Электронная библиотека » Рене Декарт » » онлайн чтение - страница 7

Текст книги "Сомневайся во всем"


  • Текст добавлен: 6 апреля 2019, 08:40


Автор книги: Рене Декарт


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 18 страниц)

Шрифт:
- 100% +
Правило XIII

Когда мы хорошо понимаем вопрос, нужно освободить его от всех излишних представлений, свести его к простейшим элементам и разбить его на такое же количество возможных частей посредством энумерации

Несовершенный вопрос может быть сведен к совершенному, сложный вопрос может быть сведен к простому по форме. Для этого его следует разложить на более простые вопросы и очистить от излишних представлений. Совершенный вопрос отличается от несовершенного тем, что он определен настолько, что не включает в себя ничего лишнего, помимо того неизвестного, которое отыскивается на основе уже данного.

Вначале нужно понять, в связи с чем возникает вопрос, то есть, что, собственно, неизвестно. Затем нужно как-то обозначить неизвестное посредством чего-то, что известно. Например, в вопросе о неизвестной природе магнита неизвестное фиксируется с помощью слов «природа» и «магнит».

Мы уподобляемся диалектикам лишь в том отношении, что как они при обучении формам силлогизмов предполагают их термины или материал уже известными, так и мы требуем здесь прежде всего, чтобы вопрос был в совершенстве понят. Но мы не различаем подобно им двух крайних и одного среднего терминов, а рассматриваем всю эту вещь таким образом: во-первых, во всяком вопросе необходимо должно быть налицо некоторое неизвестное, ибо иначе вопрос бесполезен; во-вторых, это неизвестное должно быть чем-нибудь отмечено, иначе ничто не направляло бы нас к исследованию данной вещи, а не какой-нибудь другой; в-третьих, вопрос должен быть отмечен только чем-нибудь известным. Все эти условия предъявляются также и к неполным вопросам. Например, если нас спрашивают, какова природа магнита, то смысл, вкладываемый нами в эти два слова «магнит» и «природа», есть известное, которое и направляет нас к разрешению этого вопроса, а не какого-нибудь другого. Но, кроме того, для полноты вопроса желательно, чтобы он был строго определенным, благодаря чему мы не отыскивали бы ничего сверх того, что может быть выведено из данных понятий; например, если кто-нибудь меня спросит, какое заключение можно сделать о природе магнита исключительно на основании тех опытов, которые приписывает себе Гильберт, будь они верными или неверными, или когда мне задается вопрос, что я могу сказать о природе звука, лишь исходя из того, что струны А, В и С дают одинаковый звук и из них струна В в два раза толще, чем А, но не длиннее ее и натянута гирей в два раза более тяжелой, струна С не толще, чем А, но только в два раза длиннее и в то же время натянута гирей в четыре раза более тяжелой, и т. д. Из этих примеров легко понять, как все неполные вопросы могут быть приведены к полным, что мы объясним более подробно в своем месте, а кроме того, выясняется, как можно соблюдать это правило, для того чтобы отстранить от хорошо понятой трудности все излишние представления и свести ее к тому, чтобы заниматься уже обдумыванием не того или иного предмета, но только взаимным сопоставлением величин. Ибо, например, после того, как мы приняли решение исследовать лишь тот или иной опыт над магнитом, для нас уже совсем не будет трудным мысленно отвлечься от всех прочих опытов.

Кроме того, добавим, что нужно приводить трудность к простейшим положениям именно по правилам V и VI и расчленять ее по правилу VII. Исследуя, например, на основании многих опытов магнит, я должен последовательно продумывать каждый из этих опытов по отдельности. Подобным же образом, изучая природу звука, как об этом была уже речь выше, я должен по отдельности сравнивать друг с другом струны А и В, затем А и С и т. д., чтобы таким путем охватить их потом все достаточной энумерацией. Эти три правила являются единственными из тех, которые чистый интеллект должен соблюдать по отношению к терминам тех или иных положений, прежде чем он приведет нас к последнему решению, если у нас недостает умения пользоваться одиннадцатью следующими правилами. Как производятся все эти действия, выяснится в третьей части этого трактата. Впрочем, под вопросами мы разумеем все, в чем отыскивается истинное или ложное, и, для того чтобы определить, что мы сумеем сделать в каждом из них, нужно перечислить их различные виды.

Объяснив, как на основе предшествующих правил можно преодолевать затруднения путем приведения вопроса к простой форме, Декарт переходит к объяснению вопросов в зависимости от того, отыскиваем ли мы неизвестные вещи на основании слов, либо причины на основании действий, либо действия на основании причин, либо целое или другие части на основании частей.

Мы уже сказали, что только в интуиции вещей, безразлично, простых или сложных, нет места заблуждению. В этом смысле последние не могут быть названы вопросами, но они тотчас же принимают это название, как только мы решаем вынести относительно них какое-либо определенное суждение. Конечно, мы относим к числу вопросов не только те вопросы, которые нам задают другие, но вопросом является и само незнание (ignorantia), или, вернее, сомнение Сократа, когда, впервые обратившись к нему, он начал исследовать, действительно ли он сомневается во всем, в чем он и убедился.

Исследуем же мы или нечто по посылкам, или причины по следствиям, или следствия по причинам, или по частям целое, а также и другие части, или, наконец, множество вещей по всем этим вещам вместе.

Мы говорим, что нечто исследуется по словесным посылкам всякий раз, когда трудность заключается в неясности языка. Сюда относятся не только все загадки, такие, например, как загадка о сфинксе, в которой сначала говорится, что нечто – четвероногое животное, затем – двуногое и после этого, наконец, трехногое, или загадка о рыбаках, которые, стоя на берегу, снабженные удилищами и крючками для рыбной ловли, говорят, что у них нет больше рыб, которых они изловили, но зато есть те, которых они не могли изловить; кроме этих вопросов, большая часть вопросов, являющихся предметом споров ученых, почти всегда относится к числу словесных. Однако не следует придерживаться такого плохого мнения о великих умах, что будто они плохо понимают вещи всякий раз, когда не могут объяснить их в ясных терминах. Например, когда они называют местом поверхность окружающего тела, то они имеют совсем не ложную идею, а только злоупотребляют словом «место», означающим в общеупотребительном смысле ту простую и самоочевидную вещь, благодаря которой говорится, что предмет находится здесь или там, вещь, всецело заключающуюся в известном отношении предмета, о котором говорится, что он находится в некотором месте, к внешним частям пространства, ту вещь, которую иные, видя название «место» замененным «окружающей поверхностью», неудачно называют внутренним где, и т. п. Эти словесные вопросы встречаются столь часто, что если бы философы всегда соглашались в значении слов, то почти все их споры прекратились бы.

Причины по следствиям отыскиваются всякий раз, когда относительно какой-либо вещи пытаются узнать, действительно ли она существует или какова она…

Впрочем, поскольку, в то время как нам предлагается разрешить тот или иной вопрос, мы часто оказываемся не в силах определить с первого взгляда, к какому роду вопросов он относится и нужно ли исследовать нечто по словесным посылкам или причины по следствиям и т. п., постольку мне кажется излишним в этом отношении входить в большие подробности, ибо будет короче и полезнее рассмотреть по порядку все, что нужно сделать, для того чтобы прийти к решению любой задачи. Таким образом, если задается какой-либо вопрос, то прежде всего необходимо стараться отчетливо уяснить себе, что им отыскивается.

В самом деле, иные так спешат в исследовании положений, что занимаются их разгадкой со спутанным умом, прежде чем узнают, по каким признакам они заметят искомую вещь, если она им случайно встретится. Такие исследователи не менее глупы, чем тот мальчуган, который, будучи послан куда-либо своим хозяином, так старается угодить, что бросается бежать, прежде чем получит поручение, даже не зная, куда ему прикажут идти.

Но если во всяком вопросе и должно быть налицо что-нибудь неизвестное, иначе вопрос был бы бесцелен, то тем не менее само это неизвестное должно быть обозначено настолько определенными условиями, чтобы для нас было совершенно необходимо исследовать именно эту вещь, а не какую-либо другую. Таковыми являются все те условия, о которых мы говорили, что исследованием их нужно заняться в первую очередь. Для этого необходимо, чтобы мы обратили острие ума на отчетливую интуицию их, тщательно исследуя, до какой степени искомое неизвестное определяется каждым из них; ведь человеческий ум обыкновенно подвергается двоякого рода заблуждению: или он захватывает больше, чем дано для определения какого-либо вопроса, или же, наоборот, что-нибудь упускает.

Нужно остерегаться допущений большего и более точного, нежели то, что нам дано, особенно в загадках и других хитроумных вопросах, имеющих целью сбить с толку рассудок, а также иногда и в вопросах другого рода, для решений которых подставляется нечто в качестве достоверного, убеждающее нас не в силу каких-либо истинных оснований, но в силу застарелых мнений. Так, например, в загадке сфинкса не нужно думать, что название «нога» означает настоящую ногу животного, а нужно подумать, не может ли оно прилагаться к какой-либо другой вещи, как это и действительно имеет место в отношении рук ребенка и палки старика, ибо старики пользуются при хождении палкой, а дети руками как бы в качестве ног. Таким же образом и в загадке о рыбаках нужно остерегаться, чтобы представление о рыбах настолько не овладело нашим умом, что помешало бы нам вспомнить о тех животных, которых бедняки часто помимо их желания носят с собой повсюду и, изловивши их, бросают. Аналогичный пример, когда нас спрашивают и об устройстве некогда виденной нами вазы с колонной, возвышающейся посередине ее и поднимающей статую Тантала в позе человека, который хочет пить. Вода, налитая в эту вазу, спокойно держится в ней до тех пор, пока не поднимется до такой высоты, что может попасть в рот Тантала, но едва она достигает уст несчастного, как тотчас же вытекает вся. С первого взгляда именно кажется, что сущность всего этого сооружения заключается в постановке фигуры Тантала, которая, однако, в действительности совершенно не определяет вопроса и является лишь дополнением. Вся же трудность заключается в том, чтобы понять, как устроена ваза, из которой вся вода тотчас же вытекает, как только она достигает определенной высоты, а никак не раньше. Точно так же, наконец, если на основании всех тех наблюдений, которые мы сделали над звездами, мы пытаемся что-нибудь узнать об их движениях, то не нужно подобно древним легкомысленно допускать, что Земля неподвижна и помещается в центре Вселенной, потому что так нам казалось с детства, но здесь необходимо прибегнуть также к сомнению, для того чтобы рассмотреть потом, какое достоверное суждение мы можем вынести по этому вопросу, и т. д.

Не обдумав какого-либо условия, требующегося для определения вопроса, выражено ли оно в самом вопросе или его можно понять каким-либо иным способом, мы всякий раз делаем упущения, например когда мы отыскиваем вечное движение, но не то, которое встречается в природе, вроде движения звезд или течения рек, а изобретенное человеком. Иной (это изобретение многие считают возможным, принимая во внимание, что Земля вечно вращается вокруг своей оси, а магнит содержит в себе все свойства Земли) надеется создать вечное движение, приладив камень так, чтобы он вращался по кругу или сообщал свое движение железу со всеми своими прочими достоинствами. Но если бы даже это ему и удалось, то он все же не создал бы искусственного вечного движения, а воспользовался бы только тем, что уже существует в природе, подобно тому, как если бы он установил на речном потоке колесо таким образом, чтобы оно находилось в постоянном вращении. Следовательно, он упускает условие, необходимое для определения вопроса, и т. д.

Когда вопрос достаточно понятен, необходимо тщательно рассмотреть, в чем заключается его трудность, дабы, освободив данную трудность от всего постороннего, мы легче могли разрешить этот вопрос.

Но для того чтобы знать, в чем состоит та трудность, которая в нем заключается, не всегда достаточно только понять самый вопрос. Кроме этого, нужно еще обдумать все, что составляет его сущность, так, чтобы всякий раз, когда встретится какая-либо вещь, которую можно легко найти, отбросить ее в сторону и в освобожденном таким образом предложении оставить только то, что нам неизвестно. Так, например, в вопросе с вазой, описанном немного выше, нам нетрудно понять, как должна быть устроена ваза с колонной посередине, с нарисованной на ней птицей и т. д. Отстранивши все это как несущественное для вопроса, мы обнажаем в нем трудность, заключающуюся в исследовании того, каким образом происходит то, что вода тотчас же вытекает вся, как только она достигает определенной высоты.

Итак, мы говорим, что особенно важным действием здесь является рассмотрение по порядку всего содержания данного положения, при котором нужно отстранять все, что нам не кажется очевидно полезным, удерживать все необходимое и откладывать для более тщательного исследования все сомнительное.

Декарт показывает, что поиск ответа на вопрос начинается с анализа его самого и средств познания. Сведение вопроса к простоте и совершенной форме позволяет понять природу затруднения и выпрямляет путь познания.

Надо сказать, что декартовский принцип приведения вопроса к совершенной форме, отбрасывая все лишнее, что не касается прямого вывода из данных, также представлен. Речь идет об абстрагировании – отвлечении всех тех свойств предмета, которые выходят за пределы конкретной области науки, в рамках которой поставлен вопрос. Например, если мы описываем яблоко, то абстрагируемся от того, что оно вкусное, как и от прочих его свойств. Декартовский принцип сведения вопроса к простоте реализуется в науке с помощью идеализации. Идеализация предполагает, что и сам предмет, и его условия мы рассматриваем в идеальном виде, который не существует в реальности. Например, если мы с помощью физики объясняем падение яблока, то описываем, как яблоко в качестве идеального физического тела и Земля в качестве такого же тела взаимно притягиваются по закону всемирного тяготения в идеальных условиях – без учета бесконечного количества факторов, которые влияют на их взаимодействие в реальных условиях.

Правило XIV

Сказанное следует отнести и к реальному протяжению тел; это протяжение нужно всецело представлять в виде простых фигур: таким образом оно сделается более понятным для интеллекта

Неожиданный переход Декарта к рассуждениям о протяженных телах может удивить, хотя на самом деле он логичен. Декарт стремится показать, что процесс познания сложных явлений можно свести к простым объяснениям, которые настолько наглядны, что это уберегает от заблуждений. Чтобы что-то понять на основе уже известных данных, нам нужно что-то с чем-то сравнить, а сравнение предполагает установление величины различия, которую также можно показать геометрически наглядно. Таким образом, наглядно объясняя познание протяженных объектов, Декарт надеется показать простые принципы, которые лежат в основе всякого другого, более сложного познания.

Но, для того чтобы пользоваться также и помощью воображения, нужно заметить, что всякий раз, когда выводится что-либо неизвестное из другого, уже известного, при этом не отыскивается какой-либо новый род естеств, но это знание дает нам понять, что искомая вещь тем или иным способом приобщается к свойствам того, что дано в первоначальном положении. Например, нельзя надеяться, что у слепого от рождения можно какими бы то ни было доводами вызвать верные представления о цветах, получаемые нами посредством чувств, но человек, когда-либо видевший основные цвета, хотя бы он и никогда не видел промежуточных и смешанных цветов, может посредством особой дедукции представить последние по их сходству с первыми. Таким же образом, если магнит обладает какими-либо свойствами, не имеющими ничего общего с теми, которые в нем доселе познавал наш интеллект, то нельзя надеяться, что мы познаем их путем рассуждения; для этого нам нужно иметь или какие-нибудь новые органы чувств, или божественный разум. Но все, что в этом отношении может сделать человеческий ум, мы считаем для него достижимым только после того, как мы очень отчетливо постигнем некоторое соединение уже известных естеств или свойств, которое производит такое же действие, как и магнит.

Декарт констатирует, что если мы узнаем неизвестное на основе ранее известного, то расширяем знание того, что родственно по своей природе известному, при этом новый род сущности так и не открывается. Нам удается постичь множество самых разных неизвестных вещей благодаря обнаружению в них общей идеи. Наличие общей основы позволяет использовать метод сравнения. Если что-то нельзя постичь с помощью простой интуиции, то можно познать с помощью сравнения нескольких вещей. Если общая природа представлена в них одинаково, то достаточно простого сравнения, а если неодинаково, тогда необходимо выявление пропорций, которые надо обязательно учитывать при сравнении известного с искомым.

И конечно, все уже известные вещи, такие как протяжение, фигура, движение и прочие им подобные, которые здесь нет необходимости перечислять, познаются нами всегда в одной и той же идее при самых разнородных предметах. Мы одинаково представляем себе форму короны независимо от того, серебряная она или золотая. Эта общая идея переносится с одного предмета на другой не иначе как путем простого сравнения, благодаря чему мы утверждаем, что исследуемый предмет подобен в том или ином отношении, тождественен или равен данному предмету; так что во всяком рассуждении мы приходим к точному познанию истины только путем сравнения. Например, в рассуждении: всякое А = В, всякое В = С, следовательно, всякое А = С, сравниваются друг с другом искомое и данное, а именно А и С, по тому отношению, в котором они оба находятся к В, и т. д. Но так как формы силлогизмов, как мы уже неоднократно упоминали, не оказывают никакой помощи в познании истин, то читателю будет полезно отбросить их совсем и понять, что всякое знание, не получаемое посредством простой и чистой интуиции отдельной вещи, достигается путем сравнения двух или многих вещей друг с другом. И конечно, почти все искусство человеческого разума заключается в умении подготовлять это действие. В самом деле, когда оно очевидно и ясно, то для его выполнения совершенно не требуется никакого искусства, а нужен лишь естественный свет для прозрения истины, которая им вскрывается.

И необходимо отметить, что сравнение может быть названо простым и очевидным только тогда, когда искомая вещь и вещь данная равно причастны к какому-нибудь известному естеству, а все другие сравнения нуждаются в приготовлении лишь потому, что это общее естество не в одинаковой степени находится и в той и в другой, но скрыто от них в известных соотношениях и пропорциях; главная роль человеческого искусства заключается не в чем ином, как в сведении всех этих соотношений к тому, чтобы равенство между искомым и тем, что известно, сделалось совершенно очевидным.

Какие бы вещи мы ни сравнивали, можно установить величину различия в тех или иных их характеристиках. Сами же величины можно представить наглядно геометрически на примере протяженных вещей. Таким образом, иллюстрируются простые первичные принципы познания, которые лежат в основе любого другого процесса познания.

Отметим далее, что никакие вещи не могут быть приведены к этому равенству, кроме тех, которые содержат в себе понятие о большем или меньшем, и что все эти вещи должны быть отнесены к области величин, так что, после того как, по предшествующему правилу, мы абстрагируем условия задачи от всякого особенного предмета, мы поймем, что предметом нашего исследования являются только величины вообще.

Но для того чтобы представлять здесь еще что-нибудь и не пользоваться одним чистым интеллектом, а прибегать и к помощи образов, рисуемых в воображении, заметим, наконец, что мы не можем называть величиной вообще то, что не может быть также отнесено к любой величине в частности.

Отсюда не трудно сделать вывод, что для нас будет весьма полезно переводить все, о чем говорится как о величине вообще, на изображения величин, которые и легче, и яснее всего рисуются в нашем воображении. Такими величинами является реальное протяжение тел, отвлеченное от всего, кроме того, что относится к их фигуре. Это следует из того, что мы говорили в правиле XII, где мы указали, что сама фантазия вместе с представлениями, заключающимися в ней, должна быть понимаема не иначе как протяженное и обладающее формой реальное тело. Это очевидно также и само по себе, поскольку нигде не рисуются так отчетливо различия всевозможных соотношений. Если об одной вещи и можно сказать, что она более или менее бела, чем другая, один звук резче или мягче, чем другой, и пр., то все-таки мы не можем точно определить, будет это превышение больше в два или в три раза и т. д., иначе как по известной аналогии его с протяжением тела, имеющего фигуру. Итак, будем считать достоверным и прочным то положение, что совершенно определенные вопросы не содержат в себе почти никакой трудности, кроме того, что они требуют раскрытия соотношений в равенствах, и все те вещи, в которых встречается именно такая трудность, могут быть легко отделены от всего остального их содержания, а затем сведены к протяжению и фигурам, о чем мы будем говорить далее вплоть до правила XXV, оставивши все прочие размышления.

Мы хотели бы иметь здесь дело только с такими читателями, которые питают склонность к арифметике и геометрии, хотя для меня было бы и лучше, если бы они совсем не занимались ими, нежели были обучены в этих науках по обычному методу, ибо правила, предлагаемые мной, легче применимы к этим наукам, в изучении которых они вполне удовлетворяют, чем ко всякому другому роду вопросов. Польза же этих правил в приобретении знаний более высокого порядка столь велика, что я не страшусь назвать эту часть нашего метода созданной не для решения математических проблем и говорить, что скорее математические науки надлежит изучать лишь для практического усвоения этого метода. Я не предполагаю в этих науках ничего, что не могло бы быть известно само собой и доступно для всех, но знания в этой области, как это имеет обычно место, если и не содержат в себе очевидных заблуждений, то затемняются большим количеством двусмысленных и дурно установленных принципов, что мы в дальнейшем постараемся кой-где исправить.

Под протяженным мы разумеем все то, что обладает длиной, шириной и глубиной, не интересуясь, будет это какое-либо реальное тело или только пространство. Мне кажется, что здесь нет нужды давать более подробное объяснение, ибо нет ничего легче, как представить это в своем воображении. Так как, однако, ученые часто пользуются столь тонкими различиями, что утрачивают естественный свет и находят мрак даже в таких вещах, которые понятны крестьянам, то нужно напомнить им, что мы не рассматриваем здесь протяжение как нечто отличное от его субъекта и что мы вообще не признаем такого рода философских естеств, которых реально не может представить наше воображение. Ибо если кто-нибудь и сумеет убедить себя в том, что при уничтожении всех протяженных вещей, существующих в природе, нельзя отрицать существования протяжения самого по себе, то для представления последнего он воспользуется не идеей тела, а только ложными суждениями своего интеллекта. С этим он согласится сам, если внимательно обдумает образ такого протяжения, попытавшись представить его в своем воображении. Действительно, он увидит, что представляет его не освобожденным от всех вещей, но совершенно иначе, чем он думал. Таким образом, подобные отвлеченные вещи (каковы бы ни были представления интеллекта об истине вещи) никогда не создаются воображением отдельно от их предмета.

Но поскольку мы отныне не предпринимаем ничего, не прибегая к помощи воображения, то для нас весьма важно тщательно различать, какие идеи даются нашему интеллекту в значении каждого слова. Поэтому мы предлагаем рассмотреть следующие три вида выражений: протяжение занимает место, тело обладает протяжением и протяжение не есть тело.

Первое показывает, как протяжение принимается за то, что имеет протяжение. Действительно, я разумею совершенно одно и то же, говоря, что протяжение занимает место, и когда говорю: то, что обладает протяжением, протяженное, занимает место. Однако из этого вовсе не следует, что во избежание двусмысленности лучше пользоваться выражением: протяженное, ибо оно не выражало бы ясно ту идею, которую мы разумеем, а именно идею некоторого предмета, занимающего место потому, что этот предмет обладает протяжением. Может быть, даже кто-нибудь поймет выражение: протяженное есть предмет, занимающий место, только так, как если бы я говорил, что одушевленное существо занимает место. Отсюда становится ясным, почему мы говорили, что мы будем здесь иметь дело более с самим протяжением, чем с протяженным, хотя мы считаем, что протяжение не должно быть понимаемо иначе, чем протяженное.

Перейдем теперь к выражению: тело обладает протяжением. Хотя здесь мы придаем разное значение словам протяжение и тело, однако мы не создаем в нашем воображении двух различных представлений: одно – тела, другое – протяжения, а только одно – именно протяженного тела. В сущности, это то же самое, как если бы я говорил: тело протяженно или протяженное протяженно. Это свойственно тому, что существует только в другом и не может быть понято без его субъекта. Иначе обстоит дело с вещами, реально отличающимися от их субъекта. Например, если я говорю, что Петр обладает богатствами, то представление Петра совершенно отлично от представления богатств. Так же если я говорю, что Павел богат, то я представляю себе нечто совершенно иное, чем если бы я говорил: богатый есть богатый. Не замечая этого, большинство придерживается ложного мнения, что протяжение содержит в себе нечто отличное от того, что обладает протяжением, подобно тому как богатства Павла – нечто другое, чем сам Павел.

Наконец, когда говорится, что протяжение не есть тело, то слово «протяжение» имеет здесь совершенно иной смысл, чем выше; в этом последнем значении никакая частная идея не соответствует ему в воображении, но такая форма высказывания всецело исходит из чистого интеллекта, который один обладает способностью различать абстрактные сущности подобного рода. Здесь большинству людей дается повод для заблуждения, ибо, не замечая того, что протяжение, взятое в этом смысле, не может быть воспринято воображением, они представляют его в виде действительной идеи, и, поскольку эта идея необходимо вызывает представление тела, говоря, что протяжение, понимаемое таким образом, не есть тело, они сами не знают о том, что запутываются, утверждая: одна и та же вещь есть тело и не тело. Очень важно различать выражения, в которых слова протяжение, форма, число, поверхность, линия, точка, единица и другие имеют столь строгое значение, что иногда исключают из себя даже то, от чего они реально не отличаются, например, когда говорят, что протяжение, или фигура, не есть тело, число не есть сочтенная вещь, поверхность есть предел тела, линия есть предел поверхности, точка есть предел линии, единица не есть количество и т. д. Все такие положения и другие, подобные им, должны быть совершенно удалены из воображения, как бы они ни были истинны. Вот почему мы и не будем о них говорить в дальнейшем.

Декарт рассматривает, как воображение помогает познанию. В воображении предмет представлен не так, как в чистом разуме. Иногда, из-за того, что не учитывается эта разница, возникает путаница. Например, в воображении протяжение неотделимо от тела, так как мы не можем вообразить протяженность саму по себе, а в чистом разуме протяжение выделяется как отдельная вещь, отличная от тела. Отметив это обстоятельство, Декарт обращается к анализу познания с участием воображения.

Нужно обратить особое внимание на то, что во всех других положениях, где эти названия хотя и удерживают то же самое значение и таким же образом абстрагируются от предметов, но не исключают, однако, или не отрицают ничего в той вещи, от которой они реально не отличаются, мы можем и должны прибегать к помощи воображения, ибо если интеллект имеет дело только с тем, что обозначается словом, то воображение должно представлять себе действительную идею вещи, для того чтобы интеллект мог по мере надобности обращаться и к другим свойствам, которые не выражены в названии, и опрометчиво не считал бы их исключенными. Так, например, если речь идет о числе, мы представляем себе какой-нибудь предмет, измеряемый многими единицами, но хотя наш интеллект размышляет здесь только о множественности этого предмета, мы тем не менее должны остерегаться, чтобы он не сделал вывода, будто измеряемая вещь считается исключенной из нашего представления, как это делают те, кто приписывает числам чудесные свойства, – чистейший вздор, к которому они не питали бы такого доверия, если бы не считали число отличным от исчисляемой вещи. Таким же образом, когда мы имеем дело с фигурой, будем думать, что речь идет о протяженном предмете, который мы представляем не иначе как имеющим фигуру. Если мы имеем дело с телом, будем рассматривать его как длинное, широкое и глубокое, если с поверхностью – как длинное и широкое, упуская глубину, но не исключая ее, если с линией – только как длину, с точкой – будем мыслить ее как нечто существующее, упуская все остальное.

Декарт считает, что арифметика и геометрия дают наиболее достоверное знание. Однако ошибочно отождествлять понятия, которые даны только в уме, например, линия, не имеющая ширины, с фигурами и телами, данными чувственно или в воображении.

Хотя я и развиваю здесь все эти мысли очень пространно, но тем не менее умы смертных настолько преисполнены предубеждений, что я боюсь, что в этом месте лишь очень немногие будут ограждены от всякого рода заблуждений и что мои объяснения могут показаться слишком краткими, несмотря на пространность моего рассуждения. Действительно, даже достовернейшие из всех наук – арифметика и геометрия – вводят нас в этом случае в заблуждение. Какой счетчик не думает, что числа не только являются абстракциями интеллекта от всех предметов, но также, что их нужно отличать от последних и в воображении? Какой геометр не примешивает к очевидности своего объекта противоречивые принципы, когда он рассуждает, что линии не имеют ширины, поверхности – глубины, составляя, однако, одни из других и не замечая того, что линия, которую он представляет производящей посредством движения поверхность, есть настоящее тело, а линия, не имеющая ширины, есть не что иное, как предел тела и т. д. Но чтобы не задерживаться слишком долго на этих наблюдениях, мы покороче изложим, каким образом должен быть, по нашему мнению, представляем наш объект, чтобы доказать, по возможности проще, все, что есть в этом отношении истинного в арифметике и геометрии.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации