначным применением понятия стационарных состояний и механическим анализом внутриатомных движений существует то же соотношение дополнительности, какое существует между световым квантом и электромагнитной теорией излучения. Действительно, всякая попытка подробно проследить, как протекает процесс перехода, повлекла бы за собой неконтролируемый обмен энергией между атомом и измерительным прибором, что совершенно нарушило бы тот самый баланс энергии, который мы собирались исследовать. Причинное согласование опытных данных по законам механики выполнимо только в тех случаях, где действие велико по сравнению с квантом и где поэтому возможно подразделение явления. Если это условие не выполнено, то нельзя пренебрегать действием измерительного прибора на исследуемый объект; действие же это влечет за собой несовместимость различных типов информации, которые все необходимы для полного механистического описания в обычном смысле. Эта кажущаяся неполнота механического анализа атомных явлений в конечном счете происходит от присущей всякому измерению неопределенности в реакции объекта на измерительные приборы. Напомним, что общее понятие относительности выражает существенную зависимость всякого явления от системы отсчета, которой пользуются для его локализации в пространстве и времени. Подобно этому, понятие дополнительности служит для того, чтобы символизировать имеющееся в атомной физике существенное ограничение понятия объективно существующего явления в смысле явления, не зависимого от способов его наблюдения.
Этот пересмотр основ механики, затрагивающий самое понятие физического объяснения, не только важен для полного понимания положения в атомной физике, но и создает новый фон для дискуссии о проблемах жизни в их связи с физикой. Это никоим образом не значит, что в атомных явлениях мы встречаем черты более близкого сходства со свойствами живых организмов, чем это наблюдается в обычных физических явлениях. На первый взгляд может показаться, что существенно статистический характер атомной механики противоречит поразительно утонченной организации живых существ. Однако мы должны помнить, что как раз этот дополнительный способ описания и оставляет место для тех закономерностей атомных процессов, которые чужды механике; он столь же важен для нашего отчета о поведении живых организмов, как и для объяснения специфических свойств неорганической материи. Так, в ассимиляции растениями углерода, от которой так сильно зависит также и питание животных, мы имеем дело с явлением, для понимания которого, несомненно, существенна индивидуальность фотохимических процессов. Точно так же немеханическая устойчивость атомных структур явно проявляется в характерных свойствах таких очень сложных химических соединений, как хлорофилл или гемоглобин, играющих фундаментальную роль в механизме растительной ассимиляции и в дыхании животных. Однако аналогии из области обычных химических фактов, вроде старого сравнения жизни с огнем, дадут, конечно, не более удовлетворительное объяснение живых организмов, чем дает их сопоставление с таким чисто механическим устройством, как часовой механизм. В самом деле, важные характерные особенности живых существ надо искать в их своеобразной организации, в которой свойства, поддающиеся анализу на основе обычной механики, так переплетаются с типично атомными чертами, как никогда не бывает в неорганической материи.
Поучительный пример того, до какой степени развита эта организация, представляет устройство и работа глаза; при его исследовании тоже была крайне полезна простота световых явлений. Мне незачем входить здесь в подробности, и я лишь напомню вам, что офтальмология раскрыла нам идеальные свойства человеческого глаза как оптического прибора. Действительно, предел, налагаемый на образование изображения неизбежными эффектами интерференции, практически совпадает с размерами тех частиц сетчатой оболочки, которые имеют самостоятельные нервные связи с мозгом. Для получения зрительного впечатления достаточно поглощения единичного светового кванта каждой такой частицей; поэтому можно сказать, что чувствительность глаза достигает предела, поставленного атомным характером световых процессов. Эффективность глаза в обоих этих отношениях фактически такая же, какую мы получаем в хорошем телескопе или микроскопе, соединенном с усилительным устройством, позволяющим наблюдать индивидуальные процессы. Правда, такими приборами можно сильно увеличить нашу наблюдательную способность, но благодаря пределам, поставленным фундаментальными свойствами световых явлений, невозможно придумать прибор, который был бы эффективнее глаза для той цели, для которой он предназначен. Это идеальное совершенство глаза, открытое благодаря недавнему развитию физики, наводит на мысль, что и другие органы, служат ли они для восприятия информации от окружающей среды или же для реакции на ощущения, тоже обнаружат такую же приспособленность к своему назначению и что также и здесь свойство индивидуальности, символизируемое квантом действия, имеет решающее значение для работы соответствующего усилительного механизма. Тот факт, что этот предел можно было проследить в глазу, но что его до сих пор не удалось заметить ни в одном из других органов, связан исключительно с простотой световых явлений, о которой мы говорили выше.
Признание важного значения черт атомистичности в механизме живых организмов само по себе не является, однако, достаточным для всестороннего объяснения биологических явлений. Исходный вопрос состоит, таким образом, в том, не следует ли добавить к нашему анализу явлений природы еще какие-то недостающие пока фундаментальные идеи, прежде чем мы сможем достигнуть понимания жизни на основе физического опыта. Несмотря на тот факт, что многообразие биологических явлений практически неисчерпаемо, едва ли можно дать ответ на этот вопрос, не обсудив, какой смысл следует придавать понятию «физическое объяснение» – смысл еще более глубокий, чем тот, к которому нас уже принудило открытие кванта действия. С одной стороны, поразительные свойства, которые постоянно обнаруживаются при физиологических исследованиях и которые столь заметно отличаются от всего, что известно для неорганической материи, привели биологов к убеждению, что надлежащее понимание существенных сторон жизни в рамках чистой физики невозможно. С другой стороны, точка зрения, известная как витализм, едва ли может быть однозначно выражена в форме предположения, что существует какая-то особая, не известная физике жизненная сила, которая и управляет органической жизнью. Действительно, я думаю, мы все согласны с Ньютоном: самый глубокий фундамент науки – это уверенность в том, что в природе одинаковые явления наступают при одинаковых условиях. Поэтому если бы мы могли продвинуть анализ механизма живых организмов столь же далеко, как это сделано для атомных явлений, то мы едва ли бы нашли тогда какие-то свойства, чуждые неорганической материи. Рассматривая эту дилемму, мы должны, однако, помнить, что нельзя непосредственно сравнивать условия при биологических и при физических исследованиях, так как необходимость сохранить объект исследования живым налагает на первые ограничение, не имеющее себе подобного в последних. Так, мы, без сомнения, убили бы животное, если бы попытались довести исследование его органов до того, чтобы можно было сказать, какую роль играют в его жизненных отправлениях отдельные атомы. В каждом опыте над живыми организмами должна оставаться некоторая неопределенность в физических условиях, в которые они поставлены; возникает мысль, что минимальная свобода, которую мы вынуждены предоставлять организму, как раз достаточна, чтобы позволить ему, так сказать, скрыть от нас свои последние тайны. С этой точки зрения самое существование жизни должно в биологии рассматриваться как элементарный факт, подобно тому как в атомной физике существование кванта действия следует принимать за основной факт, который нельзя вывести из обычной механической физики. Действительно, существенная несводимость факта устойчивости атомов к понятиям механики представляет собой близкую аналогию с невозможностью физического или химического объяснения своеобразных отправлений, характеризующих жизнь.
Проводя эту аналогию, мы должны, однако, помнить, что в атомной физике и в биологии мы имеем дело с существенно различными проблемами. Если в первой области мы интересуемся прежде всего поведением материи в ее самых простых формах, то в биологии мы занимаемся материальными системами, сложность которых имеет фундаментальный характер, ибо даже самые примитивные организмы содержат большое число атомов. Правда, то обстоятельство, что обычная механика применима в обширной области, включая описание действия измерительных приборов, используемых в атомной физике, как раз и основано на возможности в широкой мере пренебрегать порождаемой квантом действия дополнительностью описания в тех случаях, когда мы имеем дело с телами, содержащими большое число атомов. Однако, несмотря на важное значение атомистичности, для биологических исследований типично, что мы никогда не можем контролировать внешние условия, в которые поставлен каждый отдельный атом, в той же мере, в какой это возможно при фундаментальных опытах атомной физики. Фактически мы даже не можем сказать, которые именно из атомов действительно принадлежат живому организму, так как всякое жизненное отправление сопровождается обменом веществ, благодаря которому атомы постоянно захватываются организацией, составляющей живое существо, и из нее выбрасываются. Действительно, этот обмен материей распространяется на все части живого организма до такой степени, что это препятствует резкому разграничению в атомном масштабе между теми его свойствами, которые можно однозначно учесть обычной механикой, и теми, для которых решающим является учет кванта действия. Это фундаментальное различие между физическими и биологическими исследованиями означает, что нельзя поставить четко определенный предел применимости физических идей к проблемам жизни – предел, которому соответствовала бы в атомной механике разница между областью причинного механистического описания и собственно квантовыми явлениями. Эта очевидная неполнота рассматриваемой аналогии коренится в самих определениях слов «жизнь» и «механика», которые в конце концов являются вопросом удобства. С одной стороны, вопрос об ограниченной применимости физики в биологии потерял бы всякий смысл, если бы мы распространили понятие жизни на все явления природы вместо того, чтобы устанавливать различия между живыми организмами и неодушевленными телами. С другой стороны, если бы в согласии с обычным языком мы сохранили слово «механика» для однозначного причинного описания явлений природы, то такой термин, как «атомная механика», стал бы бессмысленным. Я не буду углубляться дальше в такие чисто терминологические вопросы и только добавлю, что сущность рассматриваемой аналогии – это очевидное антагонистическое отношение между такими типичными сторонами жизни, как самосохранение и размножение индивидуумов, с одной стороны, и необходимое для всякого физического анализа подразделение объекта – с другой. Благодаря этой важной черте дополнительности понятие цели, чуждое механистическому анализу, находит некоторую область приложения в биологии. В самом деле, в этом смысле телеологическую аргументацию можно рассматривать как законную черту физиологического описания, должным образом учитывающую характерные свойства жизни, подобно тому как в атомной физике признание кванта действия учитывается принципом соответствия.
Обсуждая применимость чисто физических идей к живым организмам, мы, конечно, подходим к жизни совершенно так же, как и к любому другому явлению материального мира. Мне, однако, едва ли нужно подчеркивать, что эта позиция, характерная для биологических исследований, отнюдь не предполагает игнорирования психологической стороны жизни. Наоборот, признание ограниченности механистических понятий в атомной физике скорее может быть полезным для примирения как бы противоречащих друг другу точек зрения физиологии и психологии. В самом деле, необходимость вводить в рассмотрение взаимодействие между измерительными приборами и объектом исследования в атомной механике представляет близкую аналогию со своеобразными трудностями психологического анализа, проистекающими от того факта, что духовное содержание неизбежно меняется, если внимание сосредоточивается на какой-нибудь его определенной стороне. Мы бы ушли слишком далеко от нашего предмета, если бы стали распространяться об этой аналогии, дающей существенное разъяснение психофизическому параллелизму. Однако я бы хотел подчеркнуть, что рассуждения такого рода, как я здесь приводил, совершенно противоположны всяким попыткам искать в статистическом описании атомных явлений новые возможности для духовного влияния на поведение материи. Например, с нашей точки зрения, невозможно придать однозначный смысл высказываемому иногда взгляду, согласно которому вероятность того, что в теле произойдут некоторые атомные процессы, может находиться под непосредственным влиянием воли. В самом деле, согласно обобщенному толкованию психофизического параллелизма, свободу воли следует считать признаком сознательной жизни; свобода воли соответствует отправлениям организма, не только ускользающим от причинно-механистического описания, но не поддающимся даже и физическому анализу в той доведенной до предела форме, какая требуется для однозначного применения статистических законов атомной механики. Не пускаясь в метафизические спекуляции, я, пожалуй, мог бы добавить об анализе самого понятия объяснения следующее: альфой и омегой такого анализа должен быть отказ от объяснения нашей собственной сознательной деятельности.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?