Электронная библиотека » Ричард Фейнман » » онлайн чтение - страница 1


  • Текст добавлен: 27 января 2018, 10:20


Автор книги: Ричард Фейнман


Жанр: Физика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Ричард Филлипс Фейнман
КЭД – странная теория света и вещества

© Richard P. Feynman, 1985

© Перевод. С. Тиходеев, 2012

© AST Publishers, 2018

* * *

Уникальный автограф знаменитой диаграммы Фейнмана, подписанный самим Фейнманом; изображение любезно предоставил Дж. М. Пасачофф (Jay М. Pasachoff, Fields Memorial Professor of Astronomy at Williams College). Диаграмма была изображена на первых страницах его экземпляра первого издания КЭД.

Предисловие редактора перевода

Книга, которую Вы держите в руках, уникальна. Ее автор – замечательный физик-теоретик, один из главных создателей современной квантовой электродинамики – рассказал об основах этой науки с необыкновенным мастерством.

Хотя лекции, составившие книгу, были адресованы гуманитариям, книгу, без сомнения, с живым интересом и большой пользой для себя прочтут и старшеклассник, и студент-физик, и преподаватель физики, и физик-профессионал.

Узнав о готовящемся русском издании, Ричард Фейнман прислал письмо, содержащее некоторые исправления и уточнения исходного английского текста. Все они учтены при переводе.

Когда книга была еще в производстве, пришло печальное известие о кончине 15 февраля 1988 г. замечательного физика-теоретика нашего столетия, великого физика-педагога Ричарда Фейнмана.

Л. Б. Окунь

Предисловие Леонарда Мотнера

Чтение лекций «Памяти Эликс Дж. Мотнер» было организовано в честь моей жены Эликс, скончавшейся в 1982 г. Эликс занималась английской литературой, но неизменно проявляла интерес ко многим областям науки. Поэтому и был создан фонд ее имени в целях ежегодного проведения цикла лекций, которые приобщали бы думающих и заинтересованных людей к идеям и достижениям науки.

Я очень рад, что Ричард Фейнман согласился прочитать первый цикл лекций. Мы дружим уже 55 лет, с самого детства в Фар-Рокуэй, штат Нью-Йорк. Ричард был знаком с Эликс около 22 лет, и ей давно хотелось, чтобы он составил такое объяснение физики элементарных частиц, которое было бы понятно ей и другим неспециалистам.

В дополнение я хотел бы выразить свою благодарность тем, кто принял участие в создании Фонда Эликс Дж. Мотнер и сделал возможным проведение этих лекций.

Лос-Анджелес, Калифорния, май 1983 г.

Вступление Ральфа Лейтона

Ричард Фейнман стал легендарным в мире физики из-за своего особого взгляда на мир: ничего не принимая на веру и обдумывая каждую вещь заново, он часто достигает оригинального и глубокого понимания природы, причем его стиль отличают свежесть и элегантная простота.

Он известен также как энтузиаст преподавания физики. Фейнман, отклонявший бесчисленное множество предложений произнести речь в престижном обществе или организации, может быть «легкой добычей» для студента, который, проходя мимо его кабинета, попросит выступить в физическом клубе местной школы.

Эта книга представляет собой рискованную затею, на которую, насколько нам известно, никто еще не решался. Это честное прямое объяснение непрофессиональной аудитории довольно сложного предмета – квантовой электродинамики. Она задумана таким образом, чтобы дать заинтересованному читателю правильное представление о типе рассуждений, к которым прибегают физики, чтобы объяснить поведение Природы.

Если вы собираетесь изучать физику (или уже изучаете), вы не найдете в этой книге ничего такого, что придется «переучивать». Это полное описание, точное в каждой детали, некоего каркаса, на который новые, усовершенствованные концепции лягут без изменений. Для тех из вас, кто уже изучал физику, это будет открытием того, что же вы в действительности делали, производя сложные вычисления!

В детстве Ричарда Фейнмана вдохновила на занятия математическим анализом книга, которая начиналась так: «То, что может сделать один глупец, может и другой». Он хотел бы обратиться к своим читателям с похожими словами: «То, что может понять один глупец, может и другой».

Пасадина, Калифорния, февраль 1985 г.

От автора

Эта книга представляет собой запись лекций по квантовой электродинамике, прочитанных мною в Калифорнийском университете. Лекции записаны и отредактированы моим добрым другом Ральфом Лейтоном. Надо сказать, что рукопись претерпела значительные изменения. Преподавательский и писательский опыт мистера Лейтона оказался очень ценным, когда мы предприняли попытку ознакомить широкую аудиторию с этим центральным разделом физики.

Часто в «популярных» изложениях науки кажущаяся простота достигается за счет описания чего-то совсем другого, за счет существенного искажения того, что берутся описывать. Уважение к нашему предмету не позволило нам этого сделать. Мы провели в обсуждениях много часов, стараясь добиться максимальной ясности и простоты, и бескомпромиссно отвергали искажения истины.

Лекция 1. Введение

Эликс Мотнер очень интересовалась физикой и часто просила меня что-нибудь ей объяснить. Я все хорошо объяснял (так же, как я объясняю студентам в Калтехе, когда они приходят ко мне по четвергам), но в итоге я так и не смог рассказать самого для меня интересного: мы каждый раз застревали на сумасшедших идеях квантовой механики. Я говорил ей, что не могу объяснить это за час или за вечер – на это потребуется много времени, – но я обещал, что когда-нибудь подготовлю цикл лекций на эту тему.

Я подготовил несколько лекций и отправился проверить их в Новую Зеландию – потому что Новая Зеландия далеко, и если бы лекции не имели успеха, это было бы ничего! В Новой Зеландии решили, что лекции хорошие. Итак, вот лекции, которые я на самом деле подготовил для Эликс, но, к несчастью, теперь я не могу обратиться непосредственно к ней.

Я хотел бы рассказать про известное в физике, а не про неизвестное. Обычно люди интересуются новейшими достижениями, которые позволяют перейти от одной теории к другой, так что не удается рассказать хоть что-нибудь про теорию, с которой мы как следует разобрались. Они всегда хотят знать то, чего мы сами не знаем. Поэтому вместо того, чтобы запутать вас множеством полуготовых малоизученных теорий, я хотел бы рассказать о предмете, исследованном весьма досконально. Я люблю эту область физики и считаю ее замечательной. Она называется квантовой электродинамикой, или, сокращенно, КЭД.

Основная задача моих лекций – как можно точнее описать странную теорию взаимодействия света и вещества или, точнее, взаимодействия света и электронов. Чтобы объяснить все, что я хочу, потребуется много времени. Но у нас впереди четыре лекции, так что я не буду торопиться, и мы во всем разберемся.

История физики состоит в синтезировании на основе множества явлений нескольких теорий. Например, с давних пор были известны тепловые, световые, звуковые явления, движение и гравитация. Однако после того как сэр Исаак Ньютон объяснил законы движения, оказалось, что некоторые из этих на первый взгляд не связанных вещей – разные стороны одного и того же явления. Например, звуковые явления – это не что иное, как движение атомов воздуха. Так что звук перестали считать чем-то отдельным от движения. Обнаружилось также, что и тепловые явления легко объясняются законами движения. Таким образом, огромные разделы физики сливались в более простую теорию. С другой стороны, гравитацию не удавалось объяснить законами движения, и даже сегодня она стоит обособленно от всех прочих теорий. Гравитацию пока нельзя объяснить никакими другими явлениями.

За синтезом явлений движения, тепла и звука последовало открытие целого ряда явлений, которые мы называем электрическими и магнитными. В 1873 г. Джеймс Кларк Максвелл объединил их со световыми и оптическими явлениями и создал единую теорию, в которой свет рассматривается как электромагнитная волна. Итак, на этой стадии существовали законы движения, законы электромагнетизма и законы гравитации.

Примерно в 1900 г. была создана теория, объясняющая, что такое вещество. Она получила название электронной теории вещества и гласила, что внутри атомов находятся маленькие заряженные частицы. Развитие этой теории привело к пониманию того, что электроны движутся вокруг тяжелых ядер.

Все попытки объяснить вращение электронов вокруг ядра законами механики – теми же, при помощи которых Ньютон вычислял движение Земли вокруг Солнца, – оказались неудачными. Ни одно предсказание не подтвердилось. (Между прочим, теория относительности, которую вы все считаете великой революцией в физике, разрабатывалась приблизительно в это же время. Но по сравнению с этим открытием – что законы движения Ньютона не годятся для атомов – теория относительности была всего лишь незначительным усовершенствованием.) Выработка новой системы взглядов, способной заменить законы Ньютона, заняла долгое время, так как все, что происходило на атомном уровне, казалось очень странным. Надо было расстаться со здравым смыслом, чтобы представить себе, что же происходит на атомном уровне. Наконец, в 1926 г. была разработана «бредовая» теория, объяснявшая «новый тип поведения» электронов в веществе. Она только казалась сумасшедшей. Ее назвали квантовой механикой. Слово «квантовая» относится к той странной особенности природы, которая противоречит здравому смыслу. Про эту особенность я и собираюсь вам рассказать.

Квантовая механика объяснила, кроме того, всевозможные частные проблемы, например, почему при соединении атома кислорода с двумя атомами водорода получается вода и т. д. Таким образом, квантовая механика легла в основу теории химии. Так что фундаментальная теоретическая химия – это на самом деле физика.

Квантовая механика была замечательным достижением, так как смогла объяснить всю химию и различные свойства веществ. Но по-прежнему оставалась нерешенной проблема взаимодействия света и вещества. То есть требовалось изменить теорию электричества и магнетизма Максвелла, чтобы привести ее в соответствие со вновь разработанными принципами квантовой механики. И вот, наконец, в 1929 г. рядом физиков была создана новая теория – квантовая теория взаимодействия света и вещества, получившая ужасное название «квантовая электродинамика».

К несчастью, у этой теории был серьезный недостаток. Если вы считали что-то приближенно, ответ получался разумным. Но если вы пытались посчитать более точно, оказывалось, что поправка, которая, казалось бы, должна быть незначительной (например, следующий член ряда), была в действительности большой и даже очень большой. В действительности она равнялась бесконечности. Так что получалось, что ничего нельзя посчитать с высокой точностью.

Кстати, все, что я вам сейчас рассказал, представляет собой пример того, что я называю «история физики глазами физика», – а она всегда неправильна. Я передаю вам весьма условный миф, который физики рассказывают своим студентам, а эти студенты – своим студентам, и все это совсем не обязательно имеет отношение к реальному историческому развитию, которого я в действительности не знаю!

Но продолжим нашу «историю». Используя теорию относительности, Поль Дирак разработал релятивистскую теорию электрона, которая не учитывала всех эффектов взаимодействия электрона со светом. Согласно теории Дирака электрон обладает магнитным моментом – как маленький магнитик, равным точно 1 в определенных единицах измерения. Затем примерно в 1948 г. экспериментаторы открыли, что действительная величина ближе к 1,00118 (с погрешностью около 3 в последней цифре). Поскольку, конечно, было известно, что электроны взаимодействуют со светом, ожидали небольшой поправки. Ожидали также, что эту поправку можно будет объяснить с точки зрения новой теории квантовой электродинамики. Но когда произвели вычисления, то вместо 1,00118 получили бесконечность – что, разумеется, противоречит опыту!

Проблема вычислений в квантовой электродинамике была решена Джулианом Швингером, Синьитиро Томонагой и мною примерно в 1948 г. Швингер первым посчитал поправку, используя некую хитрость. Его теоретическая оценка была равна приблизительно 1,00116. Она оказалась достаточно близка к экспериментальным данным и подтвердила правильность избранного нами пути. Наконец у нас появилась квантовая теория электричества и магнетизма, при помощи которой мы могли считать! Эту теорию я собираюсь вам описать.

Квантовая электродинамика существует уже свыше пятидесяти лет. Она многократно подвергалась все более и более тщательной проверке во все более разнообразных условиях. В настоящее время я могу с гордостью сказать, что между экспериментом и теорией нет существенных расхождений!

Эту теорию, можно сказать, прокрутили в центрифуге, и она выдержала испытание на прочность. Приведу несколько последних данных. Эксперименты дают для числа Дирака 1,00115965221 (с погрешностью около 4 в последнем знаке), а теория – 1,00115965246 (с примерно в пять раз большей погрешностью). Чтобы вы смогли оценить точность этих чисел, представьте себе, что вы измерили расстояние от Лос-Анджелеса до Нью-Йорка с точностью до толщины человеческого волоса. Вот с какой точностью была проверена квантовая электродинамика за последние пятьдесят лет – как теоретически, так и экспериментально. Между прочим, я привел вам только один пример. И многие другие величины, измеренные со сравнимой точностью, также очень хорошо согласуются с теорией. Теория проверялась в диапазоне расстояний от ста размеров земного шара до одной сотой атомного ядра. Я привожу эти числа, чтобы заставить вас поверить, что теория не так уж плоха! Впоследствии я расскажу, как делались эти вычисления.

Я хотел бы еще раз поразить вас огромным диапазоном описываемых квантовой электродинамикой явлений. Проще сказать иначе: теория описывает все явления физического мира, за исключением гравитации – того, что удерживает вас на ваших местах (на самом деле, я думаю, это сочетание гравитации и вежливости), – и радиоактивных явлений, которые состоят в переходах ядер с уровня на уровень. Итак, что у нас остается помимо гравитации и радиоактивности (более точно, ядерной физики)? Бензин, сгорающий в автомобильных двигателях, пена и пузыри, твердость соли или меди, упругость стали. Да и биологи пытаются при помощи химии понять как можно больше свойств живого, а, как я уже объяснял, теория, стоящая за химией, – это квантовая электродинамика.

Я должен внести некоторую ясность. Хоть я и говорю, что все явления физического мира можно объяснить этой теорией, но в действительности мы этого не знаем. Большинство известных нам явлений происходит с участием такого гигантского количества электронов, что проследить за ними не под силу нашему бедному рассудку. В подобных случаях мы можем использовать теорию, чтобы хоть приблизительно вычислить, что должно происходить. Примерно это и происходит на самом деле.

Но если мы поставим в лаборатории эксперимент всего с несколькими электронами в простых условиях, мы сможем с очень большой точностью рассчитать, что должно происходить, и провести очень точные измерения. В таких условиях квантовая электродинамика работает прекрасно.

Мы, физики, всегда стараемся проверить, все ли в порядке с теорией. Такова игра, потому что, если что-нибудь не так, становится интересно! Но до сих пор мы не нашли ничего неправильного в квантовой электродинамике. Поэтому я бы сказал, что это жемчужина физики и предмет нашей величайшей гордости.

Квантовая электродинамика является также прототипом новых теорий, которые пытаются объяснить ядерные явления – то, что происходит внутри атомных ядер. Если представить физический мир как театр, актерами в нем будут не только электроны, находящиеся вне ядер атомов, но и кварки, глюоны, и т. д. – десятки типов частиц внутри ядра. И хотя все эти «актеры» совершенно не похожи друг на друга, все они играют в определенном стиле – странном и необычном – в «квантовом стиле». В конце я расскажу вам немного про ядерные частицы. А сейчас, чтобы было проще, я буду рассказывать только про фотоны (частицы света) и электроны. Потому что тут важно, как именно они играют свои роли, а играют они их очень интересно.

Теперь, когда вы знаете, о чем я собираюсь рассказывать, возникает вопрос, сможете ли вы понять то, что я намерен рассказать. Каждый, кто приходит на научную лекцию, уверен, что ничего там не поймет, но если у лектора красивый галстук, то будет на что посмотреть. Но не в этом случае! (Фейнман не носит галстуков.)

То, о чем я собираюсь вам рассказывать, студенты-физики изучают на третьем или четвертом курсе – и вы думаете, что я собираюсь это объяснить так, чтобы вы все поняли? Нет, вы не сможете этого понять. Зачем же я буду докучать вам всем этим? Зачем вам сидеть и слушать все это, если вы все равно ничего не поймете? Моя задача – убедить вас не отворачиваться из-за того, что вы этого не понимаете. Дело в том, что мои студенты-физики тоже этого не понимают. Потому что я сам этого не понимаю. Никто не понимает.

Мне хотелось бы сказать несколько слов о понимании. Существует много причин, по которым вы можете не понимать, о чем говорит лектор. Одна из них – плохой язык. Лектор не может выразить то, что хочет, или начинает не с того конца – и его трудно понять. Это довольно простой случай, и я буду изо всех сил бороться со своим нью-йоркским акцентом.

Другая причина, особенно если лектор – физик, состоит в том, что он употребляет обычные слова в необычном значении. Физики часто используют обычные слова, например, «работа», или «действие», или «энергия», или даже, как вы увидите, «свет» – в необычном, специальном смысле. Так, говоря о «работе» в физике, я имею в виду одно, говоря о «работе» на улице – совсем другое. Во время лекции я могу употребить одно из таких слов, не замечая, что употребляю его необычным образом. Я буду стараться следить за собой – это моя обязанность, но такую ошибку легко совершить.

Следующая причина, по которой вы можете решить, что не понимаете, о чем я говорю, состоит в том, что, когда я буду описывать, как устроена Природа, вы не поймете, почему она так устроена. Но знаете, ведь этого никто не понимает. Я не могу объяснить, почему Природа ведет себя именно так, а не иначе.

Наконец, возможно и такое: я сообщаю вам нечто, а вы не можете в это поверить. Вы этого не принимаете. Вам это не нравится. Опускается завеса, и вы больше ничего не слушаете. Я буду рассказывать, как устроена Природа, если вам не понравится, как она устроена, это будет мешать вашему пониманию. Физики научились решать эту проблему: они поняли, что нравится им теория или нет – не важно. Важно другое – дает ли теория предсказания, которые согласуются с экспериментом. Тут не имеет значения, хороша ли теория с философской точки зрения, легка ли для понимания, безупречна ли с точки зрения здравого смысла. Квантовая электродинамика дает совершенно абсурдное с точки зрения здравого смысла описание Природы. И оно полностью соответствует эксперименту. Так что я надеюсь, что вы сможете принять Природу такой, как Она есть – абсурдной.

Я с удовольствием предвкушаю рассказ об этой абсурдности, потому что она, по-моему, восхитительна. Пожалуйста, не отворачивайтесь из-за того, что вы не можете поверить, что Природа устроена так странно. Выслушайте меня до конца, и я надеюсь, что, когда мы закончим, вы разделите мое восхищение.

Как я буду объяснять вам вещи, о которых не рассказываю своим студентам до третьего курса? Позвольте провести такую аналогию. Индейцев майя интересовали восходы и заходы Венеры. Им было очень интересно знать, когда она появляется как утренняя звезда, а когда – как вечерняя. После многолетних наблюдений они заметили, что пять циклов Венеры почти в точности равны восьми 365-дневным календарным годам (они знали, что астрономический год отличается от календарного и учитывали это в своих расчетах). Чтобы производить вычисления, майя изобрели систему черточек и точек, изображающих числа (включая нуль), и вывели правила, по которым рассчитывали и предсказывали не только восходы и заходы Венеры, но и другие небесные явления, например лунные затмения.

В те времена лишь немногие жрецы майя умели производить столь сложные вычисления. Теперь представим себе, что мы бы спросили одного из них, как сделать всего одно действие из сложного процесса предсказания следующего утреннего появления Венеры – как вычесть одно число из другого. И предположим, что в отличие от нынешнего времени мы не ходили в школу и не умеем вычитать. Каким образом жрец объяснил бы нам, что такое вычитание?

Он мог бы или научить нас числам, изображаемым черточками и точками, и правилам вычитания, или рассказать нам, что он на самом деле делал: «Предположим, мы хотим вычесть 236 из 584. Прежде всего отсчитаем 584 боба и положим их в горшок. Затем вынем 236 бобов и отложим в сторону. Наконец, сосчитаем бобы, оставшиеся в горшке. Это число и будет результатом вычитания 236 из 584».

Вы можете сказать: «О, Кецалькоатль![1]1
  В мифологии индейцев Центральной Америки Кецалькоатль – одно из трех главных божеств, творец мира, создатель человека и культуры, бог утренней звезды, покровитель жречества и науки. – Примеч. пер.


[Закрыть]
Какая тоска –  считать бобы, класть в горшок, вынимать из горшка – ну и занятие!»

На что жрец ответил бы: «Именно поэтому у нас есть правила для черточек и точек. Правила сложные, но при помощи этих правил гораздо легче получить ответ, чем пересчитывая бобы. Но что касается ответа, то совершенно не важно, каким способом он получен: мы можем предсказать появление Венеры, считая бобы (этот способ медленный, но простой и понятный) или применяя сложные правила (это намного быстрее, но требует многих лет учебы в школе).

Понять, как устроено вычитание – если только вам самим не надо заниматься вычислениями – не так трудно. Из этого я исхожу. Я собираюсь объяснить вам, что именно физики делают, когда предсказывают поведение Природы, но я не стану учить вас приемам, необходимым тому, кто хочет сам эффективно этим заниматься. Вы обнаружите, что для получения каких-то разумных предсказаний при помощи квантовой электродинамики придется рисовать на листе бумаги огромное количество маленьких стрелочек. Наши студенты-физики семь лет (четыре года в университете и три года в аспирантуре) учатся делать это умело и профессионально. Таким образом мы перемахнем через целых семь лет физического образования. Я надеюсь, что, познакомившись с тем, что мы реально делаем, занимаясь квантовой электродинамикой, вы поймете ее лучше, чем некоторые студенты!

Продолжая нашу аналогию с майя, мы могли бы спросить жреца, почему пять циклов Венеры длятся приблизительно 2920 дней или восемь лет. Можно предложить множество теорий, отвечающих на это почему. Например: «20 – важное число в нашей системе счисления, а если разделить 2920 на 20, получится 146, т. е. на единицу больше, чем число, которое можно представить в виде суммы двух квадратов двумя различными способами» и так далее. Но такая теория, конечно, не будет иметь ни малейшего отношения к Венере. В настоящее время мы пришли к выводу о ненужности такого рода теорий. Итак, мы оставим в стороне вопрос о том, почему Природа устроена так, а не иначе; для объяснения этого хороших теорий нет.

До сих пор я пытался правильно настроить вас. Иначе ничего не получится. Теперь мы готовы. Вперед!

Начнем со света. Когда Ньютон начал изучать свет, он прежде всего обнаружил, что белый свет представляет собой смесь цветов. С помощью призмы он разложил белый свет на различные цвета, но когда он пропускал через другую призму свет одного цвета, например красный, оказалось, что его нельзя разложить дальше. Таким образом, Ньютон узнал, что белый свет представляет собой смесь разных цветов, каждый из которых является чистым, в том смысле, что его нельзя разложить дальше.

(На самом деле свет каждого цвета может быть расщеплен еще раз, по-другому, в соответствии с его так называемой «поляризацией». Эта особенность света не существенна для понимания характера квантовой электродинамики. Поэтому, ради простоты, я не буду ее рассматривать, вследствие чего мое описание теории не будет абсолютно полным. Это небольшое упрощение никоим образом не повредит настоящему пониманию того, о чем я буду рассказывать. И все же я обязательно должен упоминать все, что будет пропущено.)

Когда я говорю «свет» в этих лекциях, я имею в виду не просто свет, который мы можем видеть, от красного до синего. Оказывается, что видимый свет – это только часть длинной шкалы, аналогичной музыкальному звукоряду, в котором есть ноты и выше, и ниже, чем можно услышать. Световую шкалу можно описать при помощи чисел, которые называются частотами. По мере возрастания чисел свет меняется от красного к синему, фиолетовому и ультрафиолетовому. Мы не видим ультрафиолетового света, но он действует на фотопластинки. Это тоже свет – только число другое. (Не следует быть ограниченными: то, что мы можем непосредственно обнаружить своими органами чувств, глазами, это далеко не все, что есть на свете!) Если мы просто будем дальше менять это число, то попадем в рентгеновское излучение, гамма-излучение и так далее. Если же мы будем изменять число в другом направлении, то придем от синего к красному свету, инфракрасным (тепловым) волнам, затем к телевизионным волнам и к радиоволнам. Для меня все это – «свет». Я собираюсь использовать в большинстве моих примеров просто красный свет. Но квантовая электродинамика охватывает весь описанный мною диапазон и стоит за всеми этими различными явлениями.

Ньютон считал, что свет состоит из частиц – он называл их «корпускулы» – и он был прав (но рассуждения, которые приводили его к этому выводу, были ошибочными). Мы знаем, что свет состоит из частиц, потому что мы можем взять очень чувствительный прибор, щелкающий, когда на него падает свет, и если свет станет тускнеть, щелчки станут более редкими, но сохранят свою громкость. Таким образом, свет – это что-то наподобие дождевых капель. Каждая «капля» света называется фотоном, и если весь свет одного цвета, то все «капли» будут одного размера.

Человеческий глаз – это очень хороший прибор: требуется только пять-шесть фотонов, чтобы активировать нервную клетку и послать сигнал в мозг. Если бы мы продвинулись несколько дальше в своем развитии, и наше зрение было бы в десять раз чувствительнее, это обсуждение было бы не нужно. Все мы видели бы, что тусклый свет – это серия разделенных промежутками слабых вспышек равной интенсивности.

Вам может показаться удивительным: как это можно обнаружить отдельный фотон. Один из используемых для этого приборов называется фотоумножителем. Я коротко опишу, как он работает. Когда фотон ударяется о металлическую пластинку А (см. рис. 1), он выбивает электрон из одного из атомов пластинки. Свободный электрон притягивается к пластинке В (которая заряжена положительно) и, ударившись о нее с достаточной силой, высвобождает три или четыре электрона. Каждый из электронов, выбитых из пластинки В, притягивается к пластинке С (которая также заряжена положительно) и, столкнувшись с пластинкой С, высвобождает еще больше электронов. Этот процесс повторяется десять или двенадцать раз, пока миллиарды электронов, способные создать ощутимый электрический ток, не ударятся в последнюю пластинку L. Этот ток можно усилить обычным усилителем и пропустить через динамик, чтобы были слышны щелчки. Каждый раз, когда фотон данного цвета попадает в фотоумножитель, раздается щелчок одной и той же громкости.


Рис. 1. Фотоумножитель может обнаружить единичный фотон. Когда фотон ударяется о пластинку А, он выбивает оттуда электрон, который притягивается к положительно заряженной пластинке В и высвобождает еще больше электронов. Этот процесс продолжается до тех пор, пока миллиарды электронов не попадут на последнюю пластинку L и не образуют электрический ток, который усиливается обычным усилителем. Если к усилителю подключен динамик, то каждый раз, когда фотон данного цвета попадает на пластинку А, раздаются щелчки одинаковой громкости.


Если вы расставите вокруг много фотоумножителей и будете светить очень тусклым светом в разных направлениях, свет попадет в один из фотоумножителей и произведет щелчок полной громкости. Все или ничего: если один фотоумножитель срабатывает в данный момент, никакой другой уже не срабатывает (кроме того редкого случая, когда два фотона одновременно вылетают из источника света). Свет не распадается на «половинки частиц», которые летят в разные места.

Хочу особенно подчеркнуть, что свет существует именно в виде частиц – это очень важно знать. Это особенно важно знать тем из вас, кто ходил в школу, где, возможно, что-то говорили о волновой природе света. Я говорю вам, как он на самом деле ведет себя – как частицы.

Вы можете сказать, что это только фотоумножитель показывает, что свет состоит из частиц. Но нет, любой прибор, достаточно чувствительный, чтобы реагировать на слабый свет, всегда в конце концов обнаруживал то же самое: свет состоит из частиц.

Я буду исходить из того, что вы представляете себе свойства света в повседневных обстоятельствах – например, что свет распространяется прямолинейно, что преломляется, попадая в воду, что, когда свет отражается от зеркальной поверхности, угол падения равен углу отражения, что свет можно разложить на цвета, что очень красивые цвета видны на луже, когда в нее попадет немного масла, что линза фокусирует свет и т. д. Я буду использовать эти знакомые вам явления, чтобы проиллюстрировать действительно странное поведение света и постараюсь объяснить эти явления при помощи квантовой электродинамики. Я рассказал вам о фотоумножителе, чтобы проиллюстрировать основополагающий факт, который мог быть вам неизвестен, – что свет состоит из частиц, но теперь, надеюсь, вы знаете и это!

Полагаю, всем вам известно, что свет частично отражается от некоторых поверхностей, например от воды. Сколько романтических полотен посвящено отражению в озере лунного света (и сколько раз вы попадали в беду из-за лунного света, отражавшегося в озере!). Глядя на воду, вы можете увидеть (особенно днем) то, что находится в глубине, но видите также и отражение от поверхности. Другой пример – стекло. Если днем в комнате горит лампа, и вы смотрите в окно, то вам видно и то, что происходит снаружи, и тусклое отражение лампы в комнате. Таким образом, свет частично отражается от поверхности стекла.

Прежде чем продолжить, хочу обратить ваше внимание на некое упрощение, которое я сделаю вначале и которое будет исправлено позже: говоря о частичном отражении света от стекла, я буду предполагать, что свет отражается только от поверхности стекла. В действительности кусок стекла – это страшно сложное чудовище, в котором кишит огромное количество электронов. Когда фотон попадает в стекло, он взаимодействует с электронами во всем стекле, а не только с теми, что на поверхности. Фотон и электроны исполняют некий танец, конечный результат которого точно такой же, как если бы фотон ударялся только о поверхность. Так что позвольте мне пока сделать такое упрощение. А позже я покажу вам, что на самом деле происходит в стекле, и вы поймете, почему окончательный результат тот же.


Страницы книги >> 1 2 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации