Электронная библиотека » Роберт Зубрин » » онлайн чтение - страница 10


  • Текст добавлен: 9 июня 2017, 22:36


Автор книги: Роберт Зубрин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 33 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +

Глава 4
Добраться на Марс

Быстрые миссии и хорошие миссии

Планируя долгое путешествие, вы сначала продумаете маршрут и способ перемещения. То же справедливо и для путешествия на Марс.

Многие считают, мы не достигнем Марса, поскольку Красная планета находится так далеко от Земли. Пока нам не доступны принципиально более совершенные типы космических двигателей, утверждают скептики, дорога окажется слишком долгой. Давайте рассмотрим это возражение.

Марс действительно далеко. При самом удачном расположении, когда он располагается на линии Солнце – Земля – Марс прямо напротив Земли и ближе всего к ней (древние астрономы, с их геоцентрической картиной мира, описывали это положение как «противостояние», о нем подробнее будет сказано далее), расстояние составляет 56 миллионов километров, или 38 миллионов миль. При максимальном удалении от Земли, то есть когда Марс находится за Солнцем на линии Земля – Солнце – Марс (древние астрономы называли такую конфигурацию «соединение»), расстояние составляет около 400 миллионов километров (рис. 4.1). Сейчас не существует даже чертежей реактивных двигательных систем, которые могли бы напрямую доставить аппарат с Земли на Марс, когда планеты находятся в противостоянии. Дело обстоит так, потому что космический корабль, покидая Землю, обладает ее скоростью – около 30 километров в секунду, и, таким образом, космический корабль продолжит обращаться вокруг Солнца в том же направлении, что и Земля, пока не израсходует огромное количество топлива на изменение курса. В самом деле, как показал немецкий математик Вальтер Гоман в 1925 году, если в качестве топлива используется бензин, лучшее время для путешествия с Земли на Марс – соединение планет, когда они находятся на максимальном расстоянии друг от друга с противоположных сторон от Солнца (рис. 4.2). Это самый простой путь, поскольку корабль движется по эллипсу, который одним краем касается орбиты Земли, а другим – орбиты Марса, таким образом необходимое изменение курса становится минимальным. Чем больше отклонение от такого плана полета, тем больше работы придется совершить двигателям и тем дороже обойдется миссия. Но даже если мы решим израсходовать дополнительное топливо, чтобы «срезать углы» и отклониться от полноценной траектории Гомана, нам скорее всего придется преодолеть дугу по меньшей мере в 400 миллионов километров, чтобы добраться с Земли на Марс. Четыреста миллионов километров. Это очень много. Для сравнения, Луна от Земли «всего» в 400000 километров. Таким образом, чтобы добраться до Марса, придется преодолеть расстояние в тысячу раз больше, чем пролетели в свое время астронавты миссии «Аполлон» по пути на Луну. На путь в одну сторону у корабля «Аполлон» ушло три дня. Значит ли это, что до Марса лететь 3000 дней, то есть восемь лет?

К счастью, нет. Астронавты миссии «Аполлон» летели к Луне со средней скоростью около 1,5 километра в секунду. Ограничение было установлено не технологией реактивного движения того времени, – третья ступень «Сатурна-5» могла разогнать «Аполлон» в два или даже три раза сильнее, – а выбранной траекторией полета. Астронавты миссии «Аполлон» могли мчаться к Луне со скоростью 4,5 километра в секунду и добраться туда в течение одного дня, но пришлось бы очень дорого заплатить: у них не было бы возможности остановиться. Из-за маленькой силы тяжести на Луне система ускорения космического корабля должна сработать так, чтобы аппарат вышел на орбиту Луны. Командный модуль «Аполлона» просто не смог бы снизить скорость аппарата, если бы он приближался к Луне быстрее, чем со скоростью 1,5 километра в секунду.


Рис. 4.1. Противостояние и соединение. В противостоянии Марс и Земля находятся по одну сторону от Солнца. В соединении Марс, если смотреть с Земли, находится за Солнцем


Рис. 4.2. Возможные траектории для полета на Марс: (А) орбита Гомана; (В) быстрая миссия во время соединения Земли и Марса; (С) миссия во время противостояния Земли и Марса


Марс же обладает существенной силой тяжести и атмосферой, которые могут поспособствовать торможению космического аппарата. Таким образом, если космический аппарат подлетит к Марсу на гораздо большей скорости, то все равно сможет выйти на его орбиту. Более важно, что корабль, покидающий Землю с гиперболической скоростью в 3 километра в секунду, не полетит с той же скоростью по Солнечной системе. Земля в этом случае играет роль быстро движущейся платформы, а поскольку она движется в одном направлении с аппаратом, он набирает дополнительную скорость в 30 километров в секунду, пока вращается с Землей вокруг Солнца. Итак, начальная скорость корабля составляет не 3 километра в секунду, а 33 километра в секунду, что более чем в двадцать раз превышает скорость командного модуля «Аполлона». (Этот эффект «подвижной платформы» нельзя использовать, чтобы облегчить путь до Луны, потому что Луна движется вокруг Солнца вместе с Землей.) По мере того как корабль покидает потенциальную яму Солнца и движется от орбиты Земли к орбите Марса, часть кинетической энергии, связанной с этой скоростью, преобразуется в потенциальную, и аппарат немного замедляется, но по-прежнему летит очень быстро. К счастью, Марс будет двигаться по своей орбите со скоростью 24 километра в секунду примерно в том же направлении, что и космический корабль. Когда тот достигнет орбиты Марса, его скорость относительно Красной планеты составит только около 3 километра в секунду (так как скорость его движения примерно 27 километров в секунду), и это достаточно медленно, чтобы можно было вывести аппарат на орбиту Марса. К тому времени, когда космический аппарат достигнет Красной планеты, он преодолеет расстояние в тысячу раз больше, чем астронавты миссии «Аполлон», но в среднем примерно в двадцать раз быстрее. Поделив тысячу на двадцать, мы получим время полета от Земли до Марса – 150 дней, в пятьдесят раз больше, чем трехдневное путешествие астронавтов миссии «Аполлон». Это и есть грубая оценка времени полета только в сторону Марса с использованием технологий реактивного движения эпохи программы «Аполлон», которые совпадают с современными. И это вполне хорошая оценка. Хотя на самом деле перелет по траектории Гомана занимает 258 дней. Сократить путешествие до 150 дней возможно, только если использовать дополнительное топливо.

Но добраться до Марса – это полдела, еще нужно вернуться назад. Земля и Марс находятся в непрерывном движении вокруг Солнца, и поскольку они движутся с разными скоростями, то постоянно смещаются друг относительно друга. Поскольку для запуска и возвращения миссии подходят только конкретные взаимные положения Земли и Марса, выбранная траектория не только определяет, как долго вам придется путешествовать, она также задает время, когда можно стартовать с планеты. Это сильно усложняет формирование плана миссии, но в итоге, по сути, у нас остается два варианта пилотируемой миссии на Марс, которая предусматривает возвращение на Землю. Эти два варианта известны как миссии класса соединений и противостояний. Типичные параметры обоих типов миссий приведены в табл. 4.1.

Одним из примеров миссии в соединении будет «миссия с минимальными затратами энергии», которая реализуется двумя маневрами Гомана между Землей и Марсом. Такая миссия будет самой дешевой, но в один конец придется лететь 258 дней. Этот вариант подходит для груза, но, если на Марс полетят люди, желательно ускорить процесс. Оказывается, что для сокращения времени полета до 180 дней при старте в период соединения Земли и Марса понадобится не слишком много дополнительного топлива, именно этот вариант мы предлагаем для миссии «Марс Директ». Тем не менее, если принять такой план полета, придется задержаться на поверхности Марса на 550 дней, пока не откроется стартовое окно для возвращения на Землю. То есть общая продолжительность миссии составит около 910 дней.


Таблица 4.1. Продолжительность полета и пребывания на Марсе


Первая половина миссии в противостоянии – полет с Земли на Марс – осуществляется таким же образом, как в случае миссии в соединении. Но обратный путь будет радикально отличаться. По дороге домой придется потратить топливо для старта с Марса, но не для непосредственного возвращения на Землю, а для выхода в межпланетное пространство. Затем придется обогнуть Венеру, производя гравитационный маневр, который благодаря эффекту пращи поможет набрать скорость для полета к Земле. Такой способ позволит астронавтам поймать стартовое окно для возвращения на Землю вскоре после прибытия на Марс. И хотя на обратный путь потребуется значительно больше времени, чем на маневр Гомана, миссия в противостоянии займет всего приблизительно 600 дней.

Разработчики миссии НАСА «90-дневный отчет» делали ставку на запуск в период противостояния, потому что хотели минимизировать общую продолжительность полета. Другие следовали их примеру, полагая, что противостояние – единственное удобное время для полетов на Марс. Но есть ли смысл у такого подхода? В рамках миссии в противостоянии к реактивным двигателям предъявляются значительно более строгие требования: например, изменение скорости на 7,8 километра в секунду, чтобы ускорить или замедлить космический корабль. Для миссии в соединении это значение составляет всего 6,0 километра в секунду. (ΔV – это изменение скорости, необходимое для перемещения космического корабля с одной орбиты на другую.) Если использовать для вывода корабля с опорной марсианской орбиты на ведущую к Земле траекторию хранящееся в космосе топливо, стартовая масса будет примерно вдвое больше, чем для миссии в соединении. Однако на самом деле все еще сложнее. Требования на ΔV, приведенные в табл. 4.1, относятся только к ускоряющему маневру отправки с НОО Земли и с высокоэллиптической орбиты Марса. Предполагается, что космический аппарат способен произвести торможение на земной или марсианской орбите. Но космический корабль для миссии в противостоянии может оказаться настолько массивным, что торможение в атмосфере будет трудновыполнимо или вообще невозможно. Если это так, для замедления придется использовать ракетные двигатели, что увеличит ΔV для всей миссии, а это приведет к увеличению массы аппаратов и стоимости. Так мы приходим к выводу, что миссия в противостоянии практически невозможна до тех пор, пока не ловится ЯРД, у которого скорость истечения вдвое выше, чем у химического реактивного двигателя, или что-то лучшее. (По этой причине миссии в противостоянии поддерживают некоторые сторонники разработки ЯРД.)

Но для чего нам уменьшать длительность миссии? Обычно называют классические причины: важно минимизировать воздействие на экипаж невесомости и различных типов космического излучения. В рамках миссии в противостоянии экипажу действительно гораздо дольше придется находиться в невесомости, так как почти все время полета люди проведут в межпланетном пространстве. Кроме того, доза радиации, полученная за единицу времени в межпланетном пространстве, примерно в четыре раза выше, чем на Марсе, где атмосфера и вещество поверхности обеспечивают существенную защиту (даже если не принимать дополнительные меры, такие как укрепление мешков с песком на крыше жилого модуля). Следовательно, доза радиации, полученная экипажем в миссии в противостоянии, скорее всего будет немного больше, чем во время миссии в соединении.

Несмотря на все сомнения по поводу радиации в полете на Марс, нужно понимать, что дозы, приведенные в табл. 4.1, особой угрозы не представляют. Если вдуматься, каждые 60 бэр радиации, полученные за длительный период времени, такой как многолетнее путешествие на Марс и назад, добавляют 1 % риска заболеть смертельной формой рака в будущем для женщины тридцати пяти лет, в то время как для тридцатипятилетнего мужчины аналогичная (по последствиям) доза составляет 80 бэр. Радиация – это не самый опасный фактор в пилотируемой марсианской миссии.

Таким образом, преимущества миссии в противостоянии иллюзорны, а вот недостатки реальны. Требования к реактивным двигателям для миссии в противостоянии возрастают, увеличивая массу аппарата и, следовательно, стоимость миссии. Сборка оборудования при такой огромной массе должна производиться на орбите, где невозможен полноценный контроль качества. Кроме того, масштабность и сложность такой сборки растут, тем самым увеличивая риск ошибок. Но и это еще не все. Для миссии в противостоянии потребуется больше топлива, чем для какой-либо другой, значит, двигатели будут работать дольше, что увеличивает риск их отказа из-за изношенности. Также растет время полета в один конец, значит, требуются более надежные системы жизнеобеспечения корабля (для миссии в соединении они должны гарантированно работать только 180 дней подряд; для миссии в противостоянии этот срок составляет 430 дней). Система жизнеобеспечения миссии в противостоянии также должна выдерживать перепады внешней температуры, вызванные тем, что по пути от Марса к Земле корабль пролетает мимо Венеры, где Солнце греет вдвое сильнее, чем у Земли. (Вот почему некоторые разработчики миссии в противостоянии говорят об этом маневре не «пролететь мимо Венеры», а «прожариться у Венеры».[20]20
  Здесь используется игра слов: «flyby» в переводе на русский – «пролет», a «fryby» можно перевести как «поджаривание». – Прим. пер.


[Закрыть]
) Наконец, когда корабль достигнет Земли, он войдет в атмосферу Земли намного жестче, чем более легкий космический аппарат для миссии в соединении. Возрастают силы, действующие на спускающийся корабль и экипаж при замедлении, а также увеличивается риск того, что в случае неудачного входа в атмосферу космический аппарат либо сгорит, либо оттолкнется от атмосферы, оставив экипаж в бездействии в межпланетном пространстве.

Но даже на фоне всех этих изъянов один недостаток выглядит особенно огромным и абсурдным: миссия в противостоянии даст практически нулевой результат. После шести месяцев пути длиной в 400 миллионов километров космический аппарат и экипаж проведут на Марсе всего тридцать дней. Проведя всего лишь месяц на орбите Марса, экипаж может надеяться в лучшем случае пробыть на поверхности две недели перед возвращением на Землю. А если погода на Марсе будет плохой, астронавты могут вообще не начать высадку. Вся миссия может оказаться бесполезной (вспомните, что «Маринер-9» после прибытия к Марсу вынужден был четыре месяца пережидать пылевую бурю). Я сравниваю план миссии в противостоянии с семейной рождественской поездкой на Гавайи: десять дней придется провести в пути, перелетая из одного аэропорта в другой, и еще половину дня – на пляже, если повезет с погодой. Проще говоря, план миссии в противостоянии – это просто глупая затея. Он донельзя увеличивает затраты и риск и сводит к минимуму научную результативность. Этот вариант поддерживают лишь те, кто хотел бы представить пилотируемый полет на Марс как несбыточную мечту, или те, кто пытается усложнить миссию в надежде получить финансирование для разработки новых реактивных двигательных систем. Те, кто действительно хочет достичь Марса, вообще не рассматривают всерьез миссии в противостоянии.

А вот миссии в соединении дают нам куда больше простора для выбора наиболее разумного варианта. План минимальных энергозатрат – самый дешевый, но план быстрого полета приводит к большей результативности, так как большая часть общего времени миссии будет потрачена на исследование Марса, а меньшая – на дорогу. Полет на Марс по короткой траектории в соединении резко уменьшает время, проведенное экипажем в невесомости, тем самым урезая возможные дозы радиации, и сводит к минимуму требования к надежности системы жизнеобеспечения на корабле. При этом, поскольку не предполагается, что миссия с минимальными энергозатратами, будет быстрой, корабль для нее можно сделать более тяжелым, с большим количеством резервных версий для различных критически важных для миссии систем: двигательной, управления и жизнеобеспечения. И если космический корабль для миссии с минимальными энергозатратами должен быть более надежным, чем для быстрой миссии, то сделать его таким поможет запас массы. (Космический корабль для миссии в противостоянии, который должен быть самым надежным, будет иметь наименьший запас массы, чтобы обеспечить надежность подсистем корабля и возможность их резервного дублирования.)

В данном случае нужно найти разумный компромисс между скоростью космического аппарата и возможностью резервного дублирования его ключевых систем. Но есть и дополнительное соображение. При определенных скоростях старта можно полететь на Марс по траектории, которая доставит корабль прямо назад, на Землю, если экипаж решит не лететь (или по какой-то причине не сможет лететь) вперед, чтобы выполнить маневр орбитального захвата на Марсе. Такие траектории известны как траектории свободного возвращения. Если система реактивных двигателей корабля полностью выйдет из строя во время полета с Земли на Марс или если миссию необходимо будет прервать по любой другой причине, то движение по таким траекториям позволит экипажу благополучно вернуться домой точно так же, как произошло в почти катастрофической миссии «Аполлон-13», где использовали траекторию свободного возвращения, чтобы добраться до Луны. Безопасность вылета к Марсу по такой траектории настолько очевидна, что вряд ли стоит рассматривать траектории несвободного возвращения для участка пути Марс – Земля, которые помогут в лучшем случае сэкономить тридцать дней. В таблице 4.2 мы перечисляем характеристики траекторий свободного возвращения для Марса. При скорости старта 3,34 километра в секунду и почти минимальной энергии (вариант А) полет до Марса занимает 250 дней, а полет с Марса на Землю займет три года (то есть два полуторагодичных орбитальных периода), что отлично подходит для грузового рейса, но не слишком хорошо – для пилотируемого полета. При скорости старта 5,08 километра в секунду (вариант В) сокращается транзит до Марса до 180 дней, а время полета по траектории свободного возвращения – до двух лет. Это явно лучший вариант для пилотируемой миссии. Во-первых, полет на Марс по траекториям свободного возвращения (варианты С и D) с большими затратами энергии приведет к гораздо большим затратам ракетного топлива в обмен на небольшое уменьшение времени полета. Во-вторых, облетать Марс придется делая большую петлю, а это приведет к тому, что экипаж потратит больше времени, чтобы добраться до дома, если придется, прибегнуть к свободному возвращению. В дополнение к этому высокоэнергетические варианты приведут к тому, что скорость аппарата при входе в марсианскую атмосферу будет слишком велика для безопасного торможения.

Возможность обеспечить свободное возвращение на Землю не является ключевым фактором в выборе траектории полета с Марса на Землю. Тем не менее уменьшение времени полета снижает шансы вернуться, если скорость старта превышает 4 километра в секунду. Чтобы двигаться намного быстрее, пришлось бы просто отказаться от части полезной нагрузки корабля и, таким образом, от критически важной дублированности его систем, при этом время полета снизилось бы почти незначительно.

Итак, мы выяснили, что наиболее удобными траекториями между Землей и Марсом во время пилотируемой марсианской миссии являются те, которые позволяют покинуть Землю со стартовой скоростью 5 километров в секунду (и не более) и покинуть Марс со стартовой скоростью около 4 километра в секунду. Для беспилотной грузовой миссии наиболее удобными будут траектории Гомана или вариант А с близкими к минимальным затратами энергии и стартовой скоростью 3,3 километра в секунду. И что же в итоге? Все это легко осуществить с использованием современных химических реактивных двигателей. От автора: ΔV, необходимое для миссии, и стартовая скорость миссии связаны, но это не одно и то же. Для интересующихся математические соотношения, связывающие их друг с другом, с удельным импульсом ракеты и массой миссии, приводятся в техническом разделе в конце этой главы.


Таблица 4.2. Траектории свободного возвращения между Землей и Марсом


Кто полетит?

После того как мы определили нашу траекторию, мы должны выбрать экипаж: кто полетит? Сколько всего человек?

Выражение «в тесноте, да не в обиде» отражает общую тенденцию, связанную с численностью экипажа для продолжительной миссии на Марс. Однако, так как размер экипажа определяет массу всех обитаемых модулей, двигательных установок и ракет-носителей, важно сделать его минимальным. К тому же, сколько резервных систем и вариантов прерывания ни включал бы в себя план миссии, мы должны понимать, что отправляем людей в опасную неизвестность. С этой точки зрения, чем меньше их будет на борту первой миссии, тем лучше. Наконец, как бы ни хотелось отправить в длительное путешествие большую группу астронавтов, достаточно изучить историю освоения Земли, чтобы понять: провести длительную экспедицию может один человек, два человека или любое другое число людей.

Тогда вопрос стоит переформулировать: сколько людей действительно необходимо для пилотируемой марсианской миссии? Иными словами, в ком мы действительно нуждаемся? Если миссии суждено провалиться, несомненно, наиболее вероятной причиной неудачи будет отказ одной или более критически важных механических и электрических систем (двигатели, управление, жизнеобеспечение). В таком случае самым важным членом экипажа будет механик, человек, от которого зависят жизни его коллег. Если угодно, можно назвать его бортинженером (он должен быть инженером вроде тех, что работали на старинных железнодорожных локомотивах или пароходах), но миссии нужен высококлассный механик, способный распознать проблемы до их возникновения и исправить все, что может быть исправлено. Эта работа настолько важна, что, несмотря на все ограничения, я бы порекомендовал взять двоих людей, способных ее выполнять.

Следующая наиболее важная для миссии роль – это обязанности ученого, работающего в полевых условиях. Помните, что исследования Марса являются сутью и смыслом пилотируемой миссии к Красной планете. Следующие по важности работники после тех, кто обеспечит путь на Марс и возвращение домой, – те, без кого не достичь исследовательских целей миссии. Поскольку нулевой научный результат будет фактически означать провал миссии, я снова рекомендую взять двоих ученых. Одного геолога – он займется разведыванием ресурсов и изучением геологической истории Марса, и одного биолога, который сосредоточится на особенностях Марса, способных прояснить вопрос о жизни на планете. Биолог также будет проводить эксперименты, чтобы определить химическую и биологическую токсичность марсианских веществ для земных растений и животных, а также пригодность местных почв для тепличных сельскохозяйственных работ.

Вот, собственно, и все. Если экипаж состоит из двух механиков и двух «ученых-полевиков», есть возможность разделить его на две группы, в которых никто не останется в одиночестве (один будет выезжать в поле на ровере, скажем, в то время, как другие остаются в базовом лагере). В этом случае всегда найдется кому починить неисправное оборудование и кому сделать научную работу. В людях, которые выполняют только особые функции, такие как «командир миссии», «пилот» или «доктор», нет необходимости. Разумеется, в экипаже миссии будет нужен кто-то, выполняющий обязанности командира, и человек, который может быть его заместителем, потому что в опасных ситуациях необходим человек, способный быстро принимать решения за всех, чтобы не устраивать голосования и обсуждения. Но для человека, который занят исключительно контролем над работой других, места нет. Аналогичным образом, на борту не должно быть человека, который отвечает только за пилотирование. Космический аппарат сможет совершить посадку в полностью автоматическом режиме, и навыки пилотирования окажутся полезны, разве что если вдруг откажет запасная система автоматизированного управления полетом – а это всего несколько минут за два с половиной года проведения миссии. Но в крайнем случае один или несколько членов экипажа могут пройти дополнительную подготовку – гораздо проще обучить пилотированию геолога, чем обучить пилота геологии. Наконец, врача на корабле не будет как такового. Великий норвежский исследователь Руаль Амундсен всегда отказывался брать врачей в свои экспедиции, заметив, что их присутствие пагубно сказывалось на моральном состоянии коллектива и что с подавляющим большинством медицинских проблем, которые возникают в экспедициях, опытные путешественники могут справиться сами. И если говорить честно, отбросив официоз, почти все космонавты ненавидят космических врачей. Вы бы на их месте тоже ненавидели: просто представьте, что во время выполнения тяжелой работы кто-то постоянно тычет в вас иголками, прикрепляет провода и ставит градусники. Всех членов экипажа обучат оказанию первой помощи, на борту работой терапевта займутся экспертные системы, а также можно будет получить медицинскую консультацию с Земли для диагностики легко излечимых заболеваний (ушных инфекций и тому подобного). Достаточно, чтобы среди членов экипажа был человек с опытом работы терапевтом или подготовкой фельдшера, а на борту имелся фельдшерский набор и запас антибиотиков широкого спектра действия. На роль такого человека, разумеется, хорошо подошел бы биолог. А вот иметь на борту первоклассного врача, который будет проводить свое время, читая медицинские статьи и оттачивая навыки по практической хирургии с использованием шлема виртуальной реальности, или хуже, мотая нервы коллегам углубленными обследованиями, – явное излишество.

Подводя итог в духе «Звездного пути», в пилотируемой миссии на Марс нужны два Скотти и два Спока. Капитан Кирк, Суду или Маккой не нужны, и что еще более важно, не придется обеспечивать их спальными местами и едой.

Мы можем достичь целей миссии с экипажем из четырех человек.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации