Текст книги "Сомневайся во всем"
Автор книги: Рене Декарт
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 18 страниц)
Правило XVII
Встретившуюся трудность нужно просматривать прямо, не обращая внимания на то, что некоторые из ее терминов известны, а некоторые неизвестны, и интуитивно следовать правильным путем по их взаимной зависимости
Это правило предписывает рассматривать проблему в целостности, выявляя взаимосвязь между всеми элементами, независимо от того, известны они нам или нет. Их все знать невозможно, но это не препятствует ученому смотреть на явления природы с позиции целостности.
Четыре предшествующих правила учили, как нужно абстрагировать от отдельных предметов определенные и в совершенстве осмысленные трудности и сводить их к тому, чтобы после этого нам оставалось отыскивать именно только величины по тем или иным отношениям, связующим их с данными величинами. В следующих же пяти правилах мы объясним, как нужно решать эти трудности, чтобы независимо от количества неизвестных величин, содержащихся в одном положении, эти величины пришли к взаимному подчинению, и тем, чем является первая величина по отношению к единице, вторая была бы по отношению к первой, третья – по отношению ко второй, четвертая – по отношению к третьей, чтобы они, следуя таким же образом далее, независимо от их количества, в целом составили сумму, равную именно данной величине. Все это должно производиться путем столь строгого метода, чтобы с помощью его мы твердо убедились в невозможности приведения этих величин к более простым терминам никакими способами.
Что же касается настоящего правила, то заметим, что во всяком вопросе, подлежащем разрешению именно дедуктивным путем, есть один открытый и прямой путь, по которому мы можем легче всего переходить от одного термина к другому, тогда как все другие пути являются более трудными и косвенными. Для того чтобы это понять, нам нужно вспомнить сказанное нами в правиле XI, где, объясняя сцепление положений, мы указали, что если сравнивать каждое положение с его предшествующим и последующим, то можно без труда заметить, что первое и последнее из них связываются друг с другом, хотя мы и не можем с такой же легкостью выводить промежуточные положения из крайних. Следовательно, теперь, если мы рассматриваем их взаимную зависимость, нигде не прерывая порядка, чтобы сделать из этого вывод, в какой зависимости находится последнее положение от первого, такое рассмотрение будет прямым. Если же, наоборот, зная, что первое и последнее находятся между собой в некоторой связи, мы пожелаем сделать вывод, каковы промежуточные, соединяющие их положения, то мы будем идти косвенным и превратным для порядка путем. Поскольку же нас интересуют здесь только неясные вопросы, в которых нужно именно при известных крайних найти без твердого порядка промежуточные, все искусство здесь должно состоять в том, чтобы, предполагая известным неизвестное, находить себе таким образом легкий и прямой путь также и для разрешения самых трудных вопросов. И нет ничего, что могло бы препятствовать неизменному успеху подобного действия, поскольку мы предположили в начале этой части, что нам известна такая зависимость неизвестного в данном вопросе от известного, которая совершенно определяет первое последним. Таким образом, если мы размышляем о тех самых вещах, которые представляются нам прежде всего, после того как мы примем это определение, то, хотя бы мы по неведению причисляли их к известным, для того чтобы постепенно выводить из них все остальные, а также и известные правильным путем так, как если бы они были неизвестными, мы исполняем все предписания этого правила. Что касается примеров того, что мы хотим здесь объяснить, а также и многих других вещей, о которых мы должны говорить в дальнейшем, то мы отложим их до правила XXIV, ибо там они будут более уместны.
Не только Декарт, но и другие представители самых различных наук используют метод познания неизвестного путем выявления его взаимосвязи с другими явлениями с позиции целостного восприятия явления. Самое простое алгебраическое выражение этого метода – уравнение. Мы просто записываем неизвестную величину наряду с известными так, чтобы путем преобразований найти, в конечном счете, неизвестное значение.
Правило XVIII
Для этой цели необходимы только четыре действия: сложение, вычитание, умножение и деление. Двумя последними из них часто здесь даже нет надобности пользоваться как во избежание ненужных усложнений, так и потому, что в дальнейшем они могут быть более легко выполнимы
Декарт полагает, что и в математике многочисленные сложные правила можно свести к нескольким исходным простым правилам. Он наглядно иллюстрирует, как можно находить искомые величины с помощью четырех действий. Сначала он показывает это алгебраически, потом геометрически.
Большое количество правил часто обусловливается невежеством ученых; вещи, которые можно свести к единому и всеобщему принципу, утрачивают свою ясность, когда их разбивают по многим специальным правилам. Вот почему все те наши действия, которыми надлежит пользоваться при исследовании вопросов, т. е. именно при выведении одних величин из других данных, мы сводим лишь к четырем главным. Что этих действий достаточно, мы увидим из самого их объяснения.
А именно, когда мы узнаем какую-либо величину благодаря тому, что нам даны части, составляющие ее, то мы пользуемся сложением. Когда мы узнаем часть благодаря тому, что нам дано целое и превышение целого над этой частью, то такое действие будет вычитанием; и нет иных способов выведения одной величины из других величин, взятых в абсолютном смысле, в которых она содержится как бы то ни было. Но если какая-либо величина находится между другими, от которых она совершенно отлична и которые ее совсем не содержат в себе, то ее необходимо поставить в какое-либо отношение к последним. Это отношение, или соотношение, если его нужно отыскивать прямо, можно найти путем умножения, а если его нужно отыскивать косвенно, то путем деления.
Для лучшего уразумения этих двух пунктов нужно понять, что единица, о которой мы уже говорили, является здесь принципом, или основой, всех отношений и что в ряде последовательно пропорциональных величин она занимает первую ступень, данные величины – вторую, искомые – третью, четвертую и все остальные, если отношение оказывается прямым; если же оно косвенное, то искомая величина занимает вторую ступень и другие промежуточные, а данная величина – последнюю.
Ибо когда говорится, что единица относится к а или к данному числу 5 так же, как b или данное число 7 относится к искомому ab или 35, то а и b в этом случае находятся на второй ступени, произведение же их ab – на третьей. То же самое, когда добавляют: единица относится к с или 9 так же, как ab или 35 относятся к искомому abc или 315, в этом случае abc находятся на четвертой ступени, будучи произведением двойного умножения ab на с, величин, находящихся на второй ступени, и т. д. Подобно этому: как единица относится к а < или > 5, так же и а < или > 5 относится к а² или 25; или еще: как единица относится к а <или> 5, так же и а2 <или> 25 относится к а3 <или> 125; или, наконец: как единица относится к а или 5, так же и а3 или 125 относится к а4, т. е. к 625, и т. д. Конечно, действие умножения производится одинаково, умножается ли величина на самое себя или на какую-нибудь совсем другую величину.
В случае же, если говорится: как единица относится к а или 5 к данному делителю, так же В или 7, искомое число, относится к ab или 35, данному делимому, то здесь порядок смешанный и непрямой, вследствие чего искомое В не может быть найдено иначе, как путем деления данного ab на а – тоже данное. То же самое, когда говорится: как единица относится к А или искомому числу 5, так же и А или 5 искомое относится к а² или 25 данному. Или еще: как единица относится к А < или > 5 искомому, так же и А² или 25 искомое относится к а³ или 125 данному и т. д. Мы объединяем все эти действия под названием деления, хотя и нужно заметить, что два последних вида заключают в себе больше трудностей, чем первые, потому что в них искомая величина встречается чаще и, следовательно, имеет больше отношений. Смысл этих примеров тот же самый, как если бы говорилось, что нужно извлечь квадратный корень из а² (или) 25 или кубичный из а³ или 125 и т. д. Такой способ выражения, употребительный среди счетчиков, является равнозначным – пользуясь также термином геометров – выражением, обозначающим действие отыскания средней пропорциональной между наперед взятой величиной, называемой нами единицей, и той, которая обозначается а², или двух среднепропорциональных между единицей и а³ и т. д.
Отсюда нетрудно сделать вывод, почему эти два действия удовлетворяют в отыскании любых величин, которые должны выводиться из других величин по тому или иному отношению. Уразумев это, нам остается объяснить, как эти действия должны быть представлены рассмотрению воображения и как их нужно сделать наглядными, для того чтобы затем объяснить их употребление или обращение с ними.
Если нам нужно произвести сложение или вычитание, то мы будем представлять предмет в виде линии или величины, обладающей протяжением, в которой нужно рассматривать только длину, так как если нужно прибавить линию а к линии b ,
то мы соединим их друг с другом таким образом: аb
и получим сумму c.
Если же, наоборот, нужно вычесть меньшую величину из большей, т. е.
b из а ,
то мы наложим их одну на другую таким образом:
и получим часть большей, которая не может быть прикрыта меньшей, а именно: .
В умножении мы будем представлять данные величины тоже в виде линий, но вообразим, что они составляют прямоугольник. Если мы умножаем а на b , то поставим их в виде прямого угла
и получим прямоугольник
С другой стороны, если мы хотим умножить аb на с
то аb нужно представлять в виде такой же линии аb
и мы получим для аbс:
Наконец, при делении, где дан делитель, мы будем воображать делимую величину в виде прямоугольника, одна сторона которого делитель, а другая – частное. Так, например, если прямоугольник аb требуется разделить на а,
то нужно стереть на нем ширину а, и в качестве частного останется b
Или, наоборот, если тот же прямоугольник требуется разделить на b, то нужно убрать высоту b и получится частное а:
Что касается таких делений, в которых делитель не дан, а только обозначен некоторым отношением, как, например, когда говорят, что нужно извлечь квадратный корень или кубический корень и т. д., то заметим, что в этих случаях делитель и все остальные члены нужно представлять как линии в ряде последовательных пропорций, из которых первой является единица и последней – делимая величина. Как нужно отыскивать все средние пропорциональные величины между делимым и единицей, будет показано в своем месте. Достаточно уже заметить, что мы еще не считаем поконченным здесь с этими действиями, так как они могут производиться воображением посредством непрямого и обратного действия, а мы говорим здесь только о вопросах, исследуемых прямо.
Что касается прочих действий, то они легко производятся при том способе их понимания, о котором мы говорили. Однако нужно объяснить, как должно подготовлять их термины, ибо хотя мы и свободны, впервые исследуя какую-либо трудность, представлять ее термины в виде линий или прямоугольников и не применять к ним никаких других фигур, как об этом говорилось уже в правиле XIV, но тем не менее в процессе действия часто бывают случаи, когда какой-либо прямоугольник, после того как он был произведен умножением двух линий, вскоре для другого действия требуется понимать как линию; или еще, когда один и тот же прямоугольник либо линию, произведенные сложением либо вычитанием, вскоре оказывается нужным понимать как другой прямоугольник, обозначенный вверху линией, которая должна его разделить.
Следовательно, здесь важно объяснить, как всякий прямоугольник может быть преобразован в линию или, наоборот, линия или также прямоугольник – в другой прямоугольник с обозначенной стороной. Это легко могут делать геометры, лишь бы они замечали, что всякий раз, когда мы, как здесь, составляем из линий какой-либо прямоугольник, мы всегда разумеем прямоугольник, одна сторона которого является длиной, принятой нами за единицу. Таким образом, вся эта задача сводится к положению: по данному прямоугольнику построить другой, равный ему, на данной стороне.
Хотя это действие привычно даже для тех, кто только что начинает заниматься геометрией, тем не менее я хочу его объяснить, чтобы меня не упрекали в каких-либо упущениях.
Наглядный смысл математических операций, как его излагает Декарт, может показаться тривиальным. Но именно эта тривиальность важна для Декарта. Он хочет показать, что все наши сложные рассуждения можно привести к такой простой форме, которая может показаться настолько тривиальной, что не оставит места для сомнений и заблуждений. Этой цели служит и простая математическая символика, которая для современного человека привычна, но для первых читателей декартова трактата была новой.
Правило XIX
Путем такого метода вычисления нужно отыскивать столько величин, выраженных двумя различными способами, сколько неизвестных терминов мы предполагаем известными, для того чтобы исследовать трудность прямым путем. Именно таким образом мы получим столько же сравнений между двумя равными величинами
Правило XX
Составив уравнения, мы должны совершить ранее отложенные нами действия, никогда не пользуясь умножением, если уместно деление
Правило XXI
Если имеется много таких уравнений, то нужно их привести все к одному, а именно к тому, термины которого займут наименьшее количество ступеней в ряде последовательно пропорциональных величин, где они и должны быть расставлены в соответствующем порядке
КОНЕЦ
Трактат остался неоконченным. Декарт остановился на 21-м правиле, хотя планировал описать 36. В первых двенадцати правилах Декарт представил все, что помогает сделать использование рассудка более легким. В следующих двенадцати он объясняет, как следует находить неизвестное решение вопросов, которые совершенно понятны. Наконец, последние двенадцать правил Декарт планировал посвятить разбору несовершенных и запутанных вопросов.
Однако и написанного вполне достаточно, чтобы понять хоть мысли Декарта. Судя по заглавиям трех последних правил, Декарт собирался объяснить, как можно находить неизвестное на примере решения простых математических уравнений.
Декарт стремится к определенности и простоте, которые не оставляли бы места заблуждениям. Любое искаженное или неправильное истолкование простых истин неизбежно влечет усложнение их интерпретации. Поэтому следование простым правилам руководства для ума позволяет избежать заблуждения. Математика дает возможность представить эти правила в максимально наглядной форме.
Можно провести параллели с тем, как за две тысячи лет до Декарта Пифагор использовал математику, чтобы привести понимание мира к простой форме, выраженной в математической гармонии. Однако как свойственно античному человеку, Пифагор усматривает простоту математической гармонии в самом мире, поскольку люди в эпоху античности были уверены, что мир устроен разумно и гармонично. Декарт же – человек Нового времени, для которого мир открывался в сложности и бесконечности. Простота и гармоничность мира вовсе не очевидны, их еще следует доказать, что Декарт и вынужден делать путем приведения в порядок методов познания. В дальнейшем окажется, что не только окружающий мир, но и человеческий разум намного сложнее и противоречивее, чем это представлялось Декарту. Возможно, ему нелегко пришлось бы, столкнись он с современными математическими парадоксами или принципом неопределенности в квантовой механике. Однако он вряд ли изменил бы своему жизненному стремлению найти такие исходные простые принципы объяснения мира, опираясь на которые можно быть уверенным в достоверности познания.
Первоначала философии
Перевод С.Я. Шейнман-Топштейн
К изучению трудов философа можно подходить либо в хронологической последовательности, чтобы шаг за шагом проследить, как развивалась его мысль, либо от простых произведений к более сложным. Однако эффективнее всего начинать изучение с тех произведений, в которых наиболее доходчиво излагаются ключевые идеи всей философской позиции. Дело в том, что у каждого философа свое видение и свой подход, поэтому даже самые простые его мысли невозможно понять вне контекста, а его задает целостный взгляд философа на мир или на самую главную проблему, которая его волнует. В случае Декарта таким ключевым произведением будут его «Первоначала философии», где и раскрыт такой целостный взгляд. В этой книге Декарт стремится заложить фундамент универсальной науки, основанной на новых философских принципах, берущих начало в естественном разуме.
Работу над книгой «Первоначала философии» Рене Декарт начал в 1641 году. Она была написана на латыни и опубликована в 1644 году, а ее французская версия – в 1647 году. Состоит из четырех частей: «Об основах человеческого познания», «О началах материальных вещей», «О видимом мире», «О земле».
Книга дает целостное представление об идеях, более подробно изложенных в других ранних произведениях. Первая часть в тезисной форме знакомит читателя с содержанием его основополагающего философского трактата «Размышления о первой философии» (1640). В этом трактате Декарт формулирует принцип методического сомнения, который приводит мыслящего человека к идее несомненности его собственного сознания и умозаключению «я мыслю, следовательно, я существую». На основе этого он выводит существование Бога, познаваемость мира и свое учение о дуализме души и тела.
После окончания работы над «Размышлениями о первой философии» в 1641 году Декарт начинает работу над трактатом «Первоначала философии». Его целью было дать строгие философские основы познания. Декарт раскрывает предпосылки, из которых должно выводиться знание как таковое, и на этих предпосылках сводит в единую систему учение о познании и знания о мире. Для этого он использует метод радикального сомнения. Эмпирическое[3]3
Эмпирический – полученный посредством органов ощущений. Методы эмпирического познания – наблюдение, измерение и эксперимент. В трактате Декарта, как и многих других философов, вместо слова «эмпирический» используется слово «чувственный», что вполне допустимо. Однако слово «чувственный» имеет и другие значения. Наряду с опытом, получаемым через органы ощущений, «чувственный» может означать опыт эмоций и высших чувств или же опыт эстетических переживаний. Чтобы избежать путаницы и подчеркнуть, что речь идет о чувственном опыте как опыте восприятия органами ощущений, я буду использовать термин «эмпирический».
[Закрыть] знание, полученное посредством органов ощущений, недостоверно, поэтому Декарт обращается к разуму, выявляет самоочевидные истины, не зависящие от эмпирического опыта, и методом дедукции выводит из них надежное знание.
Если в первой части трактата он возвращается к идеям книги «Размышления о первой философии», то при дальнейшем систематическом изложении своей философии он вновь обращается к вопросам физики, составлявшим основное содержание его книги «Мир» (1634 год), которую в свое время не решился издать, узнав об осуждении Галилео Галилея судом инквизиции.
Творчество Декарта совпало по времени с разгоревшейся в науке борьбой между сторонниками коперниканской и птолемеевской концепций. В научный спор вмешалась церковь и осудила Галилея за революционную научную концепцию вращения Земли вокруг Солнца. Декарта это потрясло, и тем важнее для него стали поиски несомненных основ всякого знания, на которых можно было бы сформулировать законы физики. Эту задачу он решает в трактате «Первоначала философии».
Светлейшей повелительнице Елизавете, старшей дочери Фредерика, короля Богемии, князя Палатинского и сиятельного избранника Священной Римской Империи
Декарт начинает книгу с посвящения Елизавете (1618–1680), старшей дочери Фридриха V, короля Богемии, который лишился престола после поражения в битве при Белой горе 8 ноября 1620 года от войск католической лиги. Декарт познакомился с принцессой Елизаветой в конце 1642 года. Елизавета проявляла глубокий интерес к философии, Декарт переписывался с ней. В своем посвящении он обращается к Елизавете со словами восхищения и благодарности и с рассуждениями о добродетелях. Ведь добродетели, так же как мудрость и восприимчивость ума, имеют общее начало – твердую волю.
Письмо автора к французскому переводчику «Первоначал философии», уместное здесь как предисловие
После выхода трактата «Первоначала философии» на латинском языке Декарт попросил аббата Клода Пико перевести его на французский. В 1647 году вышло новое издание, которое Декарт снабдил предисловием в форме письма к переводчику. Здесь Декарт объясняет свою философскую позицию, которая послужила основой трактата. Под философией Декарт понимает занятие мудростью. Философия простирается на все, что доступно для человеческого познания и отличает цивилизованного человека от варваров и дикарей. Чем более цивилизован и образован народ, тем лучше в нем философствуют, поэтому наибольшим благом для государства будет присутствие в нем истинных философов.
Мудрость понимается не только как благоразумие в делах, но и как совершенное знание всего, что можно понять на основе первоначал. Первоначала должны быть ясными, очевидными и познаваться независимо от знания внешних вещей, при этом они должны служить основой для всякого дальнейшего познания. Совершенно мудр один Бог, а человек – лишь более или менее, в зависимости от того, как много он знает о наиболее важных истинах. Высшим благом для человека будет познание истины на основе первопричин, то есть мудрость, которую открывает философия.
Декарт выделяет ступени мудрости, по которым человек может подняться с помощью наук. Такая мудрость требует постепенного обучения и этим отличается от мудрости божественного откровения, которая дается целиком и сразу, возвышая до безошибочной веры. На первой ступени постигаются самоочевидные понятия, которые приобретены без помощи размышлений. На второй ступени постигается все то, что дает эмпирический опыт. На третьей ступени обретается то, чему учит общение с другими людьми, а на четвертой ступени – то, что дает чтение книг. Высшая мудрость раскрывается на пятой ступени через уяснение первых причин и истинных начал, на основе которых можно понять все доступное знание. Те, кто стремился к такому пониманию и преуспел в этом, назывались философами.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.