Электронная библиотека » Ричард Докинз » » онлайн чтение - страница 22


  • Текст добавлен: 21 июля 2014, 15:13


Автор книги: Ричард Докинз


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 22 (всего у книги 29 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Обходной путь гортанного нерва у жирафа


По мере того как с течением эволюции шея жирафа удлинялась, издержки – в обычном экономическом смысле или в смысле заработать заикание – постепенно росли (это уточнение очень важно). Предельные издержки каждого нового миллиметра пути были невысоки. Когда длина шеи достигла нынешнего размера, общие издержки достигли предела, где мутантная особь без обхода гипотетически была бы лучше приспособлена к выживанию. Однако мутация, необходимая для того, чтобы “срезать путь”, потребовала бы кардинальных изменений в эмбриональном развитии. Возможно, она просто никогда бы не произошла, а если и произошла бы, то могла вызвать нежелательные побочные эффекты, как любая существенная перестройка. И даже если эти побочные эффекты были бы впоследствии компенсированы экономией от сокращения пути нерва, альтернатива – постепенное его удлинение на лишний миллиметр – заметно дешевле. Я предполагаю, что она всегда была намного дешевле большой перестройки и поэтому выиграла у куда более элегантного решения. Но эти рассуждения не должны отвлекать нас от сути: возвратный нерв у млекопитающих – хороший аргумент против “разумного дизайна”, а маршрут этого нерва у жирафа превращает довод из хорошего в превосходный. Эта бессмысленная петля вдоль всей шеи жирафа – как раз то, чего мы ожидаем от эволюции, совершающейся посредством естественного отбора, и совсем не то, чего следует ждать от разумного Создателя.

Джордж К. Уильямс, один из самых уважаемых американских биологов-эволюционистов (чья спокойная мудрость и крупные черты лица напоминают одного из самых уважаемых американских президентов, родившегося, кстати, в один день с Дарвином и также славившегося спокойной мудростью), привлек мое внимание к другому маршруту, очень похожему на путешествие гортанного нерва.

Семявыводящий проток служит для вывода спермы из яичек в пенис. Его самый естественный (и вымышленный) маршрут показан на схеме, как и тот, действительный. Совершенно непонятно, зачем он обходит уретру (канал, по которому моча из почек поступает в мочевой пузырь). Если это спроектировано, то проектировщик снова сильно ошибся. Однако, как и в случае гортанного нерва, все становится на свои места, если посмотреть на историю эволюции этих органов. Примерное начальное положение яичек показано на рисунке штриховой линией. Когда по ходу эволюции млекопитающих они переместились вниз, в мошонку (причины этого перемещения неизвестны, но скорее всего связаны с терморегуляцией), проток оказался гуляцией), проток оказался не с той стороны уретры. Вместо того чтобы (как поступил бы инженер) отправить его заново по правильному пути, эволюция предпочла просто понемногу удлинять его, поскольку предельные издержки небольшого удлинения несопоставимы со стоимостью радикальной перестройки системы. И снова мы видим тот же принцип дешевой коррекции ошибки вместо перепроектирования. Примеры такого сорта должны, безусловно, подорвать позиции пламенных поклонников концепции “разумного дизайна”.

Путь семявыводящего протока от яичек до пениса


Человеческое тело изобилует, так сказать, несовершенствами, которые являются следствием неизбежных компромиссов в ходе эволюции длинной цепи наших животных предков. Несовершенства такого рода неизбежны, когда вариант “переделать с нуля” неприемлем. Только представьте себе, как выглядел бы реактивный двигатель, если бы его изобретателям Фрэнку Уиттлу или доктору Гансу-Иоахиму Пабсту фон Охайму предложили начать с винтового мотора с условием менять только по одной детали. И хуже того, все промежуточные модели должны работать, причем каждая следующая – хоть немного лучше предыдущей! Понятно, что получившийся в таких условиях реактивный двигатель был бы начинен реликтами винтовой эпохи и полон недостатков. И каждый из недостатков устранялся бы незначительными компенсирующими поправками, лучшими из возможных, без полного перепроектирования.

Думаю, смысл понятен, но на самом деле при более пристальном взгляде на биологические инновации возникает другая аналогия. Важные нововведения, такие как реактивный двигатель, вероятно, возникают не в результате эволюции старого органа, выполнявшего те же функции, а из чего-то совершенно иного, игравшего совсем другую роль. Например, наши предки рыбы, выбравшись на сушу, не стали заниматься приспособлением жабр к дыханию воздухом (что, кстати, делают некоторые современные рыбы, например рыба-ползун Anabas) – они воспользовались для этого выростом кишки. Впоследствии, кстати, костистые рыбы (а это почти все современные рыбы, кроме акул и им подобных) воспользовались легкими, которыми иногда дышали их предки, чтобы произвести на свет другой орган, не имеющий никакого отношения к дыханию: плавательный пузырь.

Плавательный пузырь – возможно, ключевой фактор успеха костистых рыб и, как таковой, заслуживает отступления. Это внутренний мешок, заполненный газом, объем которого может меняться так, чтобы рыба на любой глубине находилась в состоянии гидростатического равновесия. Принцип Архимеда вам должен быть хорошо знаком, но костистые рыбы придумали интересную вариацию. Плавательный пузырь работает как пузырек газа, однако объем его не фиксирован. Когда рыбе нужно подняться выше, часть молекул газа из крови поступает в пузырь, увеличивая его объем. Удельный вес рыбы уменьшается, и она всплывает. Если ей, напротив, нужно опуститься, часть молекул газа из пузыря забирается в кровь, уменьшая объем пузыря. Плавательный пузырь позволяет рыбе оставаться в неподвижности на любой глубине без мышечных усилий, которые требуются, например, акуле, чтобы удерживаться на нужной глубине. Гидростатическое равновесие восстанавливается без малейших усилий со стороны рыбы. За счет того, что вся работа достается плавательному пузырю, мышцы освобождаются для активных сокращений. Акуле же приходится все время двигаться – иначе она утонет (хотя, следует признать, что не сразу, поскольку ее ткани включают некие вещества с низкой плотностью, которые сообщают акуле кое-какую подъемную силу). Таким образом, плавательный пузырь представляет собой видоизмененное легкое, которое, в свою очередь, есть видоизмененный кишечный мешок (а не жаберная полость, как можно было бы ожидать). Более того, у некоторых видов рыб плавательный пузырь видоизменился дальше, став еще и органом слуха наподобие барабанной перепонки в человеческом ухе. Все тело животных – это летопись эволюции, записанная бесчисленными слоями, один на другом.

Мы являемся наземными животными уже четыреста миллионов лет, но всего около 1 % этого времени ходим на задних ногах. Остальное время у нас был горизонтальный позвоночник, и передвигались мы на четырех конечностях. Мы не знаем, какие преимущества получил первый предок, вставший на задние конечности, так что пока оставим этот вопрос. Джонатан Кингдон написал на эту тему целую книгу (“Низкое происхождение”), некоторые аспекты которой обсуждаются в моей книге “Рассказ прародителя”. Когда это случилось, перемены могли показаться не слишком важными: ведь другие приматы, такие как шимпанзе и вообще многие обезьяны, даже очаровательный лемур-сифака, время от времени встают на задние лапы. Однако постоянное прямохождение, присущее человеку, имеет далеко идущие последствия для всего тела, повлекшие за собой массу компенсирующих “исправлений”. Можно даже сказать, что ни одна кость или мышца не избежала изменений, необходимых для компенсирования разных последствий прямохождения. Такие же повсеместные переделки должно вызывать любое резкое изменение способа существования: из воды на сушу, с суши в воду, в небо или под землю. Нельзя выделить какие-то очевидные изменения и ограничиться ими. Мало сказать, что у любой перемены есть последствия: последствий сотни и тысячи. Естественный отбор все время подправляет, приводит все в порядок или, как сказал великий французский молекулярный биолог Франсуа Жакоб, “все время латает дыры”.

На это можно взглянуть иначе. Когда случается значительное изменение климата, например, в ледниковом периоде, мы вправе ожидать, что естественный отбор подготовит к нему животных, например заставив отрастить более густую шерсть. Однако изменение климата – не единственный фактор в этой игре. Любая существенная мутация, удачная с точки зрения естественного отбора, безо всякого изменения внешних условий приведет к тому, что остальные гены почувствуют на себе изменение внутреннего генетического “климата”. И они должны будут адаптироваться к нему точно так же, как к изменению погоды. Естественный отбор, компенсируя сдвиги генетического “климата”, подключится к работе обязательно, но немного позднее, подобно тому, как это происходит с переменами во внешней среде.

Возможно, переход от передвижения на четырех конечностях к передвижению на двух был вызван внутренним, а не внешним изменением. Однако какой бы ни была причина, она повлекла за собой цепочку компенсирующих “поправок”.

“Неразумный дизайн” – неплохое название для главы. На самом деле так стоило бы назвать целую книгу о несовершенстве живого как убедительнейшем доказательстве отсутствия какого бы то ни было плана творения. Эту возможность не упустили сразу несколько авторов. Мне мила здоровая простота австралийского варианта английского языка (“Ну и откуда взялся этот ‘разумный дизайн’? Возник как прыщ на ровном месте?”), и я выбрал отличную книгу Робина Уильямса, патриарха сиднейских популяризаторов науки. Начав с жалобы на неприятности, которые доставляет ему спина по утрам, Уильямс неожиданно переходит к вопросу о гарантийных обязательствах проектировщика, к которому у него есть масса претензий: “Если Он и вправду проектировал мою спину, то это явно не лучшее из Его творений, оно наверняка доделывалось в жуткой спешке, чтобы уложиться в шесть дней”. Дело, конечно, в том, что наши предки большую часть своей истории провели в горизонтальном положении, и наш позвоночник, внезапно выпрямившийся, отнесся к переменам последних нескольких миллионов лет не слишком благожелательно. Гипотетический проектировщик должен был вернуться к чертежной доске.

После Уильямс переходит к символу Австралии – коале. Сумка этого животного открывается вниз, а не вверх, как у кенгуру, что довольно странно для животного, всю жизнь перемещающегося вверх-вниз по деревьям. Дело в том, что коалы ведут свою родословную от вомбатоподобного предка. Вомбаты – чемпионы по копанию:


Большущими лапами они, словно экскаватор, отгребают почву назад, прокапывая туннели. Если бы сумка вомбата открывалась сверху, его детеныши всегда были бы в грязи. Снизу сумка и открывалась, когда зверюшка решила залезть на дерево, вероятно, в поисках нового источника пищи. На дерево переместился целиком план строения, слишком сложный, чтобы начинать все с нуля.


Как и в случае с возвратным гортанным нервом, теоретически эмбриологию коалы можно было бы изменить в пользу открывания сумки вверх. Но я подозреваю, что этот эмбриологический переворот вызовет к жизни такие ненормальные промежуточные формы, что лучше уж коалы с их неудобными сумками.

Еще одно следствие нашего перехода от четырех конечностей к двум относится к носовым пазухам, доставляющим многим (включая меня) массу неприятностей, поскольку отверстие для вытекания из них жидкости дизайнер расположил в самом неприспособленном для этого месте. Уильямс цитирует моего австралийского коллегу профессора Дерека Дентона[91]91
  Не путать с Майклом Дентоном, также австралийцем, любимцем креационистов, которые упустили из виду, что в своей второй книге “Судьба природы” Дентон отказался от антиэволюционных взглядов, правда, сохранив религиозность.


[Закрыть]
: “Большие гайморовы пазухи находятся под щеками по обеим сторонам лица. Отверстия для вытекания жидкости расположены сверху, а не снизу, что, очевидно, не самая блестящая идея, так как для оттока жидкости проще было бы воспользоваться естественной силой притяжения”. Ничего удивительного: у ходящего на четырех лапах наш верх – вовсе не верх, а перед, и местонахождение отверстий куда более осмысленно. Здесь снова следы истории, следы на всем нашем теле.

Уильямс цитирует другого австралийского коллегу, не чуждого национальной склонности к сильным выражениям: наездников семейства Icnheumines спроектировал “садист-ублюдок”. Дарвин, посетивший в молодости Австралию, сформулировал ту же мысль более уравновешенно: “Я не могу убедить себя в том, что милосердный и всемогущий Творец создал ихнемонид с явным намерением заставить их искать пропитание внутри живых гусениц”. Легендарная жестокость этих и родственных им ос – лейтмотив следующих двух глав.

Мне сложно сформулировать то, что я собираюсь сказать, но я все-таки попробую выразить словами давнюю мысль, которая пришла мне в голову в день, ознаменовавшийся вскрытием погибшего жирафа. Когда мы смотрим на животных, то восхищаемся утонченной иллюзией проекта. Грация жирафа, полет альбатроса, скорость стрижа, точность атакующего сокола, незаметность морского дракона среди водорослей, бег гепарда за безнадежно пытающейся ускользнуть газелью – иллюзия проекта настолько привлекательна, что требуется осознанное усилие, чтобы отказаться от соблазнов безыскусной интуиции и включить критическое мышление. Но это ощущение возникает только при взгляде на экстерьер животного. Если мы заглянем внутрь, это ощущение кардинально изменится. Возможно, впечатление продуманного плана создают аккуратные схемы в учебниках, похожие на чертежи. Однако реальность, с которой сталкиваешься, видя животное на секционном столе, иная. Я думаю, было бы интересно попросить инженера оптимизировать сердечные артерии. Скорее всего получится нечто вроде выпускной системы современного автомобиля – элегантной системы упорядоченных труб, – вместо той жуткой мешанины, которая встречает анатома, вскрывающего грудную клетку.

Цель, ради которой я провел целый день с анатомами, вскрывающими жирафа, состояла в изучении возвратного гортанного нерва в качестве примера эволюционно обусловленного несовершенства. Но вскоре я осознал, что с этой точки зрения возвратность гортанного нерва – только верхушка айсберга. Длина петли лишь рельефно выделяет данный пример. Именно это заставило бы Гельмгольца “завернуть” проект. Но на какую часть внутренностей животного ни взгляни, первая и всепоглощающая мысль – это: какая же там мешанина! Ни один проектировщик не сделал бы ошибки с возвратной петлей. Ни один умелый инженер никогда не опустился бы до этого месива артерий, вен, нервов, кишок, комков жира, мышц и прочего. Цитируя американского биолога Колина Питтендрая, все это не более чем “лоскутное одеяло, сшитое без всякого плана из того, что случайно оказалось под рукой, и задним числом одобренное естественным отбором”.

Глава 12
Гонка вооружений и “эволюционная теодицея”

Глаза и нервы, семенные протоки, синусы и позвоночник могут быть спроектированы с несовершенством, непозволительным с точки зрения качества жизни особи, однако становятся объяснимы с позиций эволюционизма. То же касается и природной “макроэкономики”. От разумного Творца можно было бы ожидать создания не просто тел животных и растений, но и видов, даже экосистем. Можно было бы предположить существование в природе “плановой экономики”, чтобы избежать бессмысленной траты ресурсов. Однако это не так.

Место под солнцем

“Экономика” природы зиждется на солнечной энергии. Фотоны, испускаемые Солнцем, в течение дня изливаются на земную поверхность. Большинство из них не нагревают без толку какой-нибудь камень или полоску пляжа. Немногие фотоны доходят до глаза – вашего, моего, сложного глаза креветки, параболической линзы глаза морского гребешка. Другие же попадают на солнечные батареи – либо искусственные, вроде тех, которые я в порыве экологического энтузиазма установил на крыше своего дома, чтобы нагревать воду для душа, либо природные, каковыми являются зеленые листья. Растения пользуются солнечной энергией, чтобы запустить энергозатратный (“восходящий”) химический синтез и в результате получить органическое топливо, в первую очередь сахара. Этой монетой можно после расплатиться за работу. Расщепляя сахара, можно получить энергию и использовать ее, например, для мышечных усилий или “возведения” древесного ствола. Реакции расщепления я здесь называю “нисходящими”. Аналогия проста: вода течет вниз, выполняя работу (например, вращает колесо), но чтобы закачать ее обратно, нужен насос и затраты энергии. На каждой стадии цикла (как “восходящей”, так и “нисходящей”) теряется некоторая часть энергии: ее невозможно передавать со стопроцентной эффективностью. Именно поэтому в патентных бюро на заявки об изобретении вечного двигателя даже не смотрят: и так понятно, что его постройка невозможна. Нельзя за счет энергии падающей воды закачать наверх такое же ее количество. Водяное колесо не будет работать само по себе. Некоторое, пусть небольшое, количество энергии всегда должно поступать извне, чтобы компенсировать потери. Для этого нам и нужно Солнце. В главе 13 я вернусь к этому вопросу.

Немалая часть поверхности суши покрыта листьями зеленых растений, образующих многослойную ловушку для фотонов. Даже если какой-то лист не поймал пролетавший мимо фотон, это с высокой вероятностью удастся соседу снизу. В густом старом лесу редкий фотон достигает земли, поэтому там темно. Большая часть солнечных лучей, которая переходит в наше, земное, пользование, падает на поверхность океанов. Их поверхностные слои кишат одноклеточными зелеными водорослями. Задача этих организмов – улавливать фотоны. Процесс улавливания фотонов, использование их в “восходящих” химических реакциях с запасанием энергии, производство энергоемких молекул (таких как сахара и крахмал) называется фотосинтезом. Он был изобретен бактериями более миллиарда лет назад, и до сих пор зеленые бактерии берут на себя большую часть фотосинтеза. Хлоропласты (крошечные моторчики, проделывающие всю фотосинтетическую работу во всех листьях) являются потомками зеленых бактерий. Поскольку хлоропласты автономно размножаются внутри растительной клетки, их можно уподобить бактериям, хотя они и зависят от жизнедеятельности листа, попутно окрашивая его в зеленый цвет. Оказалось, что когда-то живущие свободно зеленые бактерии внедрились в растительную клетку, где эволюционировали до структуры, которую мы называем хлоропластом.

Строго симметрична ситуация с “нисходящими” реакциями. Если “восходящими” реакциями занялись бактерии, устроившиеся в растительных клетках, то “нисходящие” (то есть экономичное сжигание сахаров и другого топлива, необходимого для жизнеобеспечения растительных и животных клеток) обслуживают специалисты из другой группы бактерий – митохондрии, также некогда вольные, а теперь живущие внутри клеток и автономно размножающиеся. Митохондрии и хлоропласты, потомки различных групп бактерий, изготовили свои взаимосопряженные чудесные химические инструменты за миллиарды лет до того, как появились привычные и видимые невооруженным глазом иные обитатели нашей планеты. И те и другие поплатились за свое искусство и были захвачены для работы внутри более крупных и сложных клеток, из которых построены те самые видимые невооруженным глазом живые обитатели: растительные клетки с хлоропластами и митохондриями, животные клетки с митохондриями.

В основании пищевых цепей лежит солнечная энергия, запасенная хлоропластами. Далее эта энергия переходит от растений к травоядным, в том числе насекомым, от них – к хищникам (к ним отнесем и насекомых, и насекомоядных, и волков, и леопардов), от хищников – к падальщикам, таким как стервятники или жукинавозники, от них – к грибам и бактериям, конечным деструкторам, разлагающим органику. На каждом отрезке пищевой цепи часть энергии рассеивается в виде тепла, часть уходит на полезную работу, например на мышечные сокращения. Но никакой новой энергии кроме солнечной, усвоенной растениями, в пищевую цепь не поступает. Иначе говоря, все земная жизнь держится на энергии солнца – за любопытным, но несущественным исключением экосистем “черных курильщиков”, существование которых зависит от энергии вулканических процессов.

Взглянем на одинокое дерево, гордо стоящее на открытой поляне. Почему оно выросло таким высоким? Уж точно не для того, чтобы быть ближе к солнцу! Было бы дешевле укоротить ствол и распластать ветви широко по земле: солнечного света попадет столько же, но можно сэкономить за счет исключительно дорогостоящего ствола. Зачем же идти на траты, поднимая крону как можно выше? Чтобы ответить на этот вопрос, следует вспомнить, что естественной средой обитания деревьев является лес. Деревья тянутся ввысь, чтобы перерасти конкурентов, будь они того же или иного вида. И пусть вас не одурачит вид растущего в саду или парке дерева с пышными ветвями снизу доверху. Какая у него роскошная, идеально круглая крона! Настоящее украшение сада. Но дело в том, что именно сада, а не леса: в лесу в окружении других деревьев ствол дерева выпрямляется, ветки собираются у верхушки, где крона улавливает интенсивный фотонный дождь. Однако если деревья смогли бы договориться не расти, например, выше трех метров (нечто вроде профсоюзного соглашения), то все оказались бы в выигрыше. Вся экосистема смогла бы избавиться от затрат энергии, которая расходуется на стволы.

Сложность достижения таких согласований известна всем. Она касается даже отношений между людьми, в которых, казалось бы, мы можем предвидеть результат. Вот неплохой пример: на скачках зрители обычно сидят, а не стоят, поскольку и в этом случае высокие люди получают преимущество, так же, как если бы все стояли. А вот если человек небольшого роста, сидящий за верзилой, встает, чтобы ему было лучше видно, начинаются проблемы. Тот, кто сидел за ним, немедленно встает также, чтобы видеть хоть что-нибудь; и по стадиону идет волна, оканчивающаяся тем, что все стоят. В конце концов все оказываются в худшем положении по сравнению с исходным.

Полог зрелого леса – своеобразная поднятая в воздух лужайка, прерия на ходулях. Он собирает энергию солнечных лучей примерно с той же эффективностью, что и участок прерии. Однако существенная часть энергии тратится на “ходули”, то есть стволы, которые ни на что другое не годны, кроме как поднимать древесные лужайки, где те собирают точно такой же урожай фотонов, какой достался бы им, находись они на земле.

Таким образом, мы сталкиваемся с необходимостью различать плановую экономику и эволюционную экономику. Если бы экономика живой природы была плановой, никаких деревьев (по крайней мере, высоких) не было бы. Деревья дорогостоящи. Деревья расточительны. Их стволы – живые памятники конкуренции, бессмысленной с точки зрения плановой экономики. Но экономика природы – не плановая. Каждое растение самостоятельно, в одиночку, конкурирует с другими растениями, своего и других видов. В результате они вырастают выше, чем рекомендовал бы любой экономист. Но, заметим, их рост не бесконечен. Есть граница, за которой прирост на один метр вверх, приносящий, естественно, преимущество в отборе, обходится так дорого, что это дерево проигрывает конкурентам, не потратившимся на лишний метр. Высоту, на которую вырастут все близлежащие деревья, в конце концов определяет именно равновесие между затратами и преимуществами отдельных деревьев, а не общее благо группы деревьев, которым, вероятно, озаботился бы проектировщик. Вдобавок, конечно же, равновесные значения различаются от леса к лесу. Секвойные леса Тихоокеанского побережья Северной Америки (уверяю, на них стоит посмотреть), по всей вероятности, не превзойдены по этому параметру.

Представим себе гипотетический Лес дружбы. Пусть неизвестным нам способом деревья смогли договориться между собой и опустить уровень полога до трех метров. Он выглядит так же, как обычно, однако расположен на высоте не тридцати, а всего трех метров. С точки зрения плановой экономики Лес дружбы более эффективен как лес, чем известные нам высокие леса: ресурсы на строительство высоких стволов, необходимых только для конкуренции с соседними деревьями, не расходуются.

Предположим теперь, что посередине Леса дружбы внезапно появилось мутантное дерево. Этот изменник вырастет выше, чем положено, и получит конкурентное преимущество. Безусловно, ему придется потратиться на ствол, длиннее, чем у прочих. Однако пока остальные деревья подчиняются общим ограничениям, это дерево будет процветать. Таким образом, естественный отбор станет поощрять выход из соглашения и небольшую прибавку в росте, например до 3,5 метра. В каждом поколении все новые и новые деревья будут нарушать договоренность. В конце концов все деревья в лесу обзаведутся стволом длиной 3,5 метра и окажутся в положении худшем, чем вначале: все платят стоимость дополнительного роста ствола, но не получают от этого дополнительные фотоны. И, что еще хуже, теперь естественный отбор будет благосклонен к четырехметровым мутантам. Почему эта бессмысленная гонка к солнцу заканчивается? Почему на свете нет деревьев с километровым стволом? Предел установлен просто: это высота, после которой стоимость приращения дополнительного метра не окупается полученными за счет этого фотонами.

Напомню, мы говорили об индивидуальных преимуществах и издержках. Будь “экономика” леса подчинена именно общему благу, а не благу отдельных экземпляров, леса выглядели бы совсем по-другому. Более того, леса, которые мы видим вокруг, состоят из деревьев, предки которых эволюционировали под воздействием естественного отбора, предпочитавшего экземпляры, способные успешно конкурировать со всеми другими деревьями, будь они из своего или чужого вида. Все известные нам данные о деревьях противоречат тому, что деревья были сотворены (если только они не были созданы специально для того, чтобы снабжать нас древесиной и осенними пейзажами). К сожалению, мир видел множество людей, готовых поверить в последнее. Поэтому перейдем к случаю, в котором преимущества для человечества не заметны: гонке вооружений между хищником и жертвой.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10
  • 3.7 Оценок: 6

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации