Текст книги "Теории всего на свете"
Автор книги: Ричард Докинз
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 27 (всего у книги 29 страниц)
Откуда у леопарда пятна
Сэмюэл Эббсман
Специалист по прикладной математике, старший научный сотрудник Ewing Marion Kauffman Foundation
В одной из своих знаменитых «Сказок просто так» Редьярд Киплинг повествует о том, как леопард обзавелся пятнами. Если довести этот подход до логического предела, выяснится, что нам нужны отдельные истории про самых разных животных, к примеру, про пятна леопарда, коровы или сплошную окраску пантеры. Пришлось бы добавить и рассказы о сложных узорах всевозможных других существ, от моллюсков до тропических рыб.
Но к счастью, существует единственное общее объяснение, показывающее, каким образом возникают все эти разнообразные узоры. Нужно лишь применить одну объединяющую теорию.
Еще в 1952 году, когда Алан Тьюринг опубликовал статью «Химические основы морфогенеза», ученые начали понимать, что простой набор математических формул может управлять всем разнообразием узоров и расцветок животного мира. Эта модель называется реакционно-диффузной и работает сравнительно просто. Представьте, что у вас есть несколько веществ, которые диффундируют по поверхности с различной скоростью и могут взаимодействовать друг с другом. В большинстве случаев процесс диффузии просто приводит к равномерному распределению того или иного вещества (скажем, сливки, влитые в кофе, в конце концов равномерно распределятся по всей кружке, и в результате мы получим светло-коричневую жидкость), однако при диффузии и одновременном взаимодействии нескольких веществ распределение цветов может оказаться неравномерным. Хоть наша интуиция, возможно, и противится этому, выясняется, что такой процесс не только происходит, но и может быть смоделирован при помощи простого набора уравнений, которые и объясняют невероятное разнообразие узоров и расцветок животного мира.
Биологи-математики исследуют свойства реакционно-диффузных уравнений с тех самых пор, как вышла статья Тьюринга. Они обнаружили, что варьирование параметров уравнений позволяет получить те самые «животные узоры», которые мы наблюдаем в природе. Некоторые математики изучают, как размеры и форма поверхности влияют на них. По мере изменения одного из параметров можно легко перейти от жирафьих пятен к кляксам, украшающим шкуру голштинских коров.
Эта изящная модель даже позволяет давать несложные прогнозы: к примеру, если пятнистое животное может иметь полосатый хвост (и очень часто имеет), то у полосатого животного никогда не будет пятнистого хвоста. И именно это мы и видим в жизни! Реакционно-диффузные уравнения не только дают все разнообразнейшие вариации узоров и расцветок, наблюдаемые в природе, но показывают и ограничения, присущие биологии. Киплинговское «просто так» можно без опасений променять на элегантность и универсальность этих уравнений.
Универсальный алгоритм принятия человеком решений
Станислас Дехан
Нейробиолог (Коллеж де Франс); автор книги Reading in the Brain: The New Science How We Read («Чтение мозга: новая наука о том, как мы читаем»)
Конечной целью науки, как некогда утверждал французский физик Жан Батист Перрен, должна стать «замена видимой сложности невидимой простотой». Может ли наука о психологии человека достичь этой амбициозной цели – открыть изящные правила, которые лежат в основе невероятного разнообразия человеческих мыслей? Многие ученые до сих пор считают психологию «нестрогой» наукой, чьи методы и объект исследования чересчур расплывчаты, чересчур сложны и чересчур пронизаны бесчисленными слоями культурных тонкостей, чтобы когда-нибудь привести их к элегантным математическим обобщениям. Однако ученые-когнитивисты знают, что это предубеждение ошибочно. Человеческое поведение следует строгим законам потрясающей математической красоты, причем следует им неукоснительно. Я представлю на ваш суд лишь один из них – математический закон, в соответствии с которым мы принимаем свои решения.
Похоже, все наши решения описываются простым правилом, в котором сплетаются воедино наиболее изящные математические находки прошлых веков: броуновское движение, закон Байеса, машина Тьюринга. Начнем с простейшего из решений: как мы определяем, что 4 меньше 5? Психологические изыскания показывают, что за этим несложным действием таится много сюрпризов. Во-первых, наше быстродействие при этом не так уж велико: на решение уходит почти полсекунды – от момента, когда на экране появляется цифра 4, до момента, когда мы нажимаем на кнопку. Во-вторых, наше время отклика сильно варьируется от опыта к опыту (в интервале от 300 до 800 миллисекунд), хотя мы всякий раз реагируем на один и тот же цифровой знак – «4». В‑третьих, мы допускаем ошибки. Это звучит смешно, однако даже при сравнении 4 и 5 мы иногда ошибаемся. В‑четвертых, наши успехи в этом действии различны при разном числовом значении показываемых нам объектов: когда числа находятся далеко друг от друга (скажем, если это 1 и 5), мы принимаем решение быстрее и делаем меньше ошибок по сравнению с теми случаями, когда числа близки (скажем, если это те же 4 и 5).
Все вышеприведенные факты, как и многие другие, можно объяснить одним законом: наш мозг принимает решения, накапливая доступную статистическую информацию и выдавая результат, когда общий объем информации превышает некоторый порог.
Поясню это утверждение. Принимая решение, мозг сталкивается с проблемой отделения сигнала от шума. Поступающая информация (которая служит основой для принятия решения) всегда содержит шум: фотоны попадают на нашу сетчатку в случайные моменты, нейроны передают информацию лишь с ограниченной надежностью, к тому же по всему мозгу то и дело происходят спонтанные всплески нейронной активности, добавляя шум. Даже когда на входе всего лишь число, анализ нейронной активности показывает, что количество, соответствующее этому числу, кодируется «шумной» группой нейронов, активизирующихся в полуслучайные моменты, причем некоторые нейроны сигнализируют «Я думаю, это 4», другие – «Это ближе к 5», третьи – «Это ближе к 3» и т. п. Поскольку мозговая система принятия решений видит лишь никак не помеченные пики нейронной активности, а не развернутые символы, отделение зерен от плевел становится для нее настоящей проблемой.
Как же вынести надежное решение в присутствии шума? Впервые математический ответ для этой задачи предложил Алан Тьюринг, разгадывая во время Второй мировой войны код «Энигмы» в Блетчли-парке – секретном центре британской разведки. Тьюринг обнаружил небольшую погрешность в действиях немецкой шифровальной машины «Энигма»; это означало, что некоторые немецкие послания содержали небольшое количество понятной британским дешифровщикам информации. Но, к сожалению, ее не хватало, чтобы разгадать шифр. И тогда Тьюринг для объединения всех разрозненных «улик» применил закон Байеса. Не останавливаясь на математическом аппарате, скажем лишь, что закон Байеса дает простой способ учесть и сложить вместе все такие «намеки на истину», приплюсовать их к уже имеющимся сведениям и в результате получить обобщенную статистическую картину, которая покажет искомую «общую сумму».
Из‑за шума на входе поступающая «сумма улик» колеблется вверх-вниз: некоторые входящие послания подтверждают наши выводы, а некоторые лишь добавляют шума. На выходе мы получаем то, что математики именуют случайным блужданием: колеблющуюся череду чисел, которая является функцией времени. Однако в нашем случае числа имеют определенный смысл: они представляют вероятность того, что одна гипотеза верна (т. е. что число на входе меньше 5). А следовательно, разумно будет действовать подобно специалистам‑статистикам и подождать, пока накапливаемый нами массив статистических данных не превзойдет определенный порог – определенное значение вероятности (р). Если мы установим р = 0,999, это будет означать, что шанс ошибиться у нас – один из тысячи.
Заметьте, мы можем установить этот порог на любом произвольно выбранном значении. Однако чем выше мы его задерем, тем дольше нам придется ждать решения. Тут уж либо скорость ценой точности, либо наоборот: можно долго ждать и в итоге принять очень точное решение, либо рискнуть отреагировать раньше, но при этом допустить больше ошибок. Собственно, при любом выборе мы всегда совершим сколько-то ошибок.
Достаточно сказать, что алгоритм принятия решений, который я набросал выше (и который, попросту говоря, описывает, как любое разумное существо должно вести себя в условиях информационного шума), ныне рассматривается учеными как общий механизм принятия решений людьми. Он объясняет и время отклика, и разброс этого времени, и форму соответствующего статистического распределения. Он дает описание того, почему мы допускаем ошибки, как эти ошибки соотносятся со временем отклика и как мы устанавливаем баланс скорости и точности. Он применим ко всем разновидностям решений, от сенсорных (я заметил какое-то движение – или нет?) до лингвистических (что я услышал – «дом» или «лом»?) и даже до проблем сравнительно высокого уровня (когда мне лучше выполнить это задание – в первую или во вторую очередь?). А в более сложных случаях (скажем, при выполнении операций над многозначными числами или осуществлении целой серии заданий) наше поведение являет собой череду шагов, каждый из которых включает накопление информации и достижение определенного порога. Так что подобный подход, оказывается, великолепно описывает и наши напряженные многостадийные подсчеты, уподобляющие нас машинам Тьюринга.
Более того, это поведенческое описание принятия решений сегодня позволяет добиться существенного прогресса в нейробиологии. Можно записать сигналы нейронов обезьяньего мозга, указывающие на похожее накопление соответствующих сенсорных сигналов: об этом свидетельствует скорость передачи нервных импульсов и их интенсивность. Теоретическое различие между накоплением информации и достижением порогового значения помогает разбить мозг на специализированные подсистемы с точки зрения теории принятия решений.
Как и для всякого изящного научного закона, нас здесь подстерегает много сложностей. Вероятно, «накопитель информации» у нас не один, их много: мозг аккумулирует данные на каждом из последовательных этапов обработки данных. И в самом деле, чем больше мы исследуем человеческий мозг, тем сильнее он напоминает потрясающей мощи байесовскую машину, которая на каждой стадии обработки данных совершает множество параллельных операций, принимая множество микрорешений. Многие ученые полагают, что наше чувство уверенности, стабильности и даже осознания себя и мира могут корениться в таких мозговых «решениях» высокого порядка и в конце концов тоже станут жертвой какой-нибудь похожей математической модели. Процесс оценки – еще один немаловажный ингредиент в принятии взвешенных решений (я намеренно не стал о нем здесь распространяться). И наконец, система принятия решений полна априорных допущений, отклонений, ограничений по времени и других значимых факторов, которые не позволяют с абсолютной точностью свести ее к математически оптимальному виду.
Однако в первом приближении этот закон все-таки является одним из самых изящных и плодотворных открытий, которые совершила психология в XX веке: люди действуют как статистические механизмы, стремящиеся к оптимуму, и наши решения связаны с накоплением доступной информации, продолжающимся, пока не будет достигнут определенный порог.
Об одном изречении лорда Актона
Михай Чиксентмихайи
Заслуженный профессор психологии и менеджмента Клермонского университета, содиректор-учредитель Научно-исследовательского центра качества жизни Клермонского университета; автор книги Flow: The Phychology of Optimal Experience («Поток. Психология оптимального переживания». М., Альпина Нон-фикшн, 2013)
Надеюсь, меня не выгонят с позором из рядов специалистов по общественным наукам, если я сознаюсь, что никак не могу вспомнить в нашей сфере ни одного объяснения, обла дающее одновременно изяществом и красотой. Что касается глубины, то мы, по-моему, пока еще слишком молоды как цивилизация, чтобы давать по-настоящему глубокие объяснения. Впрочем, есть одно элегантное и глубокое утверждение (все-таки, увы, это не совсем «объяснение), которое мне представляется весьма полезным, а кроме того, прекрасным своей простотой.
Я имею в виду знаменитые строки лорда Актона из одного его неапольского письма 1887 года; в вольном пересказе они звучат так: «Всякая власть развращает, а абсолютная власть развращает абсолютно». По меньшей мере один специалист по философии науки написал, что на основе данной сентенции можно выстроить целую науку о человеке.
Полагаю, эта фраза закладывает основания для попытки объяснить, почему неудавшийся художник Адольф Гитлер и неудавшийся семинарист Иосиф Сталин смогли дойти до миллионных массовых кровопролитий или почему китайские императоры, римские папы, французские аристократы не сумели устоять перед искушением властью. Когда религия или идеология начинает доминировать в том или ином обществе, нехватка контролирующих механизмов приводит власть ко все большей вседозволенности, а это, в свою очередь, ведет к деградации и развращенности.
Было бы неплохо, если бы идею Актона удалось развить в полномасштабное объяснение еще до того, как сегодняшние гегемонии, основанные на слепой вере в науку и преклонение перед Невидимой Рукой Рынка, последуют за более старыми формами власти в мусорный бак истории.
Факт и выдумка в нашем вероятностном мире
Виктория Стодден
Специалист по юридической информатике, доцент статистики Колумбийского университета
Каким образом мы отделяем факты от выдумок? Нас часто поражают совпадения, которые кажутся очень необычными. Допустим, в утренней газете вы встречаете заметку с описанием какой-то рыбы, потом на обед вам подают рыбу и разговор заходит о рыбацких первоапрельских розыгрышах. Позже на работе коллега показывает вам несколько фотографий рыб, а вечером вам преподносят вышивку, изображающую морских чудищ. На следующее утро сотрудница вашего отдела сообщает, что ей снилась рыба. Возможно, вы начнете чувствовать себя неуютно, однако, как выясняется, такие вещи не должны нас удивлять. Почему? У ответа на этот вопрос долгая история. Человек не сразу начал понимать, как случайности посредством распределения вероятностей встраиваются в наше восприятие мира. Ведь такое понимание, по сути, противоречит нашим интуитивным догадкам.
Случайность как плод невежества
Толстой скептически относился к общепринятым представлениям о случайностях. Он приводил пример: допустим, в стаде овец одну наметили на убой. Ей дают больше корма по сравнению с остальными, и овечье стадо, по мнению Толстого, начинает (не зная о том, что предстоит бедняге) считать эту неуклонно жиреющую овцу чем-то необычайным и случайным. Толстой предлагает овечьему стаду перестать думать, будто все случается лишь «ради выполнения их овечьих целей», и осознать, что существуют скрытые от нас цели, которые все превосходным образом объясняют, так что незачем прибегать к понятию случая.
Случайность как незримая сила
Восемьдесят три года спустя Карл Юнг изложил схожую идею в своей хорошо известной статье «Синхрония как акаузальный объединяющий принцип». Он постулировал существование скрытой силы, ответственной за события, кажущиеся связанными, однако не причинно-следственной связью. История о встречах с рыбой взята как раз из книги Юнга. Он находит эту череду событий необычной – слишком необычной, чтобы списать ее на проявления случайности. Он полагает, что здесь должно действовать что-то еще, и именует это «что-то» акаузальным объединяющим принципом.
Перси Диаконис, профессор статистики и математики Стэнфордского университета и мой бывший преподаватель, критически подходит к юнговскому примеру. Допустим, в среднем мы раз в день сталкиваемся с тем или иным проявлением идеи рыбы. Обратимся к статистическому методу, именуемому процессом Пуассона (кстати, в переводе с французского это слово тоже означает «рыба»). Пуассоновский процесс являет собой стандартную математическую модель для описания счетных единиц: скажем, радиоактивный распад, похоже, развивается как пуассоновский процесс. Модель устанавливает определенную фиксированную частоту, с которой происходит определенное наблюдаемое явление (при усреднении результатов наблюдений), а все иные значения этой частоты рассматриваются как случайные. Применяя пуассоновский процесс к примеру Юнга, предположим, что при усреднении результатов долгих наблюдений мы наблюдаем одно событие за 24 часа. Вычислим вероятность наблюдения 6 или более «рыбных» событий в 24‑часовом промежутке. Диаконис обнаруживает, что эта вероятность – около 22 %. Так что Юнгу не следовало бы особенно удивляться.
Статистическая революция: случайность в моделях генерирования данных
Всего через два десятка лет после того, как Толстой написал про овец, английский математик Карл Пирсон вызвал статистическую революцию в научном мышлении, высказав новую идею о том, как появляются наблюдения: схожую идею использовал Диаконис в своем расчете вероятности. Пирсон предположил, что природа снабжает нас данными из некоего неведомого распределения, но они рассеиваются случайным образом. Его открытие состояло в том, что это рассеяние отличается от собственно погрешности измерений, тем самым добавляя дополнительную погрешность в процесс записи наблюдений.
До Пирсона наука имела дело с «реальными» вещами – скажем, с законами, описывающими движение планет или кровоток лошадей (примеры взяты из книги Дэвида Салсберга «Дама, пробующая чай» (David Salsburg, The Lady Tasting Tea). Пирсон сделал возможным вероятностный взгляд на мир. Планеты не следуют законам природы с абсолютной точностью, даже после того, как мы учтем погрешность измерений. У разных лошадей кровь течет по-разному, однако кровеносная система лошади выстроена не совершенно случайным образом. Оценивая распределения, а не сами явления, мы можем точнее представить себе картину мира.
Случайность, описываемая распределениями вероятностей
Гипотеза, согласно которой сами измерения характеризуются неким распределением вероятностей, ознаменовала существенный сдвиг по сравнению с теми временами, когда случайность считали ограниченной лишь погрешностями измерения. Подход Пирсона весьма полезен, ибо позволяет оценивать, насколько вероятно то, что мы видим, – исходя из условий распределения. Сегодня такой подход – наш главный инструмент при оценке того, насколько вероятно, что определенное объяснение верно.
Так мы можем, к примеру, количественно оценить вероятность того, что лекарство окажется эффективным, или того, что частицу удастся зафиксировать в ускорителе. Является ли ноль центром распределения среднего отклика при сравнении результатов той группы, которой давали препарат, и контрольной группы (которой препарата не давали)? Если это кажется вероятным, мы вправе высказать скептицизм касательно эффективности препарата. Отстоят ли исследуемые сигналы настолько далеко от распределения для известных частиц, чтобы принадлежать к иному распределению, а значит, давать основания полагать, что их создает какая-то новая частица? Обнаружение бозона Хиггса потребовало подобной вероятностной интерпретации данных, чтобы отличить хиггсовские сигналы от сигналов, соответствующих другим событиям. Главное во всех подобных случаях – определить характеристики статистического распределения, которое лежит в основе интересующего нас явления.
Пирсон напрямую включил случайность в распределение вероятностей, что позволяет нам критически подходить к оценке возможности тех или иных событий и количественно выражать нашу уверенность в тех или иных объяснениях. Благодаря открытию Пирсона мы можем эффективнее оценивать, когда наблюдаемые нами явления имеют особое значение, а когда – нет. А значит, нам лучше удается достигать своих целей – не овечьих, а человечьих.
Универсальная машина Тьюринга
Глория Оригги
Философ (Национальный центр научных исследований, Париж); редактор книги Text-e: Text in the Age of the Internet («Е-текст, или Текст в эпоху Интернета»)
«Есть многое на свете, друг Горацио, что вашей философии не снилось»[86]86
Совмещены переводы Н. Полевого и Б. Пастернака.
[Закрыть], – говорит Гамлет своему приятелю. Изящное резюме, которое преследует нас в жизни. Один из самых замечательных научных экспериментов всех времен и народов подводит нас к тому же печальному выводу: некоторые математические проблемы попросту неразрешимы.
В 1936 году британский математик Алан Тьюринг придумал самую простую и изящную вычислительную машину на свете, устройство (которое он позже описал в своей статье 1948 года «Разумная машина»), наделенное
бесконечным объемом памяти, представленной в виде бесконечной ленты, размеченной на квадраты, на каждом из которых может быть напечатан символ. В каждый данный момент времени в машине находится один символ: он называется отсканированным. Затем машина может изменить отсканированный символ, и ее поведение частично определяется этим символом, но символы, находящиеся на других участках ленты, никак не влияют на поведение машины. Однако лента может двигаться сквозь машину взад-вперед: это одна из элементарных операций, совершаемых машиной.
Итак, перед нами абстрактная машина, порожденная гением для того, чтобы справиться с неразрешимой проблемой – проблемой разрешения. Вот формулировка этой проблемы. Возможно ли для каждой логической формулы, существующей в какой-либо теории, за конечное число шагов определить, верна ли данная формула для данной теории?
Ну так вот, Тьюринг демонстрирует, что это невозможно. Проблема разрешения (Entscheidunsproblem) была хорошо знакома тогдашним математикам. Она занимала десятую строчку в перечне проблем, которые Дэвид Гильберт в 1900 году представил математической общественности, тем самым обрисовав основную часть повестки математических исследований на ХХ век. В классической формулировке задается вопрос, существует ли механический процесс, способный за конечное число шагов определить, верна ли формула или можно ли вычислить значение функции. Тьюринг начал с вопроса: «А что такое механический процесс?» и дал ответ: механический процесс – такой, который может осуществить машина. Очевидно, не так ли?
Затем он разработал машину для операций со всеми возможными формулами в логике первого порядка и со всеми возможными рекурсивными функциями натуральных чисел, с учетом доказанной Гёделем (в его теореме о неполноте) логической эквивалентности между множеством формул логики первого порядка и множеством натуральных чисел. И в самом деле, на основе простой дефиниции Тьюринга можно описать функцию при помощи записанных на ленту нулей и единиц, затем дать машине список простых команд (сдвинь ленту влево, сдвинь ленту вправо, стоп) так, чтобы она записала «демонстрацию» функции и затем прекратила работу.
Это и есть Универсальная машина Тьюринга: универсальная, ибо она способна взять в качестве входящей информации любой возможный набор символов, описывающих функцию, и продемонстрировать эту функцию на выходе. Но если вы введете в Универсальную машину Тьюринга описание ее самой, она не остановит работу: она без конца будет выдавать нули и единицы. Вот так. Эта Праматерь всех компьютеров, душа цифровой эпохи, была создана для того, чтобы показать: не все можно свести к той или иной тьюринговской машине. Много есть на свете такого, что не снилось нашей философии.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.