Электронная библиотека » Сергей Ястребов » » онлайн чтение - страница 11


  • Текст добавлен: 31 мая 2018, 11:41


Автор книги: Сергей Ястребов


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 43 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Клеточные стенки и судьба Земли

Совершенно особый интерес для биологов представляют те полисахариды, которые входят в состав клеточных стенок. Из предыдущей главы мы уже знакомы с клеточными мембранами. Так вот, клеточная стенка – это совсем не то. Клеточной стенкой называется самостоятельная оболочка, находящаяся снаружи от мембраны и заключающая в себе всю клетку целиком. Такое расположение означает, что это, строго говоря, внеклеточная структура – наподобие домика или раковины. Обычно она жесткая и придает клетке постоянные очертания. Клеточная стенка может состоять из полисахаридов (у растений, грибов), из сложных полимеров, в состав которых входят углеводы и аминокислоты (у бактерий) или из белков (у архей). У некоторых организмов, например у животных, клеточных стенок нет вообще. Это делает клетки менее прочными, зато позволяет им легко менять форму.

Клеточные стенки растений – целлюлозные. Растительная клеточная стенка часто бывает гораздо толще клеточной мембраны. Если растение многоклеточное, то между клетками обычно есть плазмодесмы – проходящие сквозь отверстия в клеточных стенках межклеточные “мостики” (см. рис. 6.5А). Через плазмодесмы растительные клетки общаются между собой и обмениваются разными веществами.

Сухое дерево, так же как пробка и другие подобные материалы, представляет собой не что иное, как массу пустых клеточных стенок. Живых клеток там давно уже нет, но их стенки остаются – целлюлоза для этого достаточно прочна. Ее прочности хватает на то, чтобы древесина сохраняла свою структуру буквально тысячелетиями: самое старое деревянное здание мира – японский буддийский храм Хорю-дзи, построенный в VII веке, в эпоху Асука. Кроме того, из целлюлозы, когда-то входившей в растительные клеточные стенки, делают бумагу.

Между прочим, сам термин “клетка” (cell) когда-то ввел в науку английский физик Роберт Гук, который исследовал под микроскопом пробку и увидел в ней характерные маленькие полости. В данном случае это были не живые клетки, а именно пустые целлюлозные клеточные стенки, повторяющие их форму.

На самом деле растительная клеточная стенка вовсе не состоит исключительно из чистой целлюлозы. В нее еще обязательно входят короткие ветвящиеся полимеры, причем включающие не только глюкозу, но и другие моносахариды. Эти полимеры собирательно называются гемицеллюлозами (см. рис. 6.5Б). Есть там и некоторые структурные белки. Целлюлоза вместе с гемицеллюлозами и белками образует сложную объемную сеть, усиленную к тому же водородными связями (см. главу 2). Благо между длинными молекулами целлюлозы, в которых много гидроксильных групп, водородные связи возникают очень легко. Для клеточных стенок растений, а значит, и для древесины это важный источник прочности.



Ну а с точки зрения истории жизни на Земле самая интересная составляющая клеточной стенки растений – это лигнин. Очень своеобразное вещество, у которого нет никакой единой химической формулы. Строго говоря, его и самостоятельным веществом-то нельзя считать. Лигнин – это не углевод. Это сложный полимер, “сшитый” из нескольких разновидностей спиртов. У всех этих спиртов есть более-менее длинные углеводородные цепочки, включающие ароматические ядра (см. главу 1). И все они синтезируются из аминокислоты фенилаланина, которая превращается сначала в коричную кислоту – замечательное вещество, входящее в состав масла корицы, – а потом уже в разнообразные спирты, обычно имеющие две или три гидроксильные группы (см. рис. 6.5В). В лигнине эти спирты сшиваются между собой ковалентными связями в самых разных направлениях, буквально вдоль и поперек, так что получается запутанная сетка (см. рис. 6.5Г).

Образование лигнина – уникальный признак сосудистых растений, то есть папоротников, плаунов, хвощей, хвойных и цветковых. Это эволюционное “изобретение”, сделанное только после выхода растений на сушу, и то далеко не сразу. Дело в том, что лигнин благодаря своей особой структуре придает клеточным стенкам огромную механическую прочность. Он необходим, чтобы сделать ствол наземного растения высоким, вплоть до многометрового, и создать транспортную систему из микроскопических трубочек, качающую воду на всю эту высоту. А отсюда следует, что именно с “изобретением” биосинтеза лигнина связано одно из величайших событий, поменявших облик Земли, – появление лесов (см. главу 17).

Кроме того, появление лигнина сильно повлияло на глобальный, то есть общепланетный, круговорот углерода. Дело в том, что лигнин с его разнообразными мономерами и перепутанными химическими связями исключительно неподатлив к действию ферментов. Поэтому растительной тканью, в которой много лигнина, почти невозможно питаться. Из всех земных живых организмов эффективно разлагать лигнин “научились” только грибы, причем не все и не сразу{44}44
  Robinson J. M. Lignin, land plants, and fungi: biological evolution affecting Phanerozoic oxygen balance // Geology, 1990, V. 18, № 7, 607–610.


[Закрыть]
. Именно они и стали главными разрушителями стволов мертвых деревьев. До этого вся огромная биомасса лигнифицированной древесины просто захоранивалась как есть, создавая залежи каменного угля. В честь этих залежей получил название целый геологический период – каменноугольный, или карбон.

Карбоновые леса непрерывно вели фотосинтез и выделяли в атмосферу огромное, немыслимое ни в какие более ранние эпохи количество кислорода. Мы знаем, что свободный кислород (O2) нужен для дыхания, то есть для полного окисления питательных веществ. Таким питательным веществом могла бы служить и древесина погибших деревьев. Но в карбоновом периоде эффективные деструкторы еще не возникли, поэтому перерабатывать древесину было некому. Стволы деревьев просто захоранивались, и заключенный в них углерод уходил из экологического круговорота вовсе. А живые деревья тем временем продолжали выделять кислород, который накапливался в атмосфере. В результате атмосферная концентрация кислорода достигла уникальной в истории Земли цифры 35 %{45}45
  Beerling D. J. et al. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere // Geochimica et Cosmochimica Acta, 2002, V. 66, № 21, 3757–3767.


[Закрыть]
. Как известно, современная атмосфера Земли содержит “всего” 21 % кислорода. На самом деле по космическим меркам и это невероятно много, но в карбоне было в полтора раза больше. А дело тут именно в том, что огромная биомасса стволов деревьев в карбоне не съедалась никакими живыми существами. В отличие от современной ситуации, когда упавшие стволы измельчаются насекомыми, перерабатываются грибами и в итоге их углеродные соединения окисляются дыханием до углекислоты (CO2). При этом расходуется кислород, а углекислота выдыхается и уходит в атмосферу.

До той биомассы, которая успела захорониться в виде каменного угля раньше, чем возникли эффективные деструкторы, живая природа смогла добраться только с появлением человека, который неутомимо откапывает каменный уголь и жжет его, используя в качестве топлива. Будем иметь в виду, что процессы дыхания и горения описываются строго одним и тем же суммарным уравнением:

C6H12O6 (глюкоза) + 6O26CO2 + 6H2O

Одна молекула глюкозы взаимодействует с шестью молекулами кислорода, давая в итоге шесть молекул углекислого газа и шесть молекул воды. С точки зрения интересов жизни на Земле главное тут – высвобождение углерода в виде углекислого газа. А уж фотосинтезирующие организмы (то есть растения) могут, захватив этот углекислый газ, синтезировать из него гораздо более сложные углеродные соединения, пригодные для построения тел живых существ. В этом плане влияние человека на общепланетный круговорот углерода скорее положительно. Огромная масса углерода, которая сотни миллионов лет была “заперта” в пластах каменного угля, благодаря нашим шахтам, паровозам и тепловым электростанциям вновь пошла в дело.

Мы уже мимоходом упомянули, что бывают и другие, нецеллюлозные типы клеточных стенок. Еще один чрезвычайно распространенный в природе полисахарид – хитин, входящий в состав клеточных стенок грибов (наряду с полимерами глюкозы, которые там тоже есть). Кроме того, хитина много в наружных покровах некоторых животных, например насекомых, ракообразных и паукообразных. И грибов, и насекомых на Земле очень много. Потому и общая масса хитина на планете получается гигантской. Хитин – полимер, во многом похожий на целлюлозу. Он состоит из остатков бета-глюкозы, но только модифицированных. Дело в том, что хитин – это азотсодержащий полисахарид. Его мономером является, строго говоря, не сама глюкоза, а ацетилглюкозамин – производное глюкозы, где к одному из атомов углерода вместо гидроксила присоединена аминоацетильная группа – NH – CO – CH3.

Наконец, клеточные стенки бактерий состоят из еще более сложных азотсодержащих производных глюкозы, к которым дополнительно ковалентно “пришиты” цепочки аминокислот. Такой многокомпонентный полимер называется пептидогликаном. Самое интересное, что в состав пептидогликанов входят не только L-, но и D-аминокислоты. Это именно тот случай, когда D-аминокислоты в живых организмах все-таки присутствуют. В состав белков они, конечно, не входят и здесь, но в состав других соединений – в конце концов, почему бы и нет.

Мир, окрашенный по Граму

В 1884 году датский микробиолог Ганс Христиан Грам опубликовал новый метод окрашивания бактерий. Основой метода было применение сочетания органических красителей, главный из которых родствен по структуре обычным аминам (см. главу 1). Тут надо сказать, что окрашивание – это важно. Без окрашивания под микроскопом, как правило, толком ничего не рассмотреть. К тому же окрашивание должно быть стойким – чтобы не смывалось спиртами и другими растворителями при изготовлении препаратов, и, по возможности, дифференциальным – чтобы не красило все сплошь, ведь тогда в объекте, опять же, будет не разобраться. В общем, окраска объектов для микроскопии – это целая наука. В XIX веке, когда многое делалось наугад, изобретение нового красителя требовало как отличного знания химии, так и незаурядной интуиции.

Азотсодержащий краситель, предложенный Грамом, прекрасно действовал на бактерий. Но не на всех. Одних он исправно окрашивал в стойкий синий цвет, а на других почему-то вообще не держался – при промывке препарата они обесцвечивались. Так появилось разделение бактерий на грамположительных и грамотрицательных.

Умерший в 1938 году Ганс Христиан Грам, возможно, и сам не успел вполне осознать, насколько важную вещь он открыл. Обнаруженное им разделение бактерий по типу окрашивания оказалось признаком фундаментальнейших различий в строении клетки (см. рис. 6.6). У грамположительных бактерий снаружи от мембраны находится толстая пептидогликановая клеточная стенка. В этом плане их клетка более-менее похожа, скажем, на растительную, не считая того, что материал клеточной стенки другой. У грамотрицательных бактерий дело обстоит совершенно иначе. Их наружная оболочка включает две полноценные билипидные мембраны с тонкой пептидогликановой клеточной стенкой, расположенной между ними. Клеточная стенка грамотрицательных бактерий заключена между наружной и внутренней клеточными мембранами, как начинка сэндвича. Так не устроены никакие другие клетки.



Есть гипотеза, что первые на Земле живые организмы были именно грамотрицательными бактериями, и только у их потомков вторая – наружная – мембрана исчезла{46}46
  Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2006, V. 361, № 1470, 969–1006.


[Закрыть]
. К сожалению, эта красивая идея слабо поддерживается молекулярно-биологическими данными, поэтому сейчас она не слишком популярна. Но независимо от того, верна она или нет, эволюционный зигзаг тут получился очень занятный.

7. Нуклеотиды

– Как вообще может анаэроб развиться в сложный многоклеточный организм и тем более – двигаться настолько быстро, как эта тварь? Подобный уровень активности жрет массу АТФ.

– Может, они не используют АТФ, – предположила Бейтс, пока я полез за справкой в КонСенсус: аденозинтрифосфат, источник энергии для клетки.

ПИТЕР УОТТС.
ЛОЖНАЯ СЛЕПОТА

Вспомним, как устроена молекула бензола. Она состоит из шести атомов углерода, соединенных в кольцо таким образом, что одинарные углерод-углеродные связи чередуются с двойными (см. главу 1). Свободные связи в бензоле, как и всюду, заняты атомами водорода. Его краткая формула – C6H6. Именно эта молекула когда-то напомнила Фридриху Августу Кекуле кольцо из переплетающихся змей. Молекула бензола прекрасна и самодостаточна – казалось бы, что в ней можно поменять?

Кое-что можно. Например, заменить один из атомов углерода на атом азота. Азот трехвалентен, и это вполне позволяет ему встроиться в бензольное кольцо (только без водорода при нем). Тогда получается кольцевая молекула с пятью атомами углерода, одним атомом азота и тремя двойными связями, которая называется пиридин.

Можно заменить атомами азота и два атома углерода (не соседних, а через один). Получится кольцо с тремя двойными связями, четырьмя атомами углерода и двумя атомами азота. Эта молекула называется пиримидин (см. рис. 7.1). И вот она в биологии очень важна.



Присоединив к пиримидиновому ядру две гидроксильные группы (–OH), мы получим соединение, которое называется урацил. Полное химическое название урацила – 2,4-дигидроксипиримидин. Члены пиримидинового кольца принято нумеровать, считая от одного из атомов азота.

Если дополнительно присоединить к урацилу еще и метильную группу (–СH3), получится новое соединение – тимин. А если заменить в урациле одну из гидроксильных групп на аминогруппу (–NH2), то получится цитозин. Полное название тимина – 5-метил-2,4-дигидроксипиримидин. А полное название цитозина – 2-гидрокси-4-аминопиримидин. Запоминать эти названия (как и нумерацию, на которой они основаны) ни в коем случае не надо. Но они полезны тем, что в случае надобности позволяют безошибочно восстановить всю формулу нужного вещества. Честно говоря, сомнительно, что любой биолог помнит формулы урацила, тимина и цитозина наизусть. Но вот о том, что такие вещества существуют, знает абсолютно каждый, кто имеет к биологии хоть какое-то отношение. Знаем теперь и мы.

Возможна и другая, более сложная молекула, где к пиримидиновому шестичленному циклу добавлено еще одно кольцо – пятичленное, с двумя атомами азота. Такое соединение называется пурином (см. рис. 7.2). Молекула пурина включает в общей сложности пять атомов углерода и четыре атома азота.

Есть довольно много соединений, где к пуриновому ядру присоединяются различные боковые цепи. Например, именно к производным пурина относится такое популярнейшее вещество, как кофеин. В молекуле кофеина к пуриновому ядру присоединены две гидроксильные группы и три метильные.

Но для биологов гораздо важнее два других пуриновых соединения. Одно из них – аденин, молекула которого состоит из пуринового ядра с присоединенной к нему аминогруппой. Второе – гуанин, в котором есть аминогруппа (не там, где у аденина) и гидроксильная группа.

Полные названия аденина и гуанина, соответственно, 6-аминопурин и 2-амино-6-гидроксипурин. Повторимся, что эти названия даются тут не для того, чтобы кто-нибудь пытался их запомнить, а просто ради общего представления о том, как этой номенклатурой в принципе можно пользоваться. Дальше нам это еще пригодится.



Пуриновые и пиримидиновые молекулы только что описанного типа называют азотистыми основаниями, потому что входящий в них азот проявляет основные свойства, подобно аммиаку (см. главу 1). Урацил, тимин, цитозин, аденин и гуанин – это азотистые основания. Урацил, тимин и цитозин – пиримидиновые азотистые основания, а аденин и гуанин – пуриновые. Вообще-то химикам известны десятки азотистых оснований, но для понимания основ биологии вполне хватит этих пяти. Другие азотистые основания встречаются в живых организмах реже, и значение их там гораздо меньше.

Завершая знакомство с азотистыми основаниями, совершенно необходимо добавить, что у них – да, и у них тоже! – есть одна особая разновидность изомерии. Состоит она в следующем. Входящая в состав азотистого основания гидроксильная группа (вместе с углеродом, к которому она присоединена, имеющая вид С – OH) может потерять водород и превратиться в кетогруппу (C=O). Система двойных связей в пиримидиновом или пуриновом ядре при этом перестраивается, а потерянный гидроксилом водород переходит на ближайший атом азота. В живых организмах азотистые основания всегда находятся не в спиртовой форме (с гидроксильными группами), а именно в кето-форме. Это распространяется на все важнейшие азотистые основания, кроме аденина, который выглядит всегда одинаково: у него гидроксильной группы просто нет.

По ту сторону рассвета

Пять азотистых оснований, с которыми мы познакомились, с биологической точки зрения – самые главные. Не секрет, что они используются земными живыми организмами для хранения и передачи генетической информации. Как именно это происходит, мы пока что “не знаем”, хотя уже довольно скоро узнаем (в главах 8 и 9). Но вот почему главными оказались именно эти пять оснований, а не какие-то другие родственные им? Ведь разных азотистых оснований, и пиримидиновых, и пуриновых, можно придумать очень много.

Ответ на этот вопрос надо, как всегда, искать в прошлом. И в данном случае это будет очень далекое прошлое. Сейчас точно известно, что химическая эволюция азотистых оснований началась задолго до возникновения жизни, а скорее всего, даже и до возникновения планеты Земля. Тут дело обстоит точно так же, как и с аминокислотами (см. главу 3). В большинстве углеродсодержащих (так называемых углистых) метеоритов при тщательном химическом анализе были найдены азотистые основания. В общей сложности их там не меньше десятка, и по структуре молекул они довольно разнообразны{47}47
  Callahan M. P. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases // Proceedings of the National Academy of Sciences, 2011, V. 108, № 34, 13995–13998.


[Закрыть]
. Очевидно, синтез этих веществ шел прямо на частицах протопланетного облака.

Например, если по-разному присоединять к пурину аминогруппы, то можно получить аденин (у него аминогруппа одна), а можно и основания с двумя аминогруппами – например, 2,6-диаминопурин или 6,8-диаминопурин (см. рис. 7.2Б). Главное же здесь вот что. Ни 2,6-диаминопурин, ни 6,8-диаминопурин не встречаются в земных живых организмах, а вот в углистых метеоритах они обнаруживаются легко. Причем их присутствие там никак нельзя объяснить биогенным загрязнением метеорита, уже упавшего на Землю, потому что на Земле этих соединений просто нет. Это – остатки добиологического разнообразия сложных молекул, которые синтезировались на ранних этапах эволюции Солнечной системы. Углистые метеориты, никогда не входившие в состав планет, служат “заповедниками” этого разнообразия – точно так же, как в случае с аминокислотами. Разных азотистых оснований там вполне могли быть десятки.

При возникновении жизни и аминокислоты, и азотистые основания подверглись процессу, подобному естественному отбору. Одни основания оказались удачными и вошли в состав живых систем, а другие – большинство – были отсеяны и в состав живых систем не вошли. В итоге начальное высокое химическое разнообразие исчезло. Остались несколько широко распространенных соединений, с которыми мы сейчас в основном и имеем дело. Причем они были выбраны отнюдь не случайно. Предполагается, например, что одним из критериев стала устойчивость оснований к ультрафиолетовому излучению Солнца, которое на древней Земле было очень серьезным фактором риска. Одна из научных работ, написанных на эту тему, прямо так и озаглавлена – “Выживание наиболее приспособленных до начала жизни”{48}48
  Mulkidjanian A. Y., Cherepanov D. A., Galperin M. Y. Survival of the fittest before the beginning of life: selection of the first oligonucleotide-like polymers by UV light // BMC Evolutionary Biology, 2003, V. 3, № 1, 12–18.


[Закрыть]
.

Нуклеозиды

Молекула, состоящая из остатков азотистого основания и сахара, называется нуклеозидом (см. рис. 7.3). Сахаром, входящим в нуклеозиды, по умолчанию является рибоза, но иногда – дезоксирибоза. Как мы помним, они отличаются друг от друга всего на один атом кислорода. Азотистое основание присоединяется к первому по счету углеродному атому сахара, который здесь принято обозначать единицей со штрихом (1'). От этого атома отщепляется гидроксил (–OH), а от одного из атомов азота, входящих в азотистое основание, одновременно отщепляется водород (–H). В результате выделяется вода, а между азотистым основанием и сахаром замыкается ковалентная связь. Так нуклеозид и получается.

Названия нуклеозидов являются производными от названий входящих в них азотистых оснований. Пять нуклеозидов, с которыми в основном имеют дело биологи, – уридин, тимидин, цитидин, аденозин и гуанозин. Если в качестве сахара в данный нуклеозид входит не рибоза, а дезоксирибоза, то к его названию прибавляется приставка “дезокси-”. Но иногда ее опускают, если по контексту и так понятно, о чем идет речь.

Теперь мы наконец знаем, почему атомы углерода в составе рибозы и дезоксирибозы обозначаются не просто цифрами, а цифрами со штрихами (см. главу 6). Дело как раз в том, что эти два сахара входят в состав нуклеозидов. А в любом нуклеозиде есть еще и азотистое основание, атомы которого имеют свою собственную нумерацию. Штрихи нужны, чтобы никто не спутал номера атомов сахара с номерами атомов азотистого основания.



Нуклеозиды могут делать многое. Например, аденозин интересен тем, что является одним из нейротрансмиттеров, то есть веществ, передающих сигналы между нервными клетками. Именно на передачу этих сигналов действует кофеин – вещество, тоже относящееся к группе пуринов (см. рис. 7.4А). И сейчас у нас уже вполне достаточно знаний, чтобы разобраться, в чем тут дело.

Кофеин является блокатором аденозиновых рецепторов. Что это значит? К любому сигнальному веществу есть специальные рецепторы, то есть воспринимающие элементы. В данном случае это интегральные белки (см. главу 5), которые сидят в наружной мембране нервной клетки и узнают молекулы аденозина по принципу ключа и замка, то есть примерно так же, как ферменты узнают свой субстрат (см. главу 3). Что же касается кофеина, то его молекула похожа на молекулу аденина – ключевой составной части аденозина. Молекула кофеина связывается с тем же участком белка-рецептора, с которым должен связаться адениновый остаток аденозина, и застревает в нем, после чего никакой аденозин уже не может туда войти (см. рис. 7.4Б). По такому принципу действуют очень многие лекарства, яды и психоактивные вещества, в том числе и наркотики – они ведь обычно тоже связываются с рецепторами, предназначенными для нейротрансмиттеров, либо блокируя, либо активируя их.



Сам аденозин как сигнальное вещество обладает преимущественно тормозным действием, то есть, попросту говоря, успокаивающим. Выделение аденозина обычно является сигналом усталости, знаком, что активность пора приостановить. От него, например, уменьшается частота сердечных сокращений и снижается артериальное давление. Блокируя действие аденозина, кофеин снимает все эти эффекты, а вместе с ними и чувство утомления. Но никакой дополнительной энергии он не дает – просто помогает перераспределить имеющиеся силы.

Можно ли считать кофеин наркотиком? Пожалуй, все-таки нельзя. Ведь тут недостаточно общего с типичными наркотиками механизма действия. Для отнесения вещества к категории наркотиков есть четкий набор критериев, большинству из которых кофеин не соответствует. Нет толерантности (это когда для достижения одного и того же эффекта требуется постепенное повышение дозы), нет вызываемой употреблением вещества социальной дезадаптации, нет жесткой “ломки”, то есть болезненного синдрома отмены, ну и так далее.

Справедливости ради надо сказать, что в 2013 году Американская психиатрическая ассоциация после долгих колебаний все-таки отнесла кофеиновую зависимость к психическим расстройствам, но только в том случае, если она явно вызывает утомляемость, сонливость, повышенную возбудимость, мышечные судороги, тахикардию, аритмию и (или) другие подобные последствия (см. Diagnostic and Statistical Manual of Mental Disorders, сокращенно DSM-5). Чтобы добиться таких эффектов, надо пить кофе буквально литрами, да еще и с предрасположенностью должно не повезти. Если же их нет, то волноваться, скорее всего, не о чем.

Так называемый аддиктивный потенциал у кофеина, по всем данным, довольно низкий. Например, у никотина (который действует очень похожим способом на рецепторы к другому нейротрансмиттеру, ацетилхолину) аддиктивность гораздо выше и синдром отмены тяжелее – это знает каждый, кто привыкал и к кофе, и к курению. Мы сейчас не касаемся вопроса о вреде курения для здоровья, потому что это, как ни странно, не имеет прямого отношения к нашей теме. Дело в том, что практически все вредные последствия курения вызываются не никотином (он-то как раз относительно безвреден), а многочисленными сопутствующими веществами, образующимися при сгорании табака. На нервную систему эти вещества почти не действуют, а вот на другие системы – очень даже. В кофе подобного набора вредных сопутствующих веществ и близко нет.

В общем, на данный момент от науки не приходится ждать никаких однозначных рекомендаций по вопросу, пить или не пить кофе. Для здорового человека это дело личного выбора, и только. Так ведь тоже бывает.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации