Электронная библиотека » Стивен Хокинг » » онлайн чтение - страница 4


  • Текст добавлен: 21 декабря 2020, 02:58


Автор книги: Стивен Хокинг


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Кип Торн
Черные дыры: самые яркие объекты во вселенной – но никакого света!

Кип Стивен Торн родился в Логане, штат Юта, 1 июня 1940 года. Он получил степень бакалавра в Калтехе в 1962 году и докторскую степень в Принстонском университете в 1965 году. В 1970 году он стал профессором теоретической физики, в 1981 году занял должность Кеннановского профессора, а в 1991 году – Фейнмановского профессора теоретической физики. В июне 2009 года Торн ушел в отставку (оставшись почетным Фейнмановским профессором), чтобы начать карьеру в литературе и кино, а также продолжать научные исследования. Его главный нынешний проект – учебник по классической физике в соавторстве с Роджером Блендфордом, а главный кинопроект – фильм «Интерстеллар» (режиссер Кристофер Нолан). Основная тема нынешних исследований Торна – изучение нелинейного динамического поведения искривленного пространства-времени с использованием компьютерного моделирования и аналитических вычислений. Исследования Торна посвящены физике гравитации и астрофизике, с упором на релятивистские звезды, черные дыры и гравитационные волны. В конце 60-х и начале 70-х годов он заложил основы теории пульсации релятивистских звезд и излучаемых ими гравитационных волн. Торн разработал математический аппарат, с помощью которого астрофизики анализируют генерацию гравитационных волн, и занимался разработкой новых технических идей и планов обнаружения таких волн. Вместе с Вайссом и Древером он основал проект LIGO. В 1980–2000-х годах Торн и его рабочая группа подготовили теоретическое обоснование LIGO, в том числе идентифицировали классы источников гравитационных волн, которые можно изучать с помощью LIGO. Они также предложили методы обработки данных LIGO и разработали дефлекторы для управления отражением света в ее каналах. Торн был научным руководителем у 52 аспирантов, защитивших диссертации по физике. Совместно с Джоном Ф. Уилером и Чарльзом У. Миснером в 1973 году Торн написал учебник «Гравитация», по которому большая часть нынешнего поколения ученых изучала общую теорию относительности. Он также автор и соавтор книг «Теория гравитации и гравитационный коллапс» (1965) и «Черные дыры: парадигма мембраны» (1986), «Черные дыры и складки времени: дерзкое наследие Эйнштейна» (1994). Торн получил множество медалей и премий, в том числе премию Лилиенфельда, медаль Карла Шварцшильда, премию Робинсона за работы по космологии, медаль Альберта Эйнштейна, золотую медаль им. Нильса Бора ЮНЕСКО и премию за научную литературу «Фи Бета Каппа»[9]9
  За создание обсерватории LIGO, с помощью которой в 2015 году были впервые зарегистрированы гравитационные волны от сливающихся черных дыр, в 2017 году Кип Торн (совместно с Р. Вайссом и Б. Бэришем) получил Нобелевскую премию по физике. – Прим. ред.


[Закрыть]
.

После того как массивная звезда исчерпывает запас ядерного топлива, термоядерные реакции которого поддерживают ее температуру, внутреннее давление в ней начинает падать. Гравитация пересиливает это давление, и звезда все быстрее начинает сжиматься к центру. Она становится меньше и меньше, как бы взрываясь вовнутрь, а гравитация на ее уменьшающейся поверхности растет (повинуясь ньютоновскому закону обратных квадратов). В конечном счете, когда звезда сжимается до пары десятков километров, ее гравитационное притяжение становится настолько огромным, что ничто, даже свет, не может ее покинуть. Звезда создает вокруг себя черную дыру. Сама звезда внутри черной дыры продолжает сжиматься и разрушается сингулярностью бесконечной хаотической гравитации, что находится в центре черной дыры. Этот процесс недвусмысленно предсказан эйнштейновской общей теорией относительности.

В нашей галактике Млечный Путь миллионы черных дыр, во вселенной – триллионы, и каждая из них может опустошать окружающее космическое пространство.

Если взорвавшаяся вовнутрь звезда была частью двойной системы, то черная дыра унаследует звезду-компаньона. Гравитация черной дыры притягивает газ соседней звезды, и он закручивается по спирали, ведущей к дыре, создавая газовый диск, настолько горячий, что он генерирует не столько видимый свет, сколько рентгеновское излучение. Астрономы наблюдают множество таких дисков, закручивающихся вокруг тяжелых и темных объектов – очевидно, черных дыр.

В центре эллиптических и спиральных галактик, таких как Млечный Путь, каким-то образом сформировались сверхмассивные черные дыры – может, вследствие взрыва сверхмассивной звезды или слияния множества более мелких черных дыр. Эти гигантские дыры, массой от миллиона до десяти миллиардов Солнечных масс и размером со всю Солнечную систему, могут разрывать звезды на части, формируя вокруг себя горячие газовые диски из ошметков этих разорванных звезд. Магнитные поля, содержащиеся в таком диске, взаимодействуют с водоворотом искривленного пространства, который торчит из черной дыры (и об этом я расскажу позже), исторгая гигантские высокоэнергичные струи (джеты). Эти струи вырываются в межгалактическое пространство и иногда обладают большей светимостью, чем все звезды галактики вместе взятые! Астрономы наблюдали и изучали сотни таких джетов и окружающих их дисков, но увидеть находящуюся в центре дыру не могли, потому что она, собственно, черная. Она не излучает свет.

Из чего сделана черная дыра? Не из вещества, как я или вы, но из искривленного пространства и времени.

Давайте я объясню это по аналогии. Представьте себе детский батут – большую резиновую простыню, закрепленную на высоких стойках. Большой камень, положенный в центр такого батута, заставляет резину прогибаться, как показано на рисунке 1. А теперь представьте, что вы – муравей, слепой муравей. Резиновое полотно – ваша вселенная, и вы исследуете ее, измеряя ее форму. Вы измеряете длину окружности, содержащей расположенный в ее центре камень. Вы проходите по всей окружности, чтобы измерить ее, а затем принимаетесь за диаметр круга. Вы идете, и идете, и идете по диаметру. Вы обнаруживаете, что это очень большое расстояние – что диаметр, на самом деле, намного больше длины окружности. Будучи умным муравьем, вы заключаете, что пространство вашей вселенной искривлено. Его нельзя описать плоской геометрией Евклида, скорее, оно имеет геометрию искривленного резинового полотна.

Если бы мы в нашей вселенной могли сделать двумерный разрез по экватору черной дыры и измерить ее форму, мы обнаружили бы, что она очень похожа на прогнувшееся резиновое полотно из воображаемой муравьиной вселенной: диаметр больше длины окружности, как видно на рисунке 2. Пространство дыры изгибается вниз в некое многомерное «гиперпространство», которое не является частью нашей вселенной. И в центре, вместо тяжелого камня, находится так называемая сингулярность, где пространство искривлено бесконечно резко – зловещая сингулярность, которая разрушает любую материю, заплутавшую в ее окрестностях.


Рис. 1. а) Батут с камнем по центру и муравей, изучающий на ощупь его форму. b) Пространство вокруг черной дыры. Вид из гиперпространства с бóльшим числом измерений, не являющегося частью нашей вселенной.


Рис. 2. а) Я падаю в черную дыру, передавая вам на ходу микроволновые сигналы. b) Искривление времени и движение пространства вокруг черной дыры.


Посмотрите на рисунок 2а. Предположим, я падаю в черную дыру и передаю вам наружу микроволновые сигналы. Когда я достигну края черной дыры (он называется горизонтом), гравитационное поле вокруг меня станет настолько сильным, что мой сигнал больше не сможет его покинуть. Внутри горизонта сигналы будут вместе со мной затягиваться вниз, в сингулярность. Я плачу за открытие (что бы я ни увидел за горизонтом) страшную цену – я не могу опубликовать свои наблюдения. А еще я умираю, и вместе со мной – мои открытия.

Горизонт событий и его всеподавляющая гравитация на самом деле создаются экстремальным искривлением времени: вблизи горизонта скорость времени замедляется, его бег становится шагом, как показано на рисунке 2b. Если бы вы подлетели к горизонту черной дыры и провели рядом с ним несколько дней, а затем вернулись домой на Землю, вы бы обнаружили, что на Земле прошли миллионы лет. Вы состарились всего на несколько дней, но все ваши друзья и их внуки давно мертвы.

Согласно эйнштейновскому закону искажения времени «всё любит жить там, где старение проходит медленнее, и гравитация притягивает всё именно в такие места». На Земле время течет на четыре стомиллионных доли процента медленнее, чем в открытом космосе, и это (если верить Эйнштейну) достаточно, соответствует гравитации, которая всех нас здесь держит. Поскольку замедление времени становится огромным, когда человек приближается к горизонту черной дыры, это говорит о том, что гравитационное притяжение там тоже становится огромным. Ровно на горизонте время полностью останавливается, и притяжение там бесконечно.

Внутри горизонта время продолжает течь. Но, как ни странно, оно течет в «пространственном» направлении: вниз, к сингулярности в центре дыры. Вот почему нельзя покинуть черную дыру: чтобы это сделать, объект должен двигаться вверх, то есть путешествовать назад во времени, а это невозможно. Такое объяснение черноты черной дыры эквивалентно объяснению «бесконечного гравитационного притяжения». Обе эти модели завязаны на эйнштейновский закон искривления времени.

На рисунке 3 вы видите точную карту пространства-времени, закручивающегося вокруг быстро вращающейся черной дыры, предсказанную теорией относительности Эйнштейна. Форма этой двумерной поверхности отражает пространство черной дыры в экваториальной «плоскости» (вид из гиперпространства).

Градиентом обозначено замедление времени у горизонта событий. Горизонт обозначен черным внизу (конечно, если бы мы смотрели на трехмерную модель, это была бы сфера). Белые стрелки обозначают направление закручивания пространства-времени, вызванное вращением черной дыры.


Рис. 3. Карта искривленного пространства-времени у быстро вращающейся черной дыры.


Если две массивные звезды вращаются друг вокруг друга в двойной системе и обе звезды взрываются вовнутрь, образуя черные дыры, мы получаем черные дыры, вращающиеся вокруг друг друга. По мере вращения они создают рябь в ткани пространства. Эта рябь распространяется наружу, в космос, как круги по воде от брошенного в воду камешка. Такая рябь называется гравитационными волнами. Эти волны расходятся по вселенной со скоростью света, неся детальное, хотя и закодированное изображение своего источника – двойной черной дыры. Гравитационные волны также переносят энергию.

Поскольку вращающиеся черные дыры теряют энергию, передавая ее гравитационным волнам, они постепенно сближаются, затем сталкиваются и сливаются, образуя одну большую черную дыру, как показано на рисунке 4. В момент столкновения черные дыры испускают невероятно сильные гравитационные волны. Светимость (мощность, излучаемая в единицу времени) таких волн в 10 000 раз больше, чем светимость всех звезд во вселенной вместе взятых. Светимость десяти тысяч вселенных, и ни лучика света! Только гравитационные волны.


Рис. 4. В представлении художника так выглядят две сходящиеся черные дыры: они сталкиваются и сливаются в одну.


Если черные дыры имеют небольшие массы, скажем, в 10 раз больше массы Солнца, то их столкновение и излучение огромных волн будет длиться совсем недолго: несколько миллисекунд. Если дыры сверхмассивные – например, от ядер двух галактик, которые тоже когда-то столкнулись и слились воедино, – столкновение и излучение волн длится дольше: несколько дней или даже год. Эти волны несут детальную, закодированную картину столкновения, картину, которую мы хотели бы извлечь и изучить. К этому я еще вернусь.

Торнадо (или водовороты, как угодно) скручивающегося пространства, прикрепленные к каждой черной дыре в двойной системе, ведут себя при столкновении совершенно поразительным образом. Чтобы объяснить этот процесс, стоит сначала точнее описать сами эти торнадо.


Рис. 5. Два человека над полюсами черной дыры.


Представьте себе двух человек, находящихся над полюсами черной дыры, как показано на рисунке 5. Ноги верхнего человека ближе к дыре, чем его голова, поэтому они затягиваются вихрем пространства дыры быстрее, чем его голова. В результате голова видит, как ноги скручиваются против часовой стрелки, а – заметьте! – ноги видят, как голову скручивает против часовой стрелки. Это как выжимать воду из мокрого полотенца: ваша левая рука видит правую, совершающую поворот против часовой стрелки, а ваша правая рука, глядя на левую, видит, что та вращается против часовой стрелки. В этом смысле пространство на северном полюсе дыры сворачивается против часовой стрелки.

Эти скручивания были недавно обнаружены при разборе уравнений Эйнштейна группой молодых ученых под моим руководством. Мы открыли, что это скручивание направляется (иными словами, контролируется) штуками, которые мы назвали «вихревыми линиями», одолжив это название из механики жидкости. Есть вихревые линии, движущиеся против часовой стрелки, собранные в единый вихрь, выходящий из северного полюса черной дыры (на рисунке показаны пунктиром) и вихревые линии, движущиеся по часовой стрелке, точно так же выходящие из южного полюса (на рисунке показаны сплошными линиями). Это похоже на схему магнитных линий, выходящих из полюсов Земли, но вместо того, чтобы поворачивать стрелку компаса, как это делают линии магнитного поля, вихревые линии контролируют само пространство, скручивая все на своем пути.

С помощью суперкомпьютера моя группа создала модель движения по спирали и столкновения двух вращающихся черных дыр. Оказалось, что когда дыры сталкиваются и сливаются, четыре вихря (по одному на каждый полюс каждой дыры) размещаются на горизонте событий новообразованной черной дыры. Сама эта черная дыра вращается, выплескивая эти четыре вихря наружу и в стороны, подобно струям воды из вращающегося дождевателя – это изображено на рисунке 6а. По мере продвижения в открытый космос эти вихри становятся гравитационными волнами.


Рис. 6. a) Четыре воронки вращающегося пространства показываются из получившейся в результате слияния вращающейся черной дыры. b) Вихревые кольца, выбрасываемые получившейся в результате слияния невращающейся черной дырой.


Если вместо того чтобы вместе двигаться по спирали бинарной орбиты, черные дыры сталкиваются «лоб в лоб», четыре прикрепленных в новообразованной дыре вихря не могут двинуться наружу, в космос. Каждый из вихрей мечется между движением по часовой и против часовой стрелки. Каждый раз при перемене направления черная дыра выбрасывает тороидальное вихревое кольцо, которое напоминает кольцо дыма (рис. 6b). По мере того как эти кольца двигаются наружу, они тоже становятся гравитационными волнами.

Мощность вихрей проиллюстрирована на следующем слайде, где показаны результаты компьютерной симуляции вращающейся черной дыры, разрывающей нейтронную звезду-компаньона. Звезда в 1,5 раза тяжелее Солнца, ее диаметр – 25 километров. Черная дыра в 4,5 раза тяжелее Солнца и вращается вокруг оси, отмеченной линией. Звезда и черная дыра первоначально вращаются друг вокруг друга в горизонтальной плоскости (рис. 7а). По мере обращения по орбите они теряют энергию (которая переходит в гравитационные волны) и, следовательно, движутся по спирали внутрь. Когда они приближаются друг к другу, гравитация черной дыры начинает разрывать звезду на части (b), и затем вихри выбрасывают разрушающуюся звезду вверх, в плоскость экватора дыры (перпендикулярно линии (c и d)). Представьте себе мощность, необходимую, чтобы выбросить 1,5 солнечной массы вещества, обладающего плотностью атомного ядра, вверх с горизонтальной плоскости в экваториальную плоскость дыры! Впечатляюще.



Рис. 7. Вращающаяся черная дыра разрывает нейтронную звезду, состоящую из ядерного вещества.


Согласно симуляции, которую в Корнеллском университете создал Мэтт Дайез, около 70 % вещества разрушенной звезды сразу поглощается черной дырой. Оставшиеся 30 % попадают в диск очень горячего газа, который испускает короткий всплеск нейтрино и гамма-излучения, а затем – яркий свет.

Скоординированные наблюдения за источниками гравитационных волн, нейтрино, гамма-излучения и света позволят многое узнать о черной дыре и ее вихрях, нейтронной звезде и ее ядерном веществе и о том, как все эти элементы ведут себя при масштабном столкновении. Затем (очень важная стадия) эти наблюдения необходимо будет сравнить с нашими компьютерными моделями. Мы называем такой захватывающий подход «многоканальной астрономией» и планируем работать в этом ключе с 2017 года.

Как можно обнаружить гравитационные волны и наладить наблюдение за ними? В каждой волне есть скручивающие пространство вихри, о которых мы говорили. Но по мере путешествия в межгалактическом пространстве вихри становятся настолько слабыми, что мы не можем засечь их с помощью доступных технологий.

К счастью, эти волны также растягивают и сжимают само пространство. Это растяжение и сжатие также довольно небольшое, но оно идеально подходит для обнаружения и мониторинга методом лазерной интерферометрии. В соответствии с этим, в 1983 году мы с коллегами Райнером Вайссом (из Массачусетского технологического института) и Роном Древером (из Калифорнийского технологического института) начали проект LIGO – лазерно-интерферометрической гравитационно-волновой обсерватории.

Концепция детекторов гравитационных волн LIGO схематически изображена на рисунке 8. Четыре зеркала (каждое весом в 40 кг) закреплены на подвесных опорах. Два зеркала ориентированы в одну сторону (скажем, по направлению восток – запад), а другие два ориентированы в перпендикулярном направлении (скажем, север – юг), и зеркала каждого рукава разнесены на 4 километра (которые обозначены на рисунке буквой L). Когда приходит гравитационная волна, она одновременно раздвигает зеркала восток – запад и сдвигает зеркала север – юг на одинаковое ничтожное расстояние: примерно 10-17 см. По мере того как волна переходит от своего гребня к впадине, направление сжатия и растяжения пространства меняется, а затем меняется опять и так далее. Временные промежутки следуют некоторому шаблону (форме волны), который несет в себе закодированную информацию об источнике волны.


Рис. 8. Лазерно-интерферометрическая гравитационно-волновая обсерватория


В обсерватории LIGO эти движения отслеживаются с помощью лазерного луча – лазерной метрологии сверхвысокой точности, а изображение источника гравитационной волны извлекается из наблюдаемой формы волны путем сравнения с компьютерными моделями.

Вайсс, которому принадлежит идея этого проекта, – гениальный ученый. Несколько лет я был настроен чрезвычайно скептически, я не думал, что это когда-либо сработает. Я был не прав. Но чтобы понять мой скептицизм, подумайте о том, насколько незначительны движения этих зеркал. Толщина человеческого волоса примерно 10-2 см. Разделите эту цифру на 100 и вы получите длину волны света, используемую в LIGO – один микрон. Разделите это на 10 000 и получите диаметр атома – самую малую величину, когда-либо запечатленную микроскопом. Разделите это еще на 100 000 и получите диаметр ядра атома. А теперь разделите это еще на 1000 и получите движения, которые засекает LIGO: 10–17 сантиметра!

Расстояние настолько мало, что на этом уровне движения зеркал LIGO регулируются законами не классической, а скорее квантовой физики. Например, принцип неопределенности Гейзенберга гласит, что сам акт столь точного измерения местоположения зеркала весом 40 килограммов неизбежно нарушит его скорость на величину, различимую для LIGO. Мы никогда еще не видели, чтобы объект размером с человека вел себя квантово-механически. В LIGO мы собираемся сделать это в течение следующих нескольких лет, и для этого мы используем принципы нового раздела науки – квантовой теории информации. Я и мои студенты провели большую часть 1980-х годов, теоретически исследуя необходимую технологию, а в начале 2000-х, наконец, у нас появились первые практические разработки.

Проект LIGO сейчас приближается к зениту. В 1990-х годах мои коллеги-экспериментаторы под руководством Барри Бариша (из Калтеха) сконструировали оборудование для размещения наших детекторов гравитационных волн, а с 2000 по 2005 год они установили детекторы первого поколения и тщательно калибровали их, пока не достигли нужной чувствительности. С 2005 по 2010 год мы проводили первоначальный поиск космических гравитационных волн не только от сталкивающихся черных дыр, но и от других источников. Мы ничего не нашли, но это было ожидаемо.

Когда мы с коллегами представляли проект LIGO, мы предупреждали, что детекторы первого поколения могут быть недостаточно хороши, чтобы засечь волны. Тем не менее, их необходимо было сконструировать, получить опыт работы с ними для создания детекторов второго поколения (Advanced LIGO), которые намного сложнее технически и будут обладать куда большей чувствительностью – достаточной, чтобы увидеть богатое разнообразие гравитационных волн. Наша группа экспериментаторов начала установку Advanced LIGO в октябре 2010 года, и дело идет очень неплохо. К 2017 году, а возможно, и раньше, эти детекторы должны зарегистрировать много волн. Вкупе с аналогичными детекторами в Европе (проект Virgo французов, итальянцев и голландцев, проект Geo Project немцев и британцев) и другими астрономическими инструментами LIGO знаменует вступление в новую эру мультиканальной астрономии.

LIGO и другие подобные обсерватории смогут наблюдать черные дыры – при условии, что эти дыры легче тысячи солнц. Боле тяжелые черные дыры – сверхмассивные дыры в центрах галактик – создают гравитационные волны с куда большей диной волны (порядка расстояния между Землей и Луной или Землей и Солнцем) и гораздо более низкой частотой (один цикл за минуты, или часы, или большие промежутки времени). Такие волны мы планируем обнаруживать и наблюдать с помощью LIGO-подобного детектора в космосе: три независимых космических аппарата, оснащенных лазерными лучами. Европейское космическое агентство (ЕКА) планирует космическую миссию такого рода – она называется LISA (лазерная интерферометрическая космическая антенна) – первый пробный полет планируется в 2014 году. Американское космическое агентство NASA раньше было партнером ЕКА в LISA, но было вынуждено отказаться от участия в этой и в ряде других миссий из-за огромных перерасходов в проекте космического телескопа имени Джеймса Уэбба.

Для еще более тяжелых черных дыр, которые весят миллиарды, а не миллионы Солнц, необходим детектор третьего типа. Их волны имеют длину, намного превышающую по размерам Солнечную систему, и долгий цикл – от месяцев до лет. Такие огромные гравитационные волны можно искать с помощью LIGO-подобных детекторов, в которых одно из «зеркал» (на самом деле, просто движущаяся масса) – это наша Земля, а второе – нейтронная звезда – пульсар в далеком межзвездном пространстве. Радиотелескопы на Земле измеряют радиоимпульсы от десятков таких пульсаров, ища крошечные нарушения во времени прихода импульсов, вызванные гравитационными волнами. Эта международная коллаборация по исследованию радиопульсаров (International Pulsar Timing Array), вероятно, зарегистрирует первые гравитационные волны в течение следующих десяти лет, или пяти, если нам повезет[10]10
  На сегодня такие события еще не зарегистрированы. – Прим. ред.


[Закрыть]
.

Черные дыры состоят из искривленного пространства и времени – и это искривление демонстрирует множество интересных качеств и эффектов. Я рассказал вам лишь про один из них: вихри скручивающегося пространства, сталкивающиеся и генерирующие кольца или спирали гравитационных волн, летящих наружу из черных дыр. Из черных дыр также исходят так называемые тендекс-линии. Они интереснейшим образом растягивают и сжимают пространство и также участвуют в генерации гравитационных волн.

Численное моделирование – мощный инструмент для теоретических исследований этих вихрей и тендексов. Наблюдения гравитационных волн позволят сделать выводы об их природе и покажут нам все их богатое разнообразие и их влияние на вселенную. Эти инструменты – численное моделирование и детекторы гравитационных волн – открывают золотую эру в исследованиях черных дыр.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации