Текст книги "От атомов к древу: Введение в современную науку о жизни"
Автор книги: Сергей Ястребов
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 43 страниц) [доступный отрывок для чтения: 14 страниц]
Весь наш разговор о правизне и левизне держится на одном-единственном ключевом понятии. Это понятие – “диссимметрия”. Из диссимметрии сразу же вытекает хиральность, а из хиральности – во-первых, стереоизомерия и, во-вторых, оптическая активность. Все это – свойства молекул.
Но понятие диссимметрии относится не только к молекулам. Как симметрия, так и диссимметрия бывают у каких угодно объектов. Больше 100 лет назад французский физик-теоретик Пьер Кюри расширил понятие диссимметрии, определив ее как совокупность отсутствующих элементов некоторой наличной симметрии. Между прочим, это должно означать, что “диссимметрия” и “асимметрия” – в общем случае далеко не одно и то же. Асимметрия – это простое отсутствие симметрии (первичное), а диссимметрия – это выпадение части элементов когда-то существовавшей симметрии (вторичное). “Отсутствие некоторых элементов симметрии – та диссимметрия, которая творит явление”, – говорил Кюри.
Пояснить эту мысль можно вот какой аналогией. Если представить себе беспорядочно написанный текст, в котором нет ритма и рифмы, это и будет беспорядочный текст, и ничего больше. Отсутствие рифмы тут никакого смысла не несет. Но вот если мы увидим совершенно правильно рифмованное стихотворение, в котором вдруг попадутся две строчки, написанные верлибром, то есть нерифмованным стихом, сразу станет ясно, что это не случайность, а так называемый “минус-прием”, которым автор хотел нам что-то сказать. Вот и элементы диссимметрии обычно бывают важны (по крайней мере, с нашей точки зрения) для характеристики тех явлений, в которых они проявляются.
История Вселенной знала множество событий диссимметризации, когда в некоторой системе часть элементов симметрии исчезала. И что интересно – эти события чаще вели к усложнению систем, чем к их упрощению.
Первым известным событием диссимметризации был начавшийся в первые же мгновения после Большого взрыва сдвиг соотношения количества вещества и антивещества. Считается, что изначально их было поровну. Если вещество состоит из протонов, электронов и нейтронов, то антивещество – из антипротонов, позитронов и антинейтронов (вместе их называют античастицами). Самое же главное, что при контакте вещества с антивеществом происходит разрушительная аннигиляция: и частицы, и античастицы превращаются в электромагнитные лучи. В наблюдаемой части Вселенной антивещества почти нет. Только поэтому там и успевают возникнуть структуры, состоящие из атомов и молекул. Если бы вещества всегда было ровно столько же, сколько антивещества, Вселенная была бы наполнена светом, но никакие сложные устойчивые объекты в ней существовать не смогли бы.
Возникновение хиральной чистоты живых тел – не что иное, как еще одно яркое событие диссимметризации. Это стало понятно в XIX веке, после открытий Луи Пастера, и порождало иной раз самые удивительные мысли. Например, академик Владимир Иванович Вернадский (безусловно, один из умнейших русских ученых своего времени) считал, что факт хиральной чистоты означает не более и не менее как невозможность происхождения живой природы из неживой. “Левозакрученность” белков он считал признаком того, что с живыми системами связана некоторая совершенно особая разновидность материи, а может быть, даже и физики пространства (что бы это ни значило). Вернадский, например, всерьез допускал, что геометрия неживой природы – евклидова, а живой – риманова. Логическим выводом отсюда было признание вечности жизни: раз живые тела не могут возникнуть из неживых, потому что это два качественно разных типа материи, значит, жизнь была во Вселенной всегда и вопрос о ее происхождении лишен смысла. Сейчас все эти рассуждения, как принято в таких случаях вежливо говорить, “представляют исключительно исторический интерес”. Современные биохимические исследования очень наглядно показывают, что никакой непреодолимой пропасти между живыми и неживыми системами нет. Более того, биохимики достаточно убедительно объясняют, как и почему хиральная чистота жизни скорее всего возникла. Сейчас мы можем быть уверены, что загадку происхождения жизни решит не сомнительная философия, а обыкновенная химия.
События диссимметризации случались и на других эволюционных уровнях. Есть, например, довольно много животных, в строении тела которых симметрия так или иначе сменилась в процессе эволюции на диссимметрию. Диссимметричными (хотя бы по внутренней анатомии) являются все без исключения брюхоногие моллюски, то есть улитки, причем в ходе их эволюции диссимметрия еще и постепенно нарастала. Раковины многих улиток обладают самой настоящей хиральностью, то есть существуют в двух зеркально-симметричных формах – право– и левозакрученной.
У человека почти нет внешней диссимметрии, но есть довольно сильная диссимметрия внутренних органов. Скажем, сердце у него обычно смещено влево, желудок тоже направлен изгибом влево, а вот печень и желчный пузырь находятся справа. Причем существует врожденное нарушение развития под названием situs inversus, когда все эти органы располагаются зеркально-симметричным образом. Если инверсия полная и коснулась действительно всех органов без исключения, то никаких проблем для здоровья она не создает. В этом смысле situs inversus – просто вариант нормы.
Наконец, эволюционно молодой пример события диссимметризации – это появление в головном мозге человека специализированных центров речи. Они называются зоной Брока и зоной Вернике. У подавляющего большинства людей эти центры находятся только в левом полушарии, но у некоторых, наоборот, только в правом (такие люди обычно левши). Первым обладателем этих центров – и, соответственно, нового типа диссимметрии мозга – по всей видимости, был человек умелый (Homo habilis), появившийся в Восточной Африке больше двух миллионов лет назад.
Английский философ XIX века Герберт Спенсер считал, что в ходе прогрессивной эволюции мощность симметрии живых объектов, как правило, понижается. Строго говоря, это ниоткуда не следует. Например, нет ни малейших оснований считать, что садовая улитка, обладатель ярко выраженной анатомической диссимметрии, хоть в каком-нибудь смысле эволюционно прогрессивнее дождевого червя, в теле которого никакой существенной диссимметрии нет (по крайней мере, во взрослом состоянии). С таким же успехом можно было бы сказать, что какой-нибудь фторхлорметан эволюционно прогрессивнее дихлорметана (вспомним начало этой главы). Очевидно, что такое утверждение было бы даже не ошибочным, а просто бессмысленным. Но вот что события диссимметризации часто бывают знаками серьезных эволюционных перемен – это точно.
Впрочем, доводить до абсолюта этот вывод не стоит. (В биологии вообще лучше ничего никогда не доводить до абсолюта.) При желании можно найти сколько угодно случаев, где спенсеровская логика не работает уж вовсе никак. Например, у большинства змей сохранилось только правое легкое, у птиц – только левый яичник, а у нарвала только левый верхний зуб превращается в спиральный бивень, правый же отсутствует. Все это явные примеры диссимметрии, вторично возникшей из симметричного состояния. Но никаких переходов на качественно новый уровень в этих случаях не произошло. Перечисленные существа ни в каком отношении не “выше” и не сложнее своих ближайших родственников: они просто узко специализированы, не более. Это абсолютно нормально для живых существ и нисколько не мешает им украшать собой мир.
5. Липиды и мембраны
Господь Бог создал объем; поверхности же были изобретены дьяволом.
ВОЛЬФГАНГ ПАУЛИ(ЦИТИРУЕТСЯ ПО КНИГЕ МАНФРЕДА ШРЕДЕРА “ФРАКТАЛЫ, ХАОС, СТЕПЕННЫЕ ЗАКОНЫ. МИНИАТЮРЫ ИЗ БЕСКОНЕЧНОГО РАЯ”)
Липиды – удивительно разнообразная группа молекул. Они бывают и структурными “кирпичиками”, из которых строятся компоненты клеток, и питательными веществами, и гормонами. В общем, без знакомства с липидами невозможно разобраться в устройстве жизни – по крайней мере, жизни на Земле.
Но тут нас подстерегает затруднение. В отличие, например, от белков или углеводов, липиды не имеют никакой общей формулы. Их определяющее свойство – нерастворимость в воде, то есть гидрофобность (см. главу 2). Липиды – это сборное понятие, объединяющее все гидрофобные биологически активные вещества.
Напомним, что “гидрофобные” фактически значит “неполярные”, то есть включающие много углерода и водорода, но мало кислорода. В таких молекулах преобладают ковалентные неполярные связи, не создающие никаких локальных маленьких электрических зарядов. Поэтому они плохо взаимодействуют с водой, в молекулах которой связи как раз полярны и локальные маленькие заряды есть.
С химической точки зрения липиды бывают очень различны. Например, они вполне могут быть спиртами. Существует спирт, у которого единственная гидроксильная группа присоединена к огромному углеводородному радикалу с несколькими замкнутыми циклами (тремя шестичленными и одним пятичленным) и дополнительной длинной ветвящейся цепочкой. Этот спирт называется холестерином (см. рис. 5.1). Иногда холестерин переименовывают в холестерол – это синонимы. Холестерин очень гидрофобен, он не растворяется в воде и поэтому считается липидом.
Как и многие другие липиды, холестерин – важное питательное вещество. Из-за того, что он нерастворим в воде, он не может переноситься кровью в чистом виде (как, например, глюкоза), а переносится только при помощи специальных белков, образующих с ним комплекс.
Основу молекулы холестерина образует уже упоминавшееся ядро из четырех углеродных колец (трех шестиугольников и одного пятиугольника), которое в случае, если убрать из него двойную связь, будет называться великолепным словом “циклопентанпергидрофенантрен”. Производные циклопентанпергидрофенантрена называются стероидами. Это очень важная группа липидов. К стероидам относятся, например, половые гормоны и гормоны коры надпочечников. Довольно часто стероиды используются и как лекарства (каждый, кто смотрел сериал “Доктор Хаус”, это знает). В организме человека все стероиды синтезируются из холестерина – это одна из причин, почему он нужен нам как питательное вещество.
Другая важная группа липидов – жирные кислоты, то есть карбоновые кислоты с длинными (10–20 атомов углерода и больше) углеводородными “хвостами” (см. рис. 5.1). Чем длиннее “хвост”, тем хуже кислота растворяется в воде. Жирные кислоты, у которых в цепочке больше 12 атомов углерода, принято называть высшими.
Жирные кислоты бывают насыщенными (без двойных связей в углеводородной цепочке) или ненасыщенными (с двойными связями). У насыщенных жирных кислот “хвосты” прямые, а у ненасыщенных – изогнутые в местах двойных связей. Из-за этого молекула может приобрести причудливую форму, особенно если двойных связей в ней несколько. Насыщенные высшие жирные кислоты при комнатной температуре – твердые вещества, а ненасыщенные – жидкости. Связано это с тем, что молекулы кислот с насыщенными “хвостами”, в которых нет создаваемых двойными связями изломов и изгибов, способны к более компактной упаковке. Особенно много ненасыщенных жирных кислот (и их производных) во всяких растительных маслах. Именно из-за этого, например, подсолнечное масло при комнатной температуре жидкое, в то время как сливочное – твердое.
Жирные кислоты играют важную физиологическую роль, которая иногда проявляет себя трагически. Например, одна из самых страшных болезней, разрушающих нервную систему, – адренолейкодистрофия – связана именно с нарушением обмена жирных кислот. Дело в том, что жирные кислоты активно используются при синтезе миелина – довольно сложного по составу вещества, образующего оболочку отростков нервных клеток. Строго говоря, миелин – это вообще не единое вещество, а смесь множества разных липидов. А миелиновая оболочка отростков нейронов необходима для нормального проведения по ним нервных импульсов (в физиологические детали этого мы сейчас вдаваться не будем). Так вот, в состав миелина входят жирные кислоты с углеводородными цепями, включающими по 16–20 атомов углерода – это по любым меркам довольно много. Но при адренолейкодистрофии в организме накапливается огромное количество так называемых очень длинноцепочечных жирных кислот (ОДЦЖК), имеющих углеводородную цепь длиной в 24–30 атомов. Вот это уже катастрофа. Очень длинноцепочечные жирные кислоты разрушают миелин, вместо того чтобы нормально в него встраиваться. Результат – расстройство буквально всех функций нервной системы, включая и движения, и чувствительность, и память, и рассудок. Обычно это приводит к смерти в течение нескольких лет. Адренолейкодистрофия – генетическая болезнь. Ее непосредственная причина – выход из строя одного определенного транспортного белка, в норме переносящего ОДЦЖК в те части клеток, где они должны расщепляться. Лечить такое медицина пока что не умеет, хотя можно надеяться, что со временем научится, особенно если о наличии у зачатого младенца гена адренолейкодистрофии будет известно заранее (а это вполне можно обеспечить).
Но вернемся к липидам. Есть липиды, которые являются с точки зрения химии сложными эфирами, то есть продуктами соединения карбоновой кислоты и спирта с общей формулой R1–CO – O–R2 (см. главу 1). Сложный эфир – это уже и не кислота, и не спирт, их свойства в нем взаимно уничтожаются. Сложный эфир, образованный спиртом и кислотой с длинными углеводородными цепями, называется воском. В молекулах восков так много атомов углерода и водорода и так мало атомов кислорода, что в итоге они очень похожи по свойствам на обычные углеводороды. К этой группе веществ относится, например, пчелиный воск, из которого пчелы делают соты.
Кроме того, воск (иной по составу, чем пчелиный) образует основу спермацета – жидкого вещества, находящегося в особом мешке в голове кашалота. Именно из-за спермацетового мешка голова кашалота выглядит прямоугольной, а не вытянутой, как у дельфина, хотя форма черепа у них очень похожая. По современным данным, спермацетовый мешок служит линзой для звуковых волн, с помощью которых кашалот ориентируется в пространстве; особенно это важно на большой глубине, где от зрения толку немного. Каждый, кто читал великий роман “Моби Дик”, знает, что раньше на кашалотов активно охотились ради спермацета, из которого делали ламповое масло, кремы, свечи и некоторые лекарства (например, противоожоговые мази). Сейчас добыча кашалотов, к счастью, запрещена.
Кроме стероидов, жирных кислот и восков есть еще по меньшей мере два типа липидов, без которых в биологии никак не обойтись. Это – жиры и фосфолипиды. С ними мы познакомимся чуть позже.
ДетергентыЖирные кислоты, а вернее их соли, с древних времен используются человеком в качестве моющих средств. Посмотрим, почему это так удобно.
Вот, например, стеариновая кислота: вещество с формулой CH3–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–CH2–COOH, или попросту C17H35COOH. (Последний вариант, конечно, компактнее, но трудно отказать себе в удовольствии хоть раз написать эту формулу в развернутом виде.) Если заменить в этой кислоте атом водорода на атом натрия, получится соль – стеарат натрия C17H35COONa (см. рис. 5.1). В растворе такая соль легко диссоциирует, распадаясь на катион Na+ и анион C17H35COO–, который называется стеарат-ионом.
Как ведет себя стеарат-ион в воде? Его заряженная “головка” (–COO–) взаимодействует с водой отлично, а вот образующий большую часть молекулы углеводородный “хвост” – совсем никак. Этот “хвост” – воплощение гидрофобности, и он слишком длинный, чтобы заряженная “головка” могла затянуть его за собой в раствор целиком. Поэтому, если поблизости есть поверхность жидкости, то стеарат-ионы выстроятся по ней так, чтобы “головки” были направлены в воду, а “хвосты” – наружу, в сторону поверхностной пленки. Такое поведение молекул называется поверхностной активностью.
Иное дело, если на пути стеарат-ионов окажется капля какого-нибудь гидрофобного вещества – например, масла или жира. В этом случае стеарат-ионы выстроятся точно по поверхности, разделяющей воду и жир. Их “головки” будут обращены в воду, а “хвосты” погружены в жир. В результате капля жира будет разбита этими “хвостами” на мелкие капельки, которые по отдельности легко смоются водой. Вот почему стеарат-ионы и близкие к ним молекулы хороши в качестве моющих средств. Собственно говоря, именно так они и используются людьми последние несколько тысяч лет. Стеарат натрия – это не что иное, как обычное мыло.
Поверхностно-активные вещества, такие как мыло, часто называют детергентами (от латинского глагола detergere, одно из значений которого – “стирать”). Детергент – это вещество, в молекуле которого один конец растворим в воде, а другой – в липидах или углеводородах. Детергенты бывают анионными (с отрицательно заряженной “головкой”), катионными (с положительно заряженной “головкой”) или неионными (у которых “головка” полярна, но не заряжена). Но в любом случае молекула детергента обязательно включает гидрофильную “головку” и гидрофобный “хвост”. Мыло – это, как уже понятно из описания, типичный анионный детергент.
Великий химик Клод Луи Бертолле говорил, что “грязь – это вещество не на своем месте”. Тут можно уточнить: грязь – это, как правило, гидрофобное вещество не на своем месте. Оно и понятно: гидрофильные вещества вроде сахара без проблем смываются водой, так что никакие дополнительные вещества для их удаления не нужны. А вот для удаления гидрофобных веществ людям, собственно, и пришлось придумать моющие средства.
Бывают и природные аналоги моющих средств. Например, желчные кислоты – полярные производные холестерина, которые вырабатываются у человека печенью и выделяются в двенадцатиперстную кишку. Это самые настоящие детергенты, необходимые в данном случае для того, чтобы разбивать поступающие с пищей капельки жира.
Еще одно красивое название, применимое к детергентам, – амфифильные вещества. Слово “амфифильный” можно буквально перевести как “двояколюбивый”. Оно как раз и обозначает молекулу, одна часть которой “любит” воду, а другая – нет. Это более общий термин, чем “детергент”, буквально означающий все-таки именно “моющее средство” (тем более что далеко не все амфифильные вещества подходят на эту роль).
Возвращаясь к началу этой главы, мы теперь можем уточнить, что липиды на самом деле довольно редко бывают полностью гидрофобными. Чаще они амфифильны. Многие их биологические свойства именно с этим и связаны.
ЖирыТеперь еще раз вспомним, что любая карбоновая кислота (в том числе и жирная) в принципе может образовать с любым спиртом сложный эфир. При этом от кислоты отщепится – OH, от спирта – H, они образуют воду, а остатки кислоты и спирта замкнутся в единую молекулу со сложноэфирной группой – CO – O– посредине (см. рис. 5.2). Спиртом, участвующим в этой реакции, вполне может оказаться и глицерин, у которого гидроксильных групп целых три (см. главу 1). Сложный эфир глицерина и трех жирных кислот называется жиром. Молекула жира имеет “головку” (остаток глицерина) и сразу три углеводородных “хвоста” (см. рис. 5.2).
На самом деле жиры стали известны людям гораздо раньше, чем их исходные компоненты. Например, желтый костный мозг, который наверняка извлекали древние люди из трубчатых костей крупных млекопитающих, – это в основном жир.
По опыту мы все знаем, что жир – это вещество животного или растительного происхождения, нерастворимое в воде, жирное на ощупь и оставляющее на бумаге характерные жирные пятна. Жиры, остающиеся при комнатной температуре жидкими, принято называть маслами.
Иногда в разговорах о химическом составе пищи понятие “липиды” для простоты заменяют понятием “жиры”. Теперь мы знаем, что это неточность. Жиры – и вправду ценные питательные вещества, но это далеко не единственные липиды, которые важны в этой роли. Например, холестерин – липид, но никакой не жир.
С участием насыщенных жирных кислот образуются насыщенные жиры, а с участием ненасыщенных кислот, соответственно, ненасыщенные. В растительных маслах гораздо больше ненасыщенных жиров, чем в животных. Хотя в целом и там и там есть и те и другие, отличается только их вклад.
Жиры – очень ценные источники энергии. Молекула жира может дать в два раза больше энергии, чем молекула углевода, имеющая такой же размер. Объясняется это вот чем. Процесс, путем которого мы получаем энергию из питательных веществ, – это, в сущности, окисление, то есть присоединение кислорода ко всем атомам водорода и углерода, до которых можно дотянуться. Все другие связи, образуемые этими атомами, при окислении разрываются, а его конечными продуктами становятся вода (H2O) и углекислота (CO2). Проблема в том, что в молекулах углеводов значительная часть атомов уже соединена с кислородом, так что окислять их дальше некуда (ну, или почти некуда). В молекулах жиров, где есть длинные жирнокислотные “хвосты”, таких атомов гораздо меньше. А потому и энергии из окисления жиров можно извлечь больше.
Кроме того, что жиры энергоемки, они еще и удобны для компактного хранения, поэтому животные (включая человека) часто используют их в качестве запасных веществ. Известно, что организм склонен реагировать на длительный стресс усилением отложения жира – это одна из причин так называемого стресс-индуцированного ожирения. Конечно, это эволюционно обусловленная реакция: с точки зрения нашего организма чем тяжелее и неопределеннее условия жизни, тем выше вероятность того, что запасные вещества в обозримом будущем пригодятся.
Мы уже знаем, что одним из конечных продуктов окисления питательных веществ является вода. Поэтому жировые отложения могут фактически служить запасом не только энергии, но и воды, которая все равно неизбежно выделяется при их переработке. Это особенно важно для пустынных животных вроде верблюдов. Горб верблюда содержит только жир, но при полном окислении этот жир (как и любой другой) превращается в углекислоту и воду. Углекислоту верблюд выдыхает, а воду оставляет в своем теле, чтобы добро не пропадало.
Некоторые тушканчики, тоже живущие в пустынях или полупустынях, запасают жир подобно верблюдам и в тех же целях, но не в горбе, а в хвосте. Они так и называются – толстохвостые тушканчики.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?