Электронная библиотека » Сергей Ястребов » » онлайн чтение - страница 6


  • Текст добавлен: 31 мая 2018, 11:41


Автор книги: Сергей Ястребов


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 43 страниц) [доступный отрывок для чтения: 14 страниц]

Шрифт:
- 100% +
Связи и уровни

Для удобства принято выделять четыре уровня структуры белка. Они так и называются: первичная структура, вторичная, третичная и четвертичная.

Первичная структура – это просто последовательность аминокислот, соединенных пептидными связями (см. рис. 3.4Б). Она всегда линейна, ибо белки не ветвятся. Перечислять аминокислоты в белке принято от N-конца (свободная аминогруппа) к C-концу (свободная карбоксильная группа). Множество таких перечислений, то есть записей первичной структуры белков, есть в современных электронных базах данных, доступных в сети. Можно сказать, что первичная структура белка одномерна, в то время как все остальные уровни – трехмерны. К первичной структуре относятся только пептидные связи, а к остальным уровням – любые другие взаимодействия между аминокислотами, входящими в один и тот же белок.

Вторичная структура – это система взаимодействий между аминокислотами в составе одной и той же полипептидной цепочки, расположенными близко (через считаные остатки друг от друга). Вторичная структура держится в основном на водородных связях (см. рис. 3.5). Причем в данном случае это связи между пептидными группами, а не боковыми цепями. А поскольку все пептидные группы одинаковы, то вторичная структура обладает высокой регулярностью, в ней часто повторяется один и тот же “узор”.



Два самых распространенных типа вторичной структуры белка – альфа-спираль и бета-слой. В альфа-спирали водородные связи постоянно образуются между аминокислотными остатками с номерами n и (n+4), то есть каждая аминокислота образует водородную связь с аминокислотой, четвертой по счету от нее. В результате получается компактная спираль, внутри которой находятся пептидные группы, а радикалы торчат в стороны. Альфа-спираль очень устойчива, в том числе и потому, что внутри нее в образовании водородных связей принимают участие все пептидные группы без исключения. В бета-слое полипептидная цепочка несколько раз перегибается, и водородные связи образуются между ее противоположно направленными отрезками.



Третичная структура белка – это система взаимодействий между сколь угодно далекими (но принадлежащими к одной и той же полипептидной цепи) остатками аминокислот (см. рис. 3.6, 3.7А). Она определяет, какую форму будет иметь молекула белка целиком. Если вторичная структура – это ближний порядок, то третичная – дальний порядок. В образовании третичной структуры участвуют водородные связи между боковыми цепями, гидрофобные взаимодействия (очень частый случай) и ионные связи между заряженными боковыми цепями. И дисульфидные мостики тоже вносят в третичную структуру свой вклад.



Наконец, четвертичная структура возникает в том случае, если функциональный белок собирается из нескольких отдельных полипептидных цепей (см. рис. 3.7Б). Если белок состоит из одной полипептидной цепи, значит, четвертичной структуры у него нет. Взаимодействия, создающие четвертичную структуру, те же самые, что и в третичной структуре, только не внутри одной полипептидной цепи, а между разными цепями.

Типичный белок с четвертичной структурой – гемоглобин, переносящий кислород в нашей крови. Его молекула состоит из четырех полипептидных цепочек, которые синтезируются отдельно, но свою функцию выполняют только вместе. Объединяются они в основном за счет гидрофобных взаимодействий. Всего молекула нормального гемоглобина взрослого человека включает 574 аминокислоты.

Потеря белком своей пространственной структуры без разрушения пептидных связей (то есть первичной структуры) называется денатурацией, что буквально значит “потеря природы” (см. рис. 3.7В). Самый простой способ денатурировать белок – как следует нагреть его. Именно частичная денатурация белков является основной целью любой тепловой обработки пищи. Причем иногда этот процесс до некоторой степени обратим (при кипячении молока, например). Восстановление пространственной структуры денатурированного белка называется ренатурацией. Но бывает и необратимая денатурация. Например, белок крутого яйца после полной необратимой денатурации растворенных там молекул белков становится твердым, потому что раскрученные полипептидные цепочки перепутываются между собой. Денатурация большинства белков (но не всех!) происходит при температуре 40–50 °С. Это определяет верхний температурный предел для жизни большинства земных живых существ.

Чтобы белок выполнял свою биологическую функцию, нужна, как правило, тончайшая и очень точная “настройка” его пространственной структуры. Нарушения аминокислотной последовательности тем и опасны, что они эту структуру разрушают. Например, существует генетическое нарушение, при котором в строго определенной точке одной из цепей гемоглобина глутамат заменяется на валин. Казалось бы, всего лишь одна аминокислота заменяется на другую. Но здесь это имеет неожиданно серьезные последствия. Глутамат – аминокислота, боковая цепь которой несет отрицательный заряд, валин же нейтрален и гидрофобен. Если рядом окажутся два остатки глутамата, они будут отталкиваться. А если два остатка валина, то, наоборот, слипаться. В данном случае замена глутамата на валин приводит к тому, что слипаться начинают целые молекулы гемоглобина. А это деформирует красные кровяные клетки, в которых он содержится, и вызывает тяжелую болезнь – серповидноклеточную анемию. Именно таков ее молекулярный механизм.



Очевидно, что взаимодействия между аминокислотами в белке неслучайны. Сворачивание белковой молекулы зависит от ее первичной структуры, то есть от того, в каком порядке аминокислоты расположены в цепочке. Иногда говорят, что если бы можно было взять полипептидную цепь за концы, растянуть ее и потом отпустить, то она каждый раз свертывалась бы совершенно одинаково. На самом деле в живой клетке все происходит несколько иначе: там белок синтезируется последовательно, аминокислота за аминокислотой (от N-конца к C-концу), и части молекулы белка, синтезированные раньше, успевают свернуться в трехмерную структуру до того, как будут синтезированы остальные части. Но в итоге все молекулы данного белка сворачиваются строго одинаково. Зная аминокислотную последовательность белка, теоретически можно рассчитать его пространственную структуру всех уровней. Часто это успешно делают и на практике, используя методы таких наук, как биофизика и биоинформатика. В идеале последовательность аминокислот (которую можно записать в строчку, обозначив аминокислоты буквами) должна однозначно определять собой все свойства белка. И более того, изучаемая биологами реальность к этому идеалу очень близка.

На заре жизни… и раньше

Биохимическая эволюция началась еще до образования Земли как планеты. Современные ученые уверены, что синтез веществ, ставших потом биологически активными, шел уже на частицах протопланетного газопылевого облака{28}28
  Пармон В.Н. Новое в теории появления жизни // Химия и жизнь. 2005. № 5.


[Закрыть]
. Об этом свидетельствует многое – например, химический состав углистых метеоритов, которые потому так и называются, что богаты углеродом (в научной литературе их часто называют углистыми хондритами). Метеориты этого типа никогда не входили в состав планет, поэтому их химический состав не искажен действием высоких температур и давлений, господствующих в планетных недрах. Это своего рода химический “заповедник” очень древней эпохи Солнечной системы – эпохи, когда синтез органических веществ только начинался. Химический анализ углистых метеоритов дал ученым поразительную возможность заглянуть во времена, непосредственно предшествовавшие зарождению жизни.

И ученые не разочаровались. Углистые метеориты оказались удивительно богаты органикой. Например, в них найдены углеводороды, спирты, альдегиды, кетоны, карбоновые кислоты, оксикислоты, амины и углеводы (см. главу 1). Есть там и аминокислоты. Причем очень разные.

В знаменитом Мурчисонском метеорите, упавшем в 1969 году в Австралии, химический анализ обнаружил в общей сложности 52 аминокислоты{29}29
  Cronin J. R., Pizzarello S. Amino acids in meteorites // Advances in Space Research, 1983, V. 3, № 9, 5–18.


[Закрыть]
(см. рис. 3.8). И они необыкновенно разнообразны. Например, среди этих аминокислот есть бета-аланин – изомер аланина, являющийся не альфа-, а бета-аминокислотой (NH2–CH2–CH2–COOH). Есть там гамма– и даже дельта-аминокислоты, например дельта-аминовалериановая кислота (NH2–CH2–CH2–CH2–CH2–COOH). Есть изовалин и метилнорвалин – аминокислоты, где к альфа-углеродному атому присоединены сразу два углеводородных радикала (как мы помним, в “белковых” аминокислотах на месте одного из них всегда атом водорода). Есть циклолейцин, где карбоксильная группа и аминогруппа присоединены к замкнутому пятичленному углеводородному кольцу. Перечислять странные аминокислоты, многие из которых встречаются исключительно в метеоритах, можно еще долго. Есть там, впрочем, и аминокислоты, входящие на Земле в двадцатку “белковых”, – глицин, аланин, валин, лейцин, изолейцин, аспартат, глутамат и пролин.

И вот тут возникает закономерный вопрос: почему одни аминокислоты вошли в состав белков, а другие нет? Кое о чем вполне можно догадаться. Скорее всего, “выбор” аминокислот на роль протеиногенных сильно зависел от формы их молекул. Например, аминокислота с двумя крупными радикалами при альфа-атоме должна ограничивать число возможных конформаций полипептидной цепочки, делая ее менее гибкой, – просто потому, что радикалы будут торчать в разные стороны, мешая изгибам и поворотам. У всех без исключения протеиногенных аминокислот одна из валентностей альфа-атома занята простым водородом. И это, конечно, не случайность.

Примерно так же, скорее всего, объясняется и тот факт, что все белки состоят исключительно из альфа-аминокислот. В результате этого остов полипептидной цепи получается легким, гибким и однородным. Все “тяжелые” группы переводятся в боковые цепи, а все промежутки между пептидными связями имеют строго одинаковую длину. Если бы, например, в состав белка входили вперемешку альфа– и бета-аминокислоты, последнее условие не соблюдалось бы и это сделало бы невозможными регулярные конформации – такие как широко распространенная в реально существующих белках альфа-спираль.

А теперь отвлечемся от белков и подумаем про общие принципы развития Вселенной. Благо повод для этого сейчас есть. Не раз упоминавшийся тут Станислав Лем писал, что творческий потенциал неживой природы больше, чем у живой, по одной простой причине: она не ограничена требованиями естественного отбора. “Лишь там, где царит смерть, вечная, спокойная, где не действуют ни сита, ни жернова естественного отбора, формирующие любое создание по законам бытия, открывается простор для удивительных произведений материи, которая, ничему не подражая, никому не подчиняясь, выходит за границы человеческого воображения”, – пишет Лем в замечательном романе “Фиаско”[2]2
  Пер. В. Кулагиной-Ярцевой, И. Левшина.


[Закрыть]
. И добавляет: на планетах, освоенных жизнью, химические соединения попали “в рабство к биологической эволюции”. Они усложнились, но потеряли свое огромное исходное разнообразие.



То, что мы знаем об аминокислотах Солнечной системы, превосходно иллюстрирует эту мысль. Пока никакой жизни не существовало, самые разные аминокислоты синтезировались более-менее одинаково легко. Их было много десятков. После возникновения жизни ситуация резко изменилась: аминокислоты, вошедшие в состав белков, стали активно синтезироваться живыми организмами, и на Земле (о жизни в других местах мы пока ничего не знаем) их концентрации колоссально выросли. Аминокислоты, не прошедшие отбора на протеиногенность, наоборот, стали редкими. Некоторые из них, например изовалин, не встречаются на Земле вообще никогда. Между прочим, именно открытие в Мурчисонском метеорите изовалина стало самым сильным доводом в пользу того, что аминокислоты не были занесены в этот метеорит земными микробами после его падения на Землю, а присутствовали там изначально. Изовалина на Земле просто нет, так что никакие микробы занести его не могли. Он синтезировался в космосе совершенно самостоятельно. Но поскольку у изовалина два углеводородных радикала, то на роль составной части белков он не подошел. Со многими другими аминокислотами произошло то же самое. И это, конечно, не случайность. Уже знакомая нам общая формула протеиногенной аминокислоты – это не изолированный факт, который можно только зазубрить, а вполне осмысленный продукт эволюции.

Функции белков

Любой отдельный белок – тоже продукт биологической эволюции. Его аминокислотная последовательность, как и вся структура, всегда приспособлена под какую-нибудь строго определенную функцию. Известный биофизик Лев Александрович Блюменфельд писал: “Если бы для описания клетки нам пришлось выбирать между двумя крайними моделями – часовым механизмом и гомогенной химической реакцией в газовой фазе, – выбор был бы однозначен: клетка несравненно ближе к часовому механизму, чем к чисто статистической системе”{30}30
  Блюменфельд Л.А. Проблемы биологической физики. – М.: Наука, 1974.


[Закрыть]
. Можно добавить, что это относится не только к целой клетке, но и к отдельным макромолекулам, то есть в первую очередь к белкам. Блюменфельд как раз и начинает вышеприведенными словами главу своей книги, посвященную биофизике молекул белка.

Функционирующий белок можно в самом что ни на есть буквальном смысле рассматривать как молекулярную машину, то есть как машину размером с молекулу. По определению Блюменфельда, машина – это конструкция с выделенными внутренними степенями свободы (то есть, попросту говоря, с подвижными частями), использующая собственное механическое движение для передачи силы от одной части системы к другой. Белковая молекула этому определению, безусловно, соответствует. В ней хватает внутренних степеней свободы (множество ковалентных связей, вокруг которых возможны повороты), и она вполне может передавать силу с помощью своих подвижных частей. И многие белки – например, мышечные – постоянно используют это, совершая настоящую механическую работу. Но это далеко не единственное, что белки могут делать.

А что же, собственно, они делают? Самый близкий к истине ответ – да все! Или, во всяком случае, почти все. Функции белков настолько многообразны, что никакое их перечисление, скорее всего, не будет абсолютно полным. Но мы все-таки попробуем назвать главные функции белков, помня про эту оговорку.

• Структурная функция относится к белкам, из которых сделаны те или иные части живых тел. Например, коллаген – белок, образующий механическую основу костей, хрящей и соединительнотканного слоя кожи. Кератин – белок, из которого состоят волосы, ногти и наружный роговой слой кожи. Кристаллины – белки, из которых в основном состоит хрусталик глаза. И так далее.

• Каталитическая функция, связанная с ускорением химических реакций. О ней – чуть ниже.

• Сигнальная функция: белки, предназначенные для передачи информации. Эта функция на редкость многолика. Бывают белки-нейротрансмиттеры, передающие сигналы между нервными клетками. Бывают белки-гормоны, передающие сигналы примерно тем же способом, но через кровь, по всему организму сразу. Бывают белки-рецепторы, которые, наоборот, принимают сигналы, сидя на поверхности клетки. Бывают белки-посредники, обеспечивающие проведение сигнала уже внутри клетки. И это далеко не все возможности, но вникать в детали мы сейчас не будем.

• Транспортная функция. Например, известный всем гемоглобин – это белок, переносящий молекулы кислорода из одной части организма в другую.

• Двигательная функция свойственна белкам, от которых зависит сокращение мышечных клеток животных, но не только им. Например, двигательные структуры одноклеточных организмов – жгутики, реснички, ложноножки – тоже обязательно содержат специальные моторные белки.

• Защитная функция. Это всевозможные яды, а также антитела, то есть белки, выделяемые клетками иммунной системы и убивающие опасных “гостей” организма (например, попавших туда бактерий).

Эти функции, пожалуй, главные. Ясно, что живым существам нужны они все. И тем не менее среди них можно выделить одну совершенно особую функцию, настолько распространенную и важную, что без нее белки как природное явление вообще невозможно представить. Эта функция – каталитическая. Вот о ней стоит поговорить подробнее.

Ферменты

Начнем с простых определений. Вещество, ускоряющее химическую реакцию, но само не претерпевающее в ней стойких изменений, называется катализатором. А катализатор, являющийся белком, называется ферментом. Ускорять он может все что угодно. Все биохимические реакции идут не сами по себе, а с помощью ферментов. Например, даже такой предельно простой процесс, как слияние углекислоты (CO2) и воды (H2O) в молекулу угольной кислоты (H2CO3), все равно катализируется специальным ферментом – карбоангидразой, которая ускоряет его примерно в миллион раз. А для более сложных реакций ферменты тем более необходимы. Можно без особого преувеличения сказать, что ферменты контролируют в живом организме вообще все.

Вещество, являющееся исходным для той реакции, которую катализирует данный фермент, называется его субстратом. Молекула фермента должна войти в контакт с молекулой субстрата и подвергнуть ее некоему действию – например, расщепить надвое, или поменять в ней местами функциональные группы, или сшить что-нибудь ковалентной связью, или разорвать эту связь, – вариантов тут множество. Но в любом случае молекула фермента должна сначала захватить молекулу субстрата, а потом преобразовать ее и высвободить. Часть молекулы фермента, непосредственно контактирующая с молекулой субстрата, называется активным центром. Ферменты – это обычно довольно крупные белки, а в активном центре может быть всего-навсего несколько аминокислот. Поэтому, как правило, активный центр занимает только небольшую часть молекулы фермента (см. рис. 3.9А).

Если говорить совсем примитивно, активный центр – это такое гнездо в молекуле фермента, куда молекула субстрата должна войти, как ключ в замок. Как только она туда попадет, молекула фермента ее захватит и преобразует. Очевидно, что для этого конформация активного центра должна очень точно совпадать с очертаниями молекулы субстрата – в самом деле как замочная скважина с ключом. Это прямо так и называют “моделью ключа и замка”. Правда, на самом деле активный центр фермента, в отличие от механизма замочной скважины, является скорее гибким, чем жестким. При взаимодействии с субстратом его конформация всегда меняется – примерно так, как меняется форма перчатки, когда ее надевают на руку. Модель работы ферментов, учитывающая это, называется “моделью индуцированного соответствия”. Когда реакция завершается, конформация фермента возвращается к прежней.



Биофизики уверены, что во всех этих процессах молекула фермента действует как сложная механическая машина, имеющая множество шарниров, сочленений, поворачивающихся частей и т. п.{31}31
  Хургин Ю.И., Чернавский Д.С., Шноль С.Э. Молекула белка-фермента как механическая система // Колебательные процессы в биологических системах. – М.: Наука, 1967.


[Закрыть]
И это, конечно, впечатляет. “Самонадеянно скажет иной: “Сколочу-ка телегу!” // Но ведь в телеге-то сотня частей! Иль не знает он, дурень?” – писал в поэме “Труды и дни” великий древнегреческий поэт Гесиод[3]3
  Пер. В.В. Вересаева.


[Закрыть]
. А ведь молекула любого фермента (пусть даже и небольшого) устроена намного сложнее гесиодовой телеги. Причем это будет верно, даже если мы станем рассматривать ее исключительно как механическую машину, игнорируя всю тонкую структуру атомного уровня.

Номенклатура ферментов довольно сложна, потому что их очень много. Но в большинстве случаев название фермента включает, во-первых, название его субстрата и, во-вторых, характерное окончание “-аза”. Если мы видим где-то слово с таким окончанием, это наверняка название какого-нибудь фермента.

У термина “фермент” есть синоним. Это слово “энзим”. Например, в английском языке ферменты называют почти исключительно энзимами (enzyme), и в русские переводы с английского это тоже иногда проникает. Но все-таки по-русски гораздо чаще говорят именно “фермент”. На всякий случай запомним, что “фермент” и “энзим” – синонимы, и употребление одного из этих слов вместо другого большой ошибкой не будет.

Очень важное свойство ферментов – специфичность. Это значит, что каждый фермент приспособлен к одной строго определенной химической реакции. Субстрат должен точно подойти к его активному центру, иначе реакция не пойдет.

Например, фермент сукцинатдегидрогеназа захватывает молекулу янтарной кислоты (HOOC–CH2–CH2–COOH) и превращает ее в молекулу фумаровой кислоты (HOOC–CH=CH – COOH). Янтарная кислота при этом, как видим, теряет два атома водорода. Водород по-латыни “гидроген”, а “дегидрогеназа” – фермент, его отнимающий. Субстратом же этого фермента является янтарная кислота. В растворе она диссоциирует, и от нее остается анион, который называется сукцинатом. Таким образом, сукцинатдегидрогеназа – это фермент, отнимающий водород у сукцината (см. рис. 3.9Б).

Однако возможна ситуация, когда на месте сукцината окажется малонат – анион малоновой кислоты, отличающейся от янтарной на один атом углерода (HOOC–CH2–COOH). Молекула малоната приблизительно подходит по форме к активному центру сукцинатдегидрогеназы и может его занять. Но поскольку соответствие все-таки неточное, никакой реакции в этом случае не произойдет (см. рис. 3.9В). Активный центр сукцинатдегидрогеназы будет просто заблокирован. Это называется конкурентным ингибированием. Конкурентное ингибирование – очень эффективный механизм “выключения” ферментов, на нем основано действие многих лекарств и ядов.

В активных центрах ферментов бывает очень полезным уже знакомое нам разнообразие аминокислот. Чтобы молекула субстрата встала на свое место и повела себя как надо, очертания активного центра должны быть под этот субстрат идеально подогнаны. Для этого где-то можно разместить гидрофобные карманы, образованные боковыми цепями аланина или валина, где-то – отрицательные заряды аспартата или глутамата, где-то – нейтральные гидрофильные аминокислоты, которые образуют с субстратом водородные связи, и так далее. Если, например, в субстрате есть положительный заряд, то в этом-то месте как раз и можно выставить отрицательно заряженный радикал какого-нибудь аспартата, чтобы электростатическим притяжением удержать молекулу субстрата в нужном положении. Таких примеров можно привести множество.

Интересно, что аминокислоты, оказывающиеся рядом в активном центре, запросто могут в первичной последовательности находиться очень далеко – например, за 300 остатков друг от друга. Их “правильное” взаимное расположение достигается за счет очень точного объемного сворачивания полипептидной цепи, то есть за счет третичной структуры. Можно представить, насколько сложной биохимической машиной является такой фермент! А между тем в типичной живой клетке ферментов несколько тысяч.

Любой фермент работает только в достаточно строго определенном диапазоне внешних условий – например, таких, как температура и кислотность. Если температура слишком высока, фермент может просто денатурировать, то есть потерять вторичную и третичную структуру. Понятное дело, что его активный центр при этом развалится. Если же слишком высока кислотность, это может повлиять на поведение радикалов некоторых аминокислот. Мы знаем, что кислотность – это концентрация протонов (H+). Если в растворе будет слишком много протонов, боковые цепи отрицательно заряженных аминокислот (аспартата и глутамата) волей-неволей присоединят их. Например, радикал глутамата, обычно имеющий вид – CH2–CH2–COO, в этом случае перейдет в состояние – CH2–CH2–COOH. Отрицательный заряд в нем исчезнет, и он больше не сможет выполнять свою функцию в активном центре. Поэтому слишком высокая кислотность вредна. Живым организмам очень важно поддерживать постоянство своей внутренней среды не в последнюю очередь потому, что иначе работа ферментов разладится.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации