Текст книги "Основные концепции естествознания"
Автор книги: Степан Карпенков
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]
Создание единой теории фундаментальных взаимодействий, управление термоядерным синтезом – этим и многим другим проблемам современной физики уделяется большое внимание, в их решении принимают участие ученые многих стран мира.
2.2. Свойства и строение материи
Материя и движение, время и пространство. Одна из важнейших задач естествознания – создание естественнонаучной картины мира в виде целостной упорядоченной системы. Для ее решения используются общие и абстрактные понятия: материя, движение, время и пространство. Материя – это все, что прямо или косвенно действует на органы чувств человека и другие объекты. Окружающий нас мир, все существующее вокруг нас представляет собой материю, она тождественна реальности. Неотъемлемое свойство материи – движение. Без движения нет материи, и наоборот. Движение материи – это любые изменения, происходящие с материальными объектами в результате их взаимодействий. Материя не существует в бесформенном состоянии: из нее образуется сложная иерархическая система материальных объектов различных масштабов и сложности.
Отличительная особенность естественно-научного познания заключается в том, что для естествоиспытателей представляет интерес не материя или движение вообще, а конкретные виды материи и движения, свойства материальных объектов, их характеристики, которые можно измерить с помощью приборов. В современном естествознании различают три вида материи: вещество, физическое поле и физический вакуум.
Вещество – основной вид материи, обладающий массой. К вещественным объектам относятся элементарные частицы, атомы, молекулы и многочисленные образованные из них материальные системы. В химии вещества подразделяются на простые (с атомами одного химического элемента) и сложные – химические соединения. Свойства вещества зависят от его состава, структуры и внешних условий. Интенсивность взаимодействия атомов и молекул обусловливает различные агрегатные состояния вещества: твердое, жидкое и газообразное. При очень высокой температуре образуется плазма. Переход вещества из одного состояния в другое можно рассматривать как один из видов движения материи.
Различные виды движения материи можно классифицировать с учетом изменений свойств материальных объектов и их воздействий на окружающий мир. Механическое движение (относительное перемещение тел), колебательное и волновое движения, распространение и изменение различных полей, тепловое (хаотическое) движение атомов и молекул, равновесные и неравновесные процессы в макросистемах, фазовые переходы между агрегатными состояниями (плавление, парообразование и др.), радиоактивный распад, химические и ядерные реакции, развитие живых организмов и биосферы, эволюция звезд, галактик и Вселенной в целом – все это примеры многообразных видов движения материи.
Физическое поле – особый вид материи, обеспечивающий физическое взаимодействие материальных объектов и их систем. К физическим полям относятся электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантовые) поля, соответствующие различным частицам (например, электрон-позитронное поле). Источником физических полей являются частицы (например, для электромагнитного поля – заряженные частицы). Созданные частицами физические поля переносят с конечной скоростью взаимодействие между ними. В квантовой теории взаимодействие обусловливается обменом квантами поля между частицами.
Физический вакуум – низшее энергетическое состояние квантового поля. Этот термин введен в квантовой теории поля для объяснения некоторых микропроцессов. Среднее число частиц (квантов поля) в вакууме равно нулю, однако в нем могут рождаться виртуальные частицы (т. е. частицы в промежуточных состояниях, существующие короткое время). Виртуальные частицы влияют на физические процессы. В физическом вакууме могут рождаться пары частица-античастица разных типов. При достаточно большой концентрации энергии вакуум взаимодействует с реальными частицами, что подтверждается экспериментом. Предполагается, что из физического вакуума, находящегося в возбужденном состоянии, родилась Вселенная.
Всеобщими универсальными формами существования и движения материи принято считать время и пространство. Движение материальных объектов и различные реальные процессы происходят в пространстве и во времени. Особенность естественно-научного представления об этих понятиях заключается в том, что время и пространство можно охарактеризовать количественно с помощью приборов.
Время выражает порядок смены физических состояний и является объективной характеристикой любого процесса или явления. Время – это то, что можно измерить с помощью специальных приборов. Принцип работы приборов для измерения времени основан на разных физических процессах, среди которых наиболее удобны периодические процессы: вращение Земли вокруг своей оси, электромагнитное излучение возбужденных атомов и др. Природа наделила человека удивительным свойством интуитивно определять время с помощью биологических часов, которые отсчитывают циклы, примерно равные 24 ч. Такое восприятие времени осуществляется головным мозгом.
Многие крупные достижения в естествознании связаны с разработкой более точных приборов для определения времени. Существующие сегодня эталоны позволяют измерить время с очень высокой точностью: например, относительная погрешность для водородного эталона времени не превышает 5 · 10-15. В последние десятилетия в качестве эталона времени используются атомные часы, в которых источник колебаний не маятник и не кварцевый генератор, а сигналы, обусловленные квантовым переходом электронов между двумя энергетическими уровнями атома. Эти сигналы имеют очень высокую стабильность энергии и частоты колебаний. Сегодня секунда – это промежуток времени, точно равный 9 192 631 770 периодам излучения, каждый из которых соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Возможно, в скором будущем примут новый эталон времени – пульсары, которые по стабильности сигналов не уступают лучшим атомным часам.
Временная характеристика реальных процессов основывается на постулате времени: одинаковые во всех отношениях явления происходят за одинаковое время. Хотя постулат времени кажется естественным и очевидным, его истинность все же относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных часов, поскольку, во-первых, они характеризуются своей точностью и, во-вторых, невозможно создать принципиально одинаковые условия в природе в разное время. Вместе с тем длительная практика естественно-научных исследований позволяет не сомневаться в справедливости постулата времени в пределах той точности, которая достигнута в данный момент времени.
При создании классической механики более трех веков назад И. Ньютон ввел понятие абсолютного, или истинного, математического времени, которое течет всегда и везде равномерно, и относительного времени как меры продолжительности, употребляемой в обыденной жизни и означающей определенный интервал времени: час, день, месяц и т. д.
В современном представлении время всегда относительно. Из теории относительности следует, что при скорости, близкой к скорости света в вакууме, время замедляется (т. е. происходит релятивистское замедление времени) и что сильное поле тяготения приводит к гравитационному замедлению времени. В обычных земных условиях такие эффекты чрезвычайно малы.
Важнейшее свойство времени заключается в его необратимости. Прошлое во всех деталях и подробностях нельзя воспроизвести в реальной жизни – оно забывается. Необратимость времени обусловлена сложным взаимодействием множества природных систем, в том числе атомов и молекул, и символически обозначается стрелой времени, «летящей» всегда из прошлого в будущее. Необратимость реальных процессов в термодинамике связывают с хаотичным движением атомов и молекул.
Понятие пространства гораздо сложнее понятия времени. В отличие от одномерного времени реальное пространство трехмерно, т. е. имеет три измерения. В трехмерном пространстве существуют атомы и планетные системы, выполняются фундаментальные законы природы. Однако выдвигаются гипотезы, согласно которым пространство нашей Вселенной имеет много измерений, хотя наши органы чувств способны ощущать только три из них.
Первые представления о пространстве возникли из очевидного существования в природе твердых тел, занимающих определенный объем. Исходя из него, можно дать следующее определение: пространство выражает порядок сосуществования физических тел. Завершенная теория пространства – геометрия Евклида – создана более 2000 лет назад и до сих пор считается образцом научной теории.
По аналогии с абсолютным временем И. Ньютон ввел понятие абсолютного пространства, которое существует независимо от находящихся в нем физических объектов и может быть совершенно пустым, являясь как бы мировой ареной, где разыгрываются физические процессы. Свойства пространства определяются геометрией Евклида – именно такое представление о пространстве лежит в основе практической деятельности людей. Однако пустое пространство идеально, в то время как реальный окружающий нас мир заполнен различными материальными объектами. Идеальное пространство без материальных объектов лишено смысла даже, например, при описании механического движения тела, для которого необходимо указать другое тело в качестве системы отсчета. Механическое движение тел относительно. Абсолютного движения, как и абсолютного покоя тел, в природе не существует: пространство, как и время, относительно.
Специальная теория относительности объединила пространство и время в единый континуум «пространство – время». Основанием для такого объединения служат принцип относительности и постулат о предельной скорости передачи взаимодействий материальных объектов – скорости света в вакууме, примерно равной 300 000 км/с. Из этой теории следуют относительность одновременности двух событий, происшедших в разных точках пространства, а также относительность измерений длин и интервалов времени, произведенных в разных системах отсчета, движущихся относительно друг друга.
В соответствии с общей теорией относительности свойства пространства – времени зависят от наличия материальных объектов. Любой материальный объект искривляет пространство, которое можно описать не геометрией Евклида, а сферической геометрией Римана или гиперболической геометрией Лобачевского. Предполагается, что вокруг массивного тела при очень большой плотности вещества искривление становится настолько существенным, что пространство – время как бы «замыкается» локально само на себя, отделяя данное тело от остальной Вселенной и образуя черную дыру, которая поглощает материальные объекты и электромагнитное излучение. На поверхности черной дыры для внешнего наблюдения время как бы останавливается. Предполагается, что в центре нашей Галактики находится огромная черная дыра.
Однако есть и другая точка зрения. Так, академик Российской академии наук А. А. Логунов (р. 1926) утверждает, что никакого искривления пространства – времени нет, а происходит искривление траектории движения объектов, обусловленное изменением гравитационного поля. По его мнению, наблюдаемое красное смещение в спектре излучения отдаленных галактик можно объяснить не расширением Вселенной, а переходом посылаемого ими излучения из среды с сильным гравитационным полем в среду со слабым гравитационным полем, в котором находится наблюдатель на Земле.
Концепция атомизма. Дискретность и непрерывность материи. Строение материи интересует естествоиспытателей с античных времен. Так, в Древней Греции обсуждались две гипотезы строения материальных тел. Одна из них – ее предложил древнегреческий мыслитель Аристотель – заключается в том, что вещество делится на более мелкие частицы и нет предела его делимости. По существу, эта гипотеза означает непрерывность вещества. Другая гипотеза выдвинута древнегреческим философом Левкиппом (V в. до н. э.) и развита его учеником Демокритом, а затем его последователем философом-материалистом Эпикуром (341–270 до н. э.). В ней предполагается, что вещество состоит из мельчайших частиц – атомов. Это и есть концепция атомизма, т. е. дискретного квантового строения материи. По Демокриту, в природе существуют только атомы и пустота.
Атомы – это неделимые, вечные, неразрушимые элементы материи. Реальность существования атомов вплоть до конца XIX в. подвергалась сомнению. В то время объяснения многих химических реакций не нуждались в понятии атома. Для них, как и для количественного описания движения частиц, вводилось другое понятие – молекула. Существование молекул экспериментально доказал французский физик Жан Перрен (1870–1942) при наблюдении броуновского движения. Молекула – это наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями. Число атомов в молекуле – от двух (Н2, О2, НF, KCl и др.) до сотен, тысяч и миллионов (витамины, гормоны, белки, нуклеиновые кислоты).
Неделимость атома как составной части молекулы долгое время не вызывала сомнений. Однако к началу XX в. физические опыты показали, что атомы состоят из более мелких частиц. Так, в 1897 г. английский физик Д. Д. Томсон (1856–1940) открыл электрон – составную часть атома. В следующем году он определил отношение его заряда к массе, а в 1903 г. предложил одну из первых моделей атома.
Атомы химических элементов по сравнению с наблюдаемыми телами очень малы: их размер – от 10-10 до 10-9 м, а масса – 10-27-10-25 кг. Атомы имеют сложную структуру и состоят из ядер и электронов. В результате дальнейших исследований выяснилось, что и ядра атомов состоят из протонов и нейтронов, т. е. имеют дискретное строение. Это означает, что концепция атомизма для ядер характеризует структуру материи на ее нуклонном уровне.
В настоящее время принято считать, что не только вещество, но и другие виды материи – физическое поле и физический вакуум – имеют дискретную структуру. Даже пространство и время, согласно квантовой теории поля, в сверхмалых масштабах образуют хаотически меняющуюся пространственно-временную среду с ячейками размером 10-35 м и временем 10-43 с. Квантовые ячейки настолько малы, что их можно не учитывать при описании свойств атомов, нуклонов и т. п., считая пространство и время непрерывными.
Основной вид материи – вещество, находящееся в твердом и жидком состояниях, – воспринимается обычно как непрерывная, сплошная среда. Для анализа и описания свойств такого вещества в большинстве случаев учитывается только его непрерывность. Однако то же вещество при объяснении тепловых явлений, химических связей, электромагнитного излучения и т. п. рассматривается как дискретная среда, состоящая из взаимодействующих между собой атомов и молекул.
Дискретность и непрерывность присущи и другому виду материи – физическому полю. Гравитационное, электрическое, магнитное и другие поля при решении многих физических задач принято считать непрерывными. Однако в квантовой теории поля предполагается, что физические поля дискретны.
Для одних и тех же видов материи характерны и непрерывность, и дискретность. Для классического описания природных явлений и свойств материальных объектов достаточно учитывать непрерывные свойства материи, а для характеристики различных микропроцессов – ее дискретные свойства. Непрерывность и дискретность – неотъемлемые свойства материи.
2.3. Фундаментальные взаимодействия
Виды фундаментальных взаимодействий. Огромное разнообразие природных систем и структур, их особенности и динамизм обусловливаются взаимодействием материальных объектов, т. е. их взаимным действием друг на друга. Именно взаимодействие – основная причина движения материи, поэтому оно, как и движение, универсально, т. е. присуще всем материальным объектам вне зависимости от их природы происхождения и системной организации.
Особенности различных взаимодействий определяют условия существования и специфику свойств материальных объектов. Взаимодействующие объекты обмениваются энергией и импульсом – основными характеристиками их движения. В классической физике взаимодействие определяется силой, с которой один материальный объект действует на другой.
Долгое время считалось, что взаимодействие материальных объектов, находящихся даже на большом расстоянии друг от друга, передается через пустое пространство мгновенно. Такое утверждение соответствует концепции дальнодействия. К настоящему времени экспериментально подтверждена другая концепция – концепция близкодействия: взаимодействия передаются посредством физических полей с конечной скоростью, не превышающей скорости света в вакууме. Эта, по существу, полевая концепция в квантовой теории поля дополняется утверждением: при любом взаимодействии происходит обмен особыми частицами – квантами поля.
Наблюдаемые в природе взаимодействия материальных объектов и систем весьма разнообразны. Однако, как показали физические исследования, все известные взаимодействия относятся к четырем видам фундаментальных взаимодействий: гравитационному, электромагнитному, сильному и слабому.
Гравитационное взаимодействие проявляется во взаимном притяжении любых материальных объектов, имеющих массу. Оно передается посредством гравитационного поля и определяется фундаментальным законом природы, известным как закон всемирного тяготения, сформулированный И. Ньютоном. В соответствии с ним между двумя материальными точками массой m1 и m2, расположенными на расстоянии r друг от друга, действует сила F, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними:
где G – гравитационная постоянная.
Законом всемирного тяготения описывается падение материальных тел в поле Земли, движение планет Солнечной системы, звезд и т. п. В соответствии с квантовой теорией поля переносчиками гравитационного взаимодействия являются гравитоны – частицы с нулевой массой, кванты гравитационного поля.
Электромагнитное взаимодействие обусловливается электрическими зарядами и передается посредством электрического и магнитного полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное – при их движении. Изменяющееся магнитное поле порождает переменное электрическое поле, которое, в свою очередь, является источником переменного магнитного поля.
Благодаря электромагнитному взаимодействию существуют атомы и молекулы, происходят химические превращения вещества. Различные агрегатные состояния вещества, трение и упругость определяются силами межмолекулярного взаимодействия, электромагнитными по своей природе. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики, такими как закон Кулона, закон Ампера и др., и – в обобщенном виде – электромагнитной теорией Максвелла, связывающей электрическое и магнитное поля. Получение, преобразование и применение электрического и магнитного полей, а также электрического тока служат основой для создания разнообразных современных технических средств: электроприборов, радиоприемников, телевизоров, осветительных и нагревательных приборов, компьютеров и т. п.
Согласно квантовой электродинамике, переносчиками электромагнитного взаимодействия являются фотоны – кванты электромагнитного поля с нулевой массой. Во многих случаях они регистрируются приборами в виде электромагнитной волны разной длины. Например, воспринимаемый невооруженным глазом видимый свет, посредством которого отражается основная доля (около 90 %) информации об окружающем мире, представляет собой электромагнитную волну в довольно узком диапазоне длин волн (примерно 0,4–0,8 мкм), соответствующем максимуму интенсивности солнечного излучения.
Сильное взаимодействие обеспечивает связь нуклонов в ядре. Оно определяется ядерными силами, обладающими зарядовой независимостью, короткодействием, насыщением и другими свойствами. Сильное взаимодействие отвечает за стабильность атомных ядер: чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро, тем больше его удельная энергия связи. С увеличением числа нуклонов в ядре и, следовательно, размера ядра удельная энергия связи уменьшается, и ядро может распадаться, что и происходит с ядрами элементов, находящихся в конце таблицы Менделеева.
Предполагается, что сильное взаимодействие передается глюонами – частицами, «склеивающими» кварки, входящие в состав протонов, нейтронов и других частиц.
В слабом взаимодействии участвуют все элементарные частицы, кроме фотона. Оно обусловливает большинство распадов элементарных частиц, взаимодействие нейтрино с веществом и другие процессы. Слабое взаимодействие проявляется главным образом в процессах бета-распада атомных ядер многих изотопов, свободных нейтронов и т. д. Принято считать, что переносчиками слабого взаимодействия являются вионы – частицы с массой примерно в 100 раз большей массы протонов и нейтронов. Вионы обнаружены в 1983 г.
Для количественной характеристики фундаментальных взаимодействий обычно используют безразмерную константу взаимодействия, определяющую величину взаимодействия, и радиус действия (табл. 2.1).
Таблица 2.1
Из таблицы следует, что гравитационное взаимодействие гораздо слабее других фундаментальных взаимодействий. Радиус действия его неограничен. Оно не играет существенной роли в микропроцессах и в то же время является доминирующим для материальных объектов с большими массами (планет, звезд, галактик и т. п.). Электромагнитное взаимодействие гораздо сильнее гравитационного, хотя его радиус действия также неограничен. Для сильного и слабого взаимодействий характерно короткодействие. Сильное взаимодействие проявляется только в пределах размеров ядра (10-15 м), а слабое – на гораздо меньшем расстоянии (10-18 м).
В результате экспериментальных исследований взаимодействий элементарных частиц в 1983 г. обнаружено, что при больших энергиях столкновения протонов (около 100 ГэВ) слабое и электромагнитное взаимодействия не различаются: их можно рассматривать как единое электрослабое взаимодействие. Такое объединение двух фундаментальных взаимодействий (электромагнитного и слабого) было теоретически предсказано в 1960–1970 гг. американскими физиками С. Вайнбергом (1933–1996) и Ш. Глэшоу (1932) и пакистанским физиком А. Саламом (1926), удостоенными Нобелевской премии по физике в 1979 г. Существенный вклад в развитие теории электрослабого взаимодействия внесли нидерландские ученые, лауреаты Нобелевской премии по физике 1999 г. Г. Хуфт и М. Вельтман.
Одна из важнейших задач современного естествознания – создание единой теории фундаментальных взаимодействий, объединяющей не только электромагнитное и слабое, но и сильное, и гравитационное взаимодействия. Решение такой довольно сложной задачи потребует синтеза естественно-научных знаний о материальных объектах разных масштабов – от элементарных частиц до Вселенной. Единая теория фундаментальных взаимодействий обеспечит концептуальное обобщение знаний об окружающем мире.
Предполагается, что при относительно больших энергиях взаимодействия частиц (до 1019 ГэВ) или при чрезвычайно высокой температуре материи все четыре фундаментальных взаимодействия характеризуются одинаковой силой, т. е. представляют собой одно взаимодействие, определяемое «суперсилой». Возможно, такие экстремальные условия существовали в начальный момент зарождения Вселенной. При расширении Вселенной и быстром охлаждении образовавшегося вещества единое взаимодействие разделилось на четыре принципиально отличающихся друг от друга взаимодействия, определивших структурную организацию материи.
Структурная организация материи. Важнейшее свойство материи – ее структурная и системная организация, которая выражает упорядоченность существования материи в виде огромного разнообразия материальных объектов различных масштабов и уровней, связанных между собой единой системой иерархии. Непосредственно наблюдаемые нами тела состоят из молекул, молекулы – из атомов, атомы – из ядер и электронов, атомные ядра – из нуклонов, нуклоны – из кварков. Сегодня принято считать, что электроны и гипотетические частицы кварки не содержат более мелких частиц.
С биологической точки зрения самая крупная живая система – биосфера – состоит из биоценозов, содержащих множество популяций живых организмов различных видов, а популяции образуют отдельные особи, живой организм которых состоит из клеток со сложной структурой, включающих ядро, мембрану и другие составные части.
В современном естествознании множество материальных систем принято условно делить на микромир, макромир и мегамир. К микромиру относятся молекулы, атомы и элементарные частицы. Материальные объекты, состоящие из огромного числа атомов и молекул, образуют макромир. Самую крупную систему материальных объектов составляет мегамир – мир планет, звезд, галактик и Вселенной.
Материальные системы микро-, макро– и мегамира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Пространственные масштабы и размеры (в метрах с точностью до одного порядка чисел) некоторых материальных объектов представлены ниже.
Отношение самого большого размера к самому малому, составляющее сегодня 44 порядка, возрастало и будет возрастать по мере накопления естественно-научных знаний об окружающем нас мире. «Мир наш – только школа, где мы учимся познавать», – справедливо заметил французский философ Мишель Монтень (1533–1592).
Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро– и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях эволюции Вселенной.
Материальные объекты микро-, макро– и мегамира отличаются друг от друга не только своими размерами, но и другими количественными характеристиками. Так, один моль любого вещества (характерное количество вещества для макрообъектов, составляющее, например, для воды 18 г) содержит огромное число молекул или атомов, называемое постоянной Авогадро и примерно равное 6 · 1023 моль-1. Солнце состоит из колоссального числа частиц: 8 · 1056 ядер атомов водорода и 9 · 1055 ядер атомов гелия.
Свойства и особенности материальных объектов микро-, макро– и мегамира описываются разными теориями, принципами и законами. При объяснении процессов в микромире используются принципы и теории квантовой механики, квантовой статистики и т. п. Изучение материальных объектов макросистем основано на законах и теориях классической механики Ньютона, термодинамики и статистической физики, классической электродинамики Максвелла. Вместе с тем многие понятия и концепции (энергия, импульс и др.), введенные в классической физике для описания свойств материальных объектов макромира, с успехом используются для объяснения процессов в микро– и мегамире. Движение планет Солнечной системы описывается законом всемирного тяготения и законами Кеплера. Происхождение и эволюция Вселенной объясняются на основании комплекса естественно-научных знаний, включающих физику элементарных частиц, квантовую теорию поля, теорию относительности и т. п.
Материальные объекты образуют целостную систему лишь в том случае, если энергия связи между ними больше кинетической энергии каждого из них. Энергия связи – это энергия, которую необходимо затратить, чтобы полностью «растащить» систему на отдельные ее составляющие. Величина энергии связи природных систем на различных уровнях организации материи зависит от вида взаимодействия и характера сил, объединяющих материальные объекты в систему. Например, существование в течение миллиардов лет звезд, в том числе и Солнца, обусловливается устойчивым равновесием между энергией взаимного гравитационного притяжения частиц, стремящегося сжать вещество звезды, и энергией их теплового движения, приводящего к его рассеиванию. Объединяющую роль в атомах и молекулах играет электромагнитное взаимодействие.
Существенное различие между материальными объектами микро– и макромира заключается в тождественности микрочастиц и индивидуальности макросистем.
Для микрочастиц выполняется принцип тождественности: состояния системы частиц, получающиеся друг из друга перестановкой частиц местами, нельзя различить ни в каком эксперименте. Такие состояния рассматриваются как одно физическое состояние. Этот квантово-механический принцип характеризует одно из основных различий между классической и квантовой механикой. В классической механике можно проследить за движением отдельных частиц по траекториям и таким образом отличить частицы одну от другой. В квантовой механике тождественные частицы полностью лишены индивидуальности. Однако в природе не существует двух совершенно одинаковых макросистем – все они индивидуальны. Индивидуальность может проявляться и на молекулярном уровне. Например, молекулы этилового спирта и диметилового эфира имеют одинаковые атомный состав и молекулярную массу но различные химические и физические свойства. Такие вещества называются химическими изомерами. Изомерия обнаруживается и для атомных ядер. Нестабильные ядерные изомеры при одинаковом составе ядер имеют различные периоды полураспада.
Фундаментальные физические законы описывают вполне определенные объекты вне зависимости от того, где они находятся. Например, с помощью законов сохранения энергии и импульса можно описать не только движение тел на Земле, но и взаимодействие элементарных частиц, движение планет, звезд и т. п. Атомы везде одинаковы – на Земле и в космическом пространстве. Все это означает, что фундаментальные законы универсальны – они применимы к объектам всего мира, доступным нашим наблюдениям с помощью самых совершенных и чувствительных приборов. Универсальность фундаментальных законов подтверждается экспериментальными результатами многочисленных исследований различных свойств материальных объектов микро-, макро– и мегамира и свидетельствует о материальном единстве природы и Вселенной в целом.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?