Автор книги: Сергей Парновский
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]
Космологи используют выражение «стандартная космологическая модель» для названия модели, которая наиболее адекватно описывает эволюцию нашей Вселенной. Но в разное время они подразумевали при этом разные модели. Полвека назад это были три модели Фридмана с некоторыми дополнительными деталями, разработанными Георгием Гамовым и его коллегами. Теперь под этими словами мы подразумеваем расширяющуюся Вселенную с темной энергией, или космологической постоянной, и практически пылевидной материей, которая включает в себя как обычное вещество, так и какой-то таинственный вид материи, называемый темной материей. В главе 4 мы опишем все, что сейчас известно о темной материи.
Современная стандартная космологическая модель названа ΛCDM-модель (произносится лямбда-си-ди-эм). При этом греческая буква Λ означает космологическую постоянную, а аббревиатура CDM обозначает cold dark matter, т. е. холодную темную материю. Вместе эти две загадочные компоненты обеспечивают 95 % содержания нашей Вселенной. Эта модель объясняет все известные эмпирические факты и не имеет никаких противоречий с астрономическими данными. Маловероятно, что эта модель принципиально изменится, и похоже, что дальнейший прогресс в технике наблюдений будет только обеспечивать все более точные значения ее параметров.
Мы предлагаем подробное описание этой модели в приложении А, потому что оно довольно длинно и содержит много математических выкладок, хотя и относительно простых. Оно содержит все формулы и оценки величин. Здесь же мы дадим краткое изложение результатов моделирования, используя новейшие наблюдательные оценки космологических параметров.
Вселенная родилась во время Большого взрыва 13,8×109 лет назад и расширяется до сих пор. Расширяться она будет вечно, или все закончится так называемым Большим разрывом (Big Rip), про который мы расскажем в разделе 5.2. Вселенная расширяется с ускорением с момента, когда ее масштабный фактор составлял 0,608 от его текущего значения, что соответствует красному смещению z = 0,645. Этот момент соответствует времени приблизительно 7,6×109 лет после Большого взрыва, или 6,2×109 лет тому назад.
На рис. 2.9 показано, как менялись с течением времени относительный масштабный фактор и постоянная Хаббла. Обратите внимание, что постоянная Хаббла бесконечна сразу после Большого взрыва, но, в отличие от плоской или открытой модели Фридмана, со временем стремится к постоянному ненулевому значению.
На рис. 2.10 показана зависимость красного смещения от времени. Как и постоянная Хаббла, красное смещение бесконечно при Большом взрыве.
На рис. 2.11 показано, как изменились с течением времени параметры плотности материи и темной энергии для плоской ΛCDM-модели. Так как их сумма в данном случае равна единице, этот график можно также рассматривать как изменение со временем массовой доли двух главных компонентов Вселенной.
Вопрос: В какую сторону изменяется постоянная Хаббла?
Ответ: Если бы не существовало космологической постоянной, то постоянная Хаббла непрерывно бы уменьшалась, как это получается из решения Фридмана. Если бы во Вселенной не было материи, но существовала космологическая постоянная, то, как следует из решения, полученного Виллемом де Ситтером в 1917 г., постоянная Хаббла была бы действительно постоянной. В реальной Вселенной, где присутствуют и материя, и космологическая постоянная, постоянная Хаббла уменьшается, но не достигнет нулевого значения.
Вопрос: Если галактики разбегаются из-за расширения Вселенной, почему мы не наблюдаем расширение пространства в пределах Солнечной системы?
Ответ: Приведем простую оценку. Критическая плотность Вселенной соответствует концентрации порядка 5 нуклон/м³, в то время как концентрация самого разреженного объекта Солнечной системы – солнечного ветра – на орбите Земли составляет в среднем около 8 нуклон/см³, что более чем в миллион раз больше. А между тем эта плотность является сверхглубоким вакуумом, недостижимым в лабораторных условиях. Средняя же плотность вещества в Солнечной системе на много порядков больше. Понятно, что влияние космологического расширения просто теряется на фоне колоссальных сил взаимного притяжения, действующих в Солнечной системе. Строго говоря, согласно оценкам, сделанным в 1998 г. Фредом Куперстоком с коллегами, влияние космологического расширения привело к тому, что за время существования Солнечной системы радиус орбиты Земли увеличился на 10–24 долю, т. е. на 150 фм, что меньше размера атома водорода.
2.9. Расстояния в астрономии
Значение параметра Хаббла, полученное самим Хабблом, составляло около 500 (км/с)/Мпк, что примерно в 7 раз больше современной оценки. Ошибка была связана с неправильным определением расстояний до галактик. Дело в том, что расстояния в астрономии определяются довольно сложным образом. Нередко мы куда точнее знаем отношение расстояний до объектов, чем их абсолютные значения. Так, из закона Кеплера можно с большой точностью получить отношение диаметров орбит разных планет Солнечной системы. Однако для определения абсолютных величин нужно измерить расстояние до Солнца хотя бы одной планеты, например Земли. Поэтому астрономы ввели специальную единицу измерения расстояния, называемую астрономической единицей (а.е.), которая равна среднему расстоянию от Земли до Солнца. Через нее выражается парсек. В то время астрономы знали диаметры орбит планет Солнечной системы в астрономических единицах с куда большей точностью, чем значение самой астрономической единицы. Уточняя значение астрономической единицы (современная оценка 1 а.е. = 149 97 870,7 км), астрономы одновременно уточняли и абсолютные расстояния. Для внегалактической астрономии роль «линейки» играли расстояния, полученные по периодам изменения особого класса переменных звезд, называемых цефеидами. Именно они и использовались Хабблом для определения расстояния до галактик. Однако в то время было неизвестно, что существует несколько разных типов цефеид, причем цефеиды, наблюдавшиеся в других галактиках, были другого типа, чем те, которые использовались для определения масштаба расстояний в нашей Галактике. В результате оценки возраста Вселенной, основанные на значении постоянной Хаббла, полученной им самим, составляли всего пару миллиардов лет, что было меньше возраста некоторых геологических пород на Земле.
Отметим, что не стоит применять закон Хаббла v = Hr для объектов, находящихся на больших расстояниях. Дело в том, что из-за кривизны пространства и ряда других факторов понятия расстояния и скорости становятся не столь очевидными, как в плоском пространстве. В частности, вводятся несколько видов расстояний, которые мало отличаются для близких объектов, но могут существенно отличаться для далеких. А разным расстояниям соответствуют разные скорости.
Точно ли выполняется закон Хаббла? Конечно же, нет. За примерами далеко ходить не нужно: ближайшая к нам галактика Андромеды движется по направлению к нам, т. е. ее лучевая скорость отрицательна. Закон Хаббла получен статистически и описывает только ту часть скорости, которая связана с расширением Вселенной. Кроме нее галактики участвуют в нехаббловских движениях, связанных с неоднородностями плотности, проще говоря – падают на области с повышенной плотностью. Такие области в астрономии называются аттракторами. Ближайшим к нам аттрактором является скопление галактик в созвездии Девы, дальше – так называемый Великий аттрактор (это название он получил, когда о других аттракторах еще не знали), расположенный в созвездиях Гидры, Кентавра, Павлина, Индейца и Телескопа, в противоположном от него направлении – сверхскопление Персея – Рыб, и еще дальше, позади Великого аттрактора, – сверхскопление Шепли, находящееся в созвездии Кентавра на расстоянии около 650 млн св. лет. Безусловно, аттракторы имеются и на бо́льших расстояниях. Существуют и области пониженной плотности – пустоты или войды. Они приводят к появлению нехаббловских движений по направлению от войдов.
Разделить хаббловскую и нехаббловскую компоненты скорости очень сложно, особенно для близких галактик. К счастью, скорости нехаббловских движений обычно не очень велики и для галактик на расстоянии 100–200 Мпк закон Хаббла выполняется с большой точностью. С его помощью определяют один из видов расстояния (их довольно много) до далеких галактик, которое называется расстоянием по красному смещению.
Но куда чаще астрономы просто приводят красное смещение, как величину, непосредственно измеряемую при наблюдениях, и не указывают рассчитанное по нему расстояние до галактик.
Красное смещение дает одно из двух дополняющих друг друга современных решений парадокса Ольберса. Свет от далеких галактик испытывает красное смещение, в результате чего падает его энергия и спектр смещается в невидимую для человеческого глаза область длин волн.
Глава 3
Ранняя Вселенная
3.1. Большой взрыв
Итак, к 1930-м гг. стало понятно – Вселенная расширяется, что наглядно проявляется в разбегании галактик. Но ответ на вопрос о том, имела ли Вселенная начало, называемое также Большим взрывом, был не столь очевиден, как кажется на первый взгляд. Концепция Большого взрыва была предложена Леметром в 1931 г., а сам термин был предложен Фредом Хойлом в 1949 г.[37]37
Фред Хойл был противником идеи о том, что Вселенная имела начало, и термин «Большой взрыв» был первоначально использован в уничижительном контексте.
[Закрыть]
Дело в том, что значение постоянной Хаббла в прошлом могло значительно отличаться от современного. Если бы оно было больше, это означало, что оценка времени существования Вселенной является завышенной и Большой взрыв неизбежно должен был быть. С подобной ситуацией мы имеем дело во всех типах модели Фридмана, в которых постоянная Хаббла падает по мере увеличения возраста Вселенной, отсчитываемого от Большого взрыва. Закон, по которому меняется постоянная Хаббла, зависит от того, чем преимущественно заполнена Вселенная. Если Вселенная заполнена так называемой «холодной» материей, т. е. частицами и объектами, скорости которых существенно меньше скорости света, например звездами, пылью, межзвездным газом, то падение постоянной Хаббла происходит по одному закону. Если материя представлена в виде частиц, движущихся со скоростью, равной (например, фотонов – квантов электромагнитного излучения) или близкой (например, нейтрино, которое, по современным представлениям, имеет малую ненулевую массу покоя) к скорости света, то падение происходит быстрее. В любом случае в момент Большого взрыва постоянная Хаббла для модели Фридмана бесконечно велика.
Но если постоянная Хаббла была меньше, чем в настоящее время, можно допустить ситуацию, когда галактики разлетались до современного состояния в течение бесконечного промежутка времени, т. е. в таких моделях Вселенная существовала всегда и Большого взрыва просто не было. Примером таких моделей является решение де Ситтера, в котором Вселенная пуста, но существует космологическая постоянная. В этом случае размеры Вселенной экспоненциально возрастают со временем, т. е. раньше она была существенно меньше. В этой модели нет Большого взрыва. Однако против моделей без Большого взрыва существует, казалось бы, убедительный аргумент. Раз галактики разбегаются, то в прошлом они располагались ближе друг к другу. Отправляясь во все более далекое прошлое, мы получаем Вселенную с очень большой плотностью материи.
Тем не менее астрономы придумали модель вечно расширяющейся Вселенной, в которой в прошлом мы наблюдали бы точно такую же картину, как и сейчас. Эта удивительная модель, предложенная Фредом Хойлом и Джаянтом Нарликаром, называется стационарной и имеет черты как статической модели Эйнштейна (ничего не меняется со временем), так и динамической модели Фридмана (Вселенная расширяется). Создатели этой теории выдвинули так называемый «идеальный космологический принцип», или абсолютный принцип Коперника. Обычный принцип Коперника утверждает, что свойства Вселенной одинаковы во всех точках пространства. Этот принцип возник из осознания того, что Земля не является центром Вселенной и ее расположение не является чем-то особенным. «Идеальный» космологический принцип добавляет к этому независимость от времени. Стремление к идеальному миру в сочетании с отсутствием в то время прямых доказательств существования Большого взрыва привело к появлению таких странных идей.
Для того чтобы при расширении Вселенной плотность не падала, понадобилось предположить, что материя возникает из ничего равномерно во всей Вселенной, причем с такой скоростью, чтобы компенсировать разрежение, вызванное расширением. Эта теория непрерывного творения материи может быть описана также в более завуалированном виде. Предположим, что во Вселенной существует неизвестное пока науке поле, названное C-полем (от английского слова creation – создание), которое, с одной стороны, обеспечивает расширение Вселенной, а с другой – может превращаться в обычную материю, обеспечивая ее непрерывную генерацию. Расчеты показали, что, согласно этой теории, в 1 м³ должен рождаться один атом водорода за миллиард лет.
Основополагающие статьи о стационарной космологии были опубликованы Германом Бонди, Томасом Голдом и Фредом Хойлом в 1948 г. Как ни странно, эта теория до сих пор имеет некоторое число сторонников во главе с Нарликаром, одним из ее авторов, которые пытаются объяснить современные космологические данные, используя стационарную модель в XXI в. Подробный рассказ о развитии этой теории можно найти в обзоре Хельги Краг [Kragh, 2012]. Следует отметить, что существует весьма небольшое число ученых, отрицающих Большой взрыв.
Теория Большого взрыва была детально проработана. Это сделал уроженец Одессы Георгий (Джордж) Гамов. Советский физик, член-корреспондент Академии наук СССР, он со своей семьей бежал на Запад, где продолжал заниматься физикой. В рамках теории Большого взрыва он подробно рассмотрел все стадии, которые прошла Вселенная на раннем этапе своего существования. Теория отвечала на вопрос, какие частицы и в каком количестве заполняли Вселенную в каждый момент времени, как менялась ее температура, как происходил нуклеосинтез, т. е. образование ядер более тяжелых элементов из более легких элементов.
Это была первая космологическая модель, которая не ограничивалась решением уравнения Эйнштейна. Она использует космологическое решение Фридмана, но особое внимание уделялось тому, чем была заполнена Вселенная на разных стадиях своего развития и какие процессы при этом происходили. Содержимое Вселенной влияло на скорость ее расширения, так что и расширение Вселенной, и эволюцию заполняющей ее материи надо было исследовать одновременно.
Все предсказания теории Гамова, которые можно было проверить по астрономическим данным, подтверждались, а открытие реликтового излучения стало решающим аргументом в пользу ее правоты. С тех пор в продолжение десятилетий космологи называли теорию Гамова стандартной космологической моделью, поскольку она лежала в основе всех космологических расчетов. Отдельные детали уточнялись, но существенной переработке не подвергались. По справедливости, Гамов должен был бы разделить Нобелевскую премию по физике 1978 г. с Пензиасом и Уилсоном, но Гамов умер в 1968 г., а Нобелевскую премию нельзя получить посмертно[38]38
Заметим, что кроме стандартной космологической модели Гамов получил и другие результаты, достойные Нобелевской премии, например создал теорию альфа-распада ядер. Трудно сказать, счел ли Нобелевский комитет этот результат недостаточно важным для Нобелевской премии или не захотел ссориться с Советским Союзом, который был бы явно не в восторге, если бы премию вручили невозвращенцу. Любопытно, что теоретически он мог также претендовать и на Нобелевскую премию по физиологии и медицине за объяснение принципов записи информации в ДНК триплетами нуклеотидов.
[Закрыть].
Но вернемся к стандартной космологической модели, которая сама по себе, безусловно, заслуживала Нобелевской премии. Популярное изложение выводов этой модели можно найти во многих книгах, в том числе научно-популярных. Бестселлером в свое время стала книга лауреата Нобелевской премии Стивена Вайнберга «Первые три минуты» [Вайнберг, 1981], в которой описаны первые три минуты существования нашей Вселенной, согласно теории Гамова.
Вопрос: Где именно произошел Большой взрыв?
Ответ: Нередко этот вопрос можно услышать даже от профессиональных физиков. Ответ на него прост: выберите любую точку по своему вкусу, например кончик вашего носа. Именно в этой точке произошел Большой взрыв. Впрочем, любая другая точка нашей Вселенной ничуть не хуже, поскольку в ней также произошел Большой взрыв, причем в то же самое время. История любой точки, уходящая в прошлое (еще ее называют мировой линией), рано или поздно упрется в Большой взрыв. Причиной этого вопроса, по-видимому, служат кадры научно-популярных фильмов, которые нередко иллюстрируют Большой взрыв, показанный снаружи. В реальной Вселенной Большой взрыв нельзя наблюдать снаружи, поскольку этого самого «снаружи» просто не существует. Если проводить аналогию со взрывом бомбы, то это не взрыв бомбы, наблюдаемый со стороны, а взрыв бомбы с точки зрения микробов, живущих внутри нее, хотя эта аналогия не совсем верна, поскольку бомба не является точечным объектом.
Вопрос: Применимы ли законы физики к описанию Большого взрыва?
Ответ: С точки зрения математики момент Большого взрыва является тем, что называется сингулярностью или особенностью. К Большому взрыву также применяют термин «космологическая сингулярность в прошлом». Вблизи такой сингулярности кривизна пространства-времени стремится к бесконечности.
Тут необходимо сделать небольшое отступление. Дело в том, что современная наука исходит из предположения, что повсюду в наблюдаемой части Вселенной законы физики одинаковы. Несмотря на постоянно проводимые проверки этого предположения, пока не возникло обоснованных сомнений в его справедливости. При этом слово «наблюдаемой» упомянуто не просто так, поскольку, согласно некоторым теориям, за космологическим горизонтом законы физики могут быть совершенно другими. Об этом будет подробно написано в конце этой главы.
Теперь вернемся к Большому взрыву. Современная наука не может описать состояние Вселенной сразу после него, поскольку соответствующие теории (например, квантовая гравитация) еще не созданы. Тем не менее мы надеемся, что существующие теории могут вполне удовлетворительно описать Вселенную, возраст которой существенно превышает планковскую единицу времени, приблизительно равную 10–42 с. Слова «мы надеемся» стоят здесь из-за того, что мы вряд ли когда-нибудь сможем наблюдать что-либо, относящееся к столь ранней стадии существования Вселенной.
Вопрос: Почему произошел Большой взрыв?
Ответ: Подобный вопрос легко задать, но на него трудно ответить. Большинство космологов считают, что Большой взрыв – результат квантовых эффектов, например квантовой флуктуации или квантового туннельного перехода.
Вопрос: Как гигантская Вселенная с множеством галактик могла образоваться в результате квантовой флуктуации?
Ответ: Начнем с удивительного факта, касающегося гигантской Вселенной с миллионами галактик. Известно, что атомное ядро имеет массу меньше, чем суммарная масса составляющих его протонов и нейтронов, что, собственно, и является причиной их существования. Это явление называется ядерным дефектом (еще говорят – дефицитом) массы. Масса в соответствии с формулой E = mc² уменьшается на энергию ядерных взаимодействий, деленную на квадрат скорости света. В нашей Вселенной этот эффект незначителен. Но в гравитационном поле существует свой, гравитационный, дефицит масс. Поэтому масса Вселенной равна массе составляющей ее материи минус гравитационный дефицит массы. Для замкнутой Вселенной полную массу запомнить очень просто: она равна нулю. Гравитационный дефект массы полностью компенсирует массу материи.
А образовать путем квантовой флуктуации объект с нулевой массой уже не кажется такой невозможной вещью.
Вопрос: Почему не образуются новые вселенные внутри нашей Вселенной?
Ответ: Это вовсе не факт. Существуют гипотезы о том, что новые вселенные рождаются постоянно. Возможно, что, пока вы читали это предложение, на расстоянии менее километра от вас образовалась новая вселенная. Но для внешнего наблюдателя эта вселенная схожа с экзотической элементарной частицей. Подобные частицы Моисей Марков называл фридмонами.
Вопрос: Что было до Большого взрыва?
Ответ: На этот вопрос современная наука не может дать никакого ответа. Если кто-то утверждает, что знает ответ, он, скорее всего, ошибается. Один из элегантных способов уйти от ответа на этот вопрос состоит в том, чтобы сказать, что время появилось вместе с нашей Вселенной и понятия «до Большого взрыва» просто не существует.
3.2. Реликтовое излучение: эхо Большого взрыва
Вопрос о том, был ли Большой взрыв, окончательно отпал после открытия реликтового излучения (космического микроволнового фонового излучения, реликта) Арно Пензиасом и Робертом Уилсоном в 1965 г. Это то излучение, которое было испущено в момент рекомбинации водородной плазмы. Это самое древнее явление, которое когда-либо наблюдало человечество.
Само существование реликтового излучения являлось убедительным доказательством того, что Большой взрыв действительно имел место. Кроме того, оно дало ответ еще на один вопрос. Это вопрос о том, как выглядела Вселенная сразу после Большого взрыва. Согласно наиболее распространенной гипотезе, Вселенная в момент своего рождения была очень горячей, и эта температура падала по мере ее расширения. Альтернативная точка зрения, предложенная Яковом Зельдовичем, основывалась на том, что Вселенная родилась холодной. В этом случае ее средняя температура никогда не превышала температуры ионизации атомов водорода, она никогда не была заполнена протонно-электронной плазмой, не было момента рекомбинации, и, соответственно, не было реликтового излучения. Открытие реликтового излучения расставило все точки над i. Вселенная не только родилась, но и родилась горячей или стала таковой за мельчайшую долю секунды.
Итак, на самых ранних этапах своего существования Вселенная была очень горячей, но температура во время ее расширения падала. Довольно быстро образовались протоны и альфа-частицы, которые являются также ядрами водорода и гелия. Вместе с электронами они существовали в виде высокотемпературной плазмы, которая поглощала свет и другое электромагнитное излучение Вселенной. Вселенная постепенно охлаждалась, и через примерно 380 000 лет после Большого взрыва ее температура достигла температуры ионизации водорода (3000 K). Замедлившиеся электроны объединились с замедлившимися протонами и альфа-частицами, образовав атомы водорода и гелия. Этот процесс называется рекомбинацией. Материя, заполняющая Вселенную, перешла из плазмы в газообразное состояние. Вселенная быстро стала прозрачной для света и с тех пор навсегда оставалась таковой.
Тепловое излучение того периода можно наблюдать непосредственно в виде реликта. Первоначально оно имело планковский спектр, т. е. спектр излучения абсолютно черного тела, нагретого до температуры около 3000 К. С этого времени Вселенная расширилась примерно в 1100 раз, а вместе с ней и длины волн этого излучения.
Образование звезд, галактик и квазаров сопровождалось повторным появлением плазмы, появившейся из-за их излучения. Эта так называемая реионизация произошла от 550 до 800 млн лет после Большого взрыва (z от 15 до 6,5) и оказала слабое влияние на спектр реликтового излучения.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?