Электронная библиотека » Стивен Вайнберг » » онлайн чтение - страница 4

Текст книги "Первые три минуты"


  • Текст добавлен: 2 марта 2020, 11:41


Автор книги: Стивен Вайнберг


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

Рис. 6. Размер горизонта в расширяющейся Вселенной. Сферы условно изображают космос через равные промежутки времени. Свет от событий, находящихся за «горизонтом» заданной точки P, еще не успел ее достичь. Область Вселенной, ограниченная «горизонтом», изображена здесь с помощью незаштрихованных «полярных шапок». Расстояние от P до «горизонта» растет прямо пропорционально времени, а «радиус» Вселенной – пропорционально времени в степени 1/2, что соответствует радиационно-доминированной стадии. Следовательно, чем дальше мы уходим в прошлое, тем меньшую область Вселенной охватывает «горизонт»

3. Реликтовое излучение

Прослушав историю, поведанную в предыдущей главе, астрономы прошлого бы одобрительно закивали. Благо обстановка знакомая: наблюдатели, невооруженным глазом взирающие на ночное небо, где «горит Медведица Большая», телескопы (только большие), вглядывающиеся туда же с вершин гор в Калифорнии и Перу… Как я уже говорил в предисловии, обо всем этом рассказывали и много раз до меня, и более подробно.

Теперь же мы перейдем к другой области астрономии: расскажем историю, на которую еще десять лет назад не было и намека. Перестав пока наблюдать свет, излученный галактиками вроде нашей несколько сотен миллионов лет назад, займемся исследованием диффузного фона радиопомех – реликта, тянущегося почти от самого начала мироздания. Обстановка тоже поменяется: поговорим об аэростатах и зондах, летающих над земной атмосферой, перенесемся на крыши университетских зданий физических факультетов и на поля на севере Нью-Джерси.

В 1964 г. в собственности «Белл Телефон Лабораториз» имелась необычная радиоантенна, расположенная на Кроуфорд-Хилле в Холмделе, штат Нью-Джерси. В первую очередь она предназначалась для связи со спутником Echo, однако благодаря своему шестиметровому рупорному отражателю со сверхнизким уровнем шума нашла свое применение и в радиоастрономии. Именно с ее помощью два радиоастронома – Арно А. Пензиас и Роберт В. Вильсон – решили попытаться измерить интенсивность радиоволн, испускаемых нашей Галактикой на высоких галактических широтах, т. е. вне плоскости Млечного Пути.

Наблюдения такого рода всегда сопряжены с известными трудностями. Чтобы охарактеризовать радиоизлучение нашей Галактики (как и большинства астрономических радиоисточников), лучше всего подходит слово шум. Он очень напоминает те помехи, которые в грозу перебивают сигналы от радиостанций. Радиошум весьма непросто отличить от электрического, который неизбежно возникает из-за хаотического движения электронов как в самой антенне, так и в усилительных цепях. Кроме того, на него накладываются еще и помехи от земной атмосферы. Правда, проблема почти снимается, если нас интересуют «компактные» источники – например, звезда или далекая галактика. В этом случае антенну достаточно перевести с источника на соседний участок чистого неба. Любой паразитный шум – от самой радиотехнической конструкции, усилителя или от земной атмосферы – будет иметь примерно одинаковую величину вне зависимости от того, направлена антенна на источник или нет. Поэтому он сойдет на нет, если вычесть друг из друга две картинки. Пензиас и Вильсон, однако, собирались измерять радиошум от нашей собственной Галактики – т. е., по сути, излучение самого неба. Поэтому, прежде чем приступить к наблюдениям, необходимо было во что бы то ни стало установить все возможные источники электрического шума в приемнике.

В предыдущих испытаниях антенна шумела чуть больше, чем ожидалось, но это расхождение, казалось, можно было отнести к электрическим помехам в усилительных цепях. Чтобы разобраться с этой проблемой, Пензиас и Вильсон задействовали так называемый метод холодной нагрузки. Они решили сравнить сигнал, выдаваемый антенной, с сигналом от специально подготовленного источника, охлажденного с помощью жидкого гелия до примерно четырех градусов выше абсолютного нуля. Электрический шум от усилителя тогда для обоих случаев оказался бы одним и тем же, и, сравнивая два сигнала, можно было бы понять, какую мощность выдает сама антенна. Измеренная таким образом, она складывалась бы из помех, вносимых радиотехнической конструкцией, земной атмосферой, и из излучения астрономического источника радиоволн.

Пензиас и Вильсон предполагали, что электрические помехи от самой установки будут очень малыми. Начать проверку этой гипотезы они решили с измерений на сравнительно короткой длине волны (7,35 см), на которой радиошумом Галактики можно было пренебречь. На этих волнах естественным образом следовало ожидать помех, вносимых земной атмосферой, сигнал от которой имеет характерную зависимость от направления: чем бо́льшую толщу пронизывает «луч зрения», тем мощнее будут атмосферные шумы. Минимум достигается, когда антенна смотрит в зенит, а максимум – если направить ее к горизонту. Зная об этом, думали наблюдатели, можно вычесть «вклад» атмосферы, и тогда антенна будет почти «молчать». Таким образом было бы доказано, что электрическими помехами от радиотехнической конструкции можно пренебречь. А после этого можно было бы приступать к наблюдениям на более длинных (около 21 см) волнах, на которых галактический сигнал, как ожидалось, должен иметь уже заметную величину. (Для справки: радиоволны с длинами до 1 м – в том числе 7,35 и 21 см – известны как «микроволновое излучение»: они короче волн высокочастотного диапазона, в котором работали радары в начале Второй мировой войны.)

Однако весной 1964 г. Пензиас и Вильсон с удивлением обнаружили, что на волне 7,35 см независимо от направления слышен довольно интенсивный микроволновый шум. Эти «помехи» не зависели ни от времени суток, ни, как выяснилось позже, от времени года. Вряд ли они шли от нашей Галактики. Если бы это было так, то от гигантской галактики M31 в Андромеде, по многим параметрам схожей с Млечным Путем, наверняка тоже шло бы мощное микроволновое излучение, которое можно было бы зарегистрировать. Наконец, поскольку интенсивность этого шума (если предположить его астрофизическое происхождение) не зависела от направления, Млечный Путь, скорее всего, не мог быть его источником. Значит, его излучала какая-то гораздо более крупная область Вселенной.

Безусловно, в первую очередь надо было заново проверить антенну: может быть, она шумит сильнее, чем предполагалось изначально? Например, было известно, что ее воронку облюбовала пара голубей. Последних поймали, отослали в подразделение компании в Уиппани, там выпустили на волю, но через несколько дней те вернулись в антенну в Холмделе. Их снова поймали и применили уже более жесткие меры. Однако за время пребывания в своем «антенном гнезде» голуби успели покрыть воронку, как деликатно выразился Пензиас, «белым диэлектриком», который при комнатной температуре вполне мог служить источником электрического шума. В начале 1965 г. антенну удалось разобрать и почистить ее рупор. Но эта операция, как и предыдущие, понизила уровень шума очень незначительно. Загадка оставалась нерешенной: откуда идут эти микроволновые помехи?

Единственной доступной для измерения величиной у Пензиаса и Вильсона была интенсивность наблюдаемых ими радиопомех. Обсуждая ее, исследователи использовали принятую среди радиоинженеров терминологию. Последняя, как оказалось, имела прямое отношение к разгадке тайны. Начнем с того, что любое тело, имеющее определенную температуру выше абсолютного нуля, излучает радиошум, вызываемый тепловым движением электронов этого тела. Интенсивность радиоизлучения внутри ящика с непрозрачными стенками на данной длине волны зависит только от температуры стенок: чем она выше, тем интенсивнее помехи. Таким образом, описывая интенсивность радиоизлучения, наблюдаемого на какой-то длине волны, можно ввести понятие «эквивалентной температуры» – такой, до которой нужно нагреть стенки ящика, чтобы радиошум внутри него имел интенсивность, аналогичную наблюдаемой. Конечно, радиотелескоп – это не термометр. Он регистрирует излучение, измеряя слабые токи, возникающие в электрических цепях приемника под действием падающих радиоволн. Когда радиоастроном говорит, что он зарегистрировал излучение с такой-то эквивалентной температурой, это лишь означает, что антенна, будучи помещена в непрозрачный ящик, нагретый до этой температуры, покажет ту же интенсивность радиошума. В ящике эта антенна или нет – уже другой вопрос.

(Предвидя возражения профессионалов, поясню: радиоинженеры часто говорят об интенсивности радиоизлучения в терминах так называемой антенной температуры, несколько отличающейся от «эквивалентной». Тем не менее для длин волн и интенсивностей, с которыми работали Пензиас и Вильсон, оба эти понятия практически тождественны.)

Итак, эквивалентная температура обнаруженных Пензиасом и Вильсоном радиопомех оказалась равной 3,5 градуса выше абсолютного нуля (точнее, между 2,5 и 4,5 градуса). Температуры относительно абсолютного нуля, а не точки плавления льда отсчитываются по шкале Кельвина. То есть наблюдаемый Пензиасом и Вильсоном радиошум имел «эквивалентную температуру» в 3,5 Кельвина (сокращенно – 3,5 К). Это было гораздо больше, чем ожидалось, хоть и очень мало по абсолютной шкале. Неудивительно, что исследователи долго размышляли над этим результатом, прежде чем его опубликовать. И уж, конечно, тогда никто не мог предположить, что он ознаменует собой величайший – после открытия красного смещения галактик – скачок в космологии.

Происхождение таинственного микроволнового шума вскоре начало проясняться – не без помощи «невидимой коллегии» астрофизиков. Пензиас как-то позвонил – совсем по другому вопросу – радиоастроному Бернарду Бурке из Массачусетского технологического института (МИТ). Тот от своего коллеги Кена Тернера из Института Карнеги знал о докладе, который в Университете Джонса Хопкинса прочитал молодой принстонский теоретик Ф. Дж. Э. Пиблс. Последний утверждал, что от ранней Вселенной должно было остаться фоновое радиоизлучение с эквивалентной температурой порядка 10 К. Кроме того, Бурке был в курсе, что Пензиас измеряет температуры радиошумов, поэтому заодно спросил, как идут наблюдения. Пензиас ответил, что в основном все в порядке, однако в результатах есть нечто не до конца понятное. И Бурке посоветовал Пензиасу обратиться к физикам из Принстона, у которых могли быть интересные идеи по поводу того, что регистрирует антенна.

В своем докладе, а также в препринте, написанном в марте 1965 г., Пиблс обсуждал излучение, которое могло сохраниться со времен ранней Вселенной. В общее понятие «излучение», конечно, входят электромагнитные волны всех длин: не только радиоволны, но и инфракрасный свет, и видимый, и ультрафиолет, и рентгеновские лучи, и очень коротковолновое излучение, известное как гамма-излучение (см. табл. на с. 213). Четких границ между этими видами излучений не существует – с изменением длины волны одна разновидность постепенно переходит в другую. Пиблс отмечал, что, если бы в первые минуты своей жизни Вселенная не была заполнена мощным электромагнитным фоном, ядерные реакции протекали бы настолько стремительно, что львиная доля имеющегося водорода «переплавилась» бы в тяжелые элементы. Но это противоречит наблюдениям: современная Вселенная на три четверти состоит из водорода. Убавить огонь в этом ядерном котле могло предположительно излучение огромной эквивалентной температуры на коротких волнах. Оно бы тут же разбивало рождающиеся атомные ядра.

Мы еще увидим, что в процессе дальнейшего расширения это излучение никуда не исчезает – просто его эквивалентная температура падает обратно пропорционально размеру Вселенной. (Мы покажем, что это на самом деле проявление красного смещения, о котором мы говорили в предыдущей главе.) Следовательно, сейчас Вселенная тоже заполнена излучением, только его эквивалентная температура сегодня во много-много раз меньше, чем была в первые минуты. Пиблс оценил, какова должна была быть температура излучения в ранней Вселенной, чтобы количество произведенного тогда гелия и тяжелых элементов не превысило известные пределы. А зная эту величину, он посчитал его современную температуру, получившуюся равной 10 К.

Эта цифра оказалась несколько завышенной: вскоре Пиблс и другие провели более подробные вычисления и выдали более близкое к реальности число (об этом мы расскажем в главе 5). Препринт Пиблса в своей первой версии так и не был опубликован. Однако сделанный в нем вывод был в общих чертах верен: зная, сколько водорода во Вселенной сейчас, мы вынуждены заключить, что в первые мгновения существования в ней должно было быть невероятно много излучения, из-за которого тяжелые элементы не могли образовываться в больших количествах. С тех пор из-за расширения Вселенной эквивалентная температура излучения упала до считаных градусов Кельвина, и теперь оно представляется нам в качестве фоновых радиопомех, приходящих с равной интенсивностью со всех направлений. Эта теория объясняла открытие Пензиаса и Вильсона как нельзя лучше. То есть холмделская антенна все-таки находилась в ящике, а ящик – это вся Вселенная. Однако эквивалентная температура, регистрировавшаяся антенной, не есть температура современной Вселенной. Говорить тут можно скорее о той, которую имело мироздание давным-давно, но уменьшенной в соответствии с тем гигантским расширением, что оно претерпело с тех пор.

Работа Пиблса на самом деле замыкала целый ряд аналогичных космологических гипотез. Еще в конце 1940-х гг. Георгий Гамов со своими коллегами Ральфом Алфером и Робертом Германом в рамках теории Большого взрыва построил модель нуклеосинтеза, а в 1948 г. оба последних на основе этой модели предсказали фоновое излучение с температурой 5 К. В 1964 г. похожие вычисления выполнили Я. Б. Зельдович в России и Фред Хойл с Р. Дж. Тейлером в Англии. Об этих работах в «Белл Лабораториз» и Принстоне поначалу ничего не знали – т. е. между их исследованиями и непосредственным открытием фонового излучения не было никакой связи, поэтому детальное изложение мы отложим до главы 6. Там же поломаем голову над забавной исторической загадкой: почему ни одна из этих первых теоретических работ не побудила ученых целенаправленно искать реликтовое излучение?[5]5
  В русскоязычной литературе фоновое микроволновое излучение называют реликтовым (термин принадлежит советскому астрофизику И. С. Шкловскому). – Примеч. пер.


[Закрыть]

Пиблс в 1965 г. произвел свои расчеты под впечатлением от идей крупного физика-экспериментатора из Принстона Роберта Г. Дикке. (В числе заслуг последнего – новые методы приема микроволнового излучения, повсеместно применяемые в радиоастрономии сегодня.) В 1964 г. Дикке задался вопросом: а не оставила ли горячая эпоха космической истории после себя какое-нибудь напоминание, которое можно было бы наблюдать в виде излучения? Он рассуждал в рамках теории «осциллирующей» Вселенной, к которой мы обратимся в последней главе этой книги. У Дикке, по всей видимости, не было соображений относительно температуры этого излучения, однако – и это главное – он почувствовал, что в наблюдениях должно что-то появиться. Потому-то и предложил Роллу с Уилкинсоном приступить к поискам микроволнового фона, и они принялись собирать небольшую антенну с низким уровнем шума на крыше Пальмеровской физической лаборатории в Принстоне. (Для этой задачи в большом радиотелескопе нет необходимости, поскольку излучение приходит со всех сторон и более узкий пучок не дает никакого выигрыша.)

Дикке, Ролл и Уилкинсон еще работали над этим проектом, когда первому из них позвонил Пензиас, недавно узнавший от Бурке о статье Пиблса. И они решили одновременно опубликовать две короткие заметки в «Астрофизикал Джорнал»: в первой Пензиас и Вильсон изложили бы результаты своих наблюдений, а во второй Дикке, Пиблс, Ролл и Уилкинсон предложили бы их космологическую интерпретацию. Пензиас и Вильсон, верные своей осторожности, скромно назвали свою статью «Измерение избыточной антенной температуры на 4080 МГц». (Частота, на которую была настроена антенна, равнялась 4080 мегагерцам, т. е. 4080 миллионам колебаний в секунду, что соответствует длине волны 7,35 см.) Они всего лишь написали, что «измерения эффективной шумовой температуры в зените… приводят к значению, превышающему ожидаемое на 3,5 К». О космологии не было сказано ни слова, если не считать фразы: «Возможное объяснение наблюдаемой в эксперименте избыточной шумовой температуры можно найти в соответствующей статье Дикке, Пиблса, Ролла и Уилкинсона в этом же номере».


Радиотелескоп в Холмделе. Роберт В. Вильсон (слева) и Арно Пензиас (справа) стоят на фоне 20-футовой рупорной антенны, при помощи которой в 1964–965 гг. они открыли 3-градусный микроволновый фон. Телескоп находится в Холмделе, штат Нью-Джерси, в одном из подразделений «Белл Телефон Лабораториз». (Фотография «Белл Телефон Лабораториз».)


Внутри радиотелескопа в Холмделе. Пензиас выравнивает стыки в 20-футовой рупорной антенне в Холмделе, а Вильсон за ним наблюдает. Это делалось для того, чтобы исключить любые возможные источники электрических помех в радиотехнической конструкции, из-за которых в измерениях 1964–965 гг. появлялся микроволновый шум. Однако все эти меры лишь незначительно снизили шумовой фон, из-за чего пришлось заключить, что наблюдаемое микроволновое излучение имеет астрономическую природу. (Фотография «Белл Телефон Лабораториз».)


Радиоантенна в Принстоне. На фотографии изображена первая установка, предназначавшаяся для целенаправленных поисков реликтового излучения. Небольшая рупорная антенна укреплена на деревянной платформе воронкой вверх. Под антенной и чуть правее стоит Уилкинсон, а Ролл, почти скрытый элементами конструкции, находится прямо под антенной. Блестящий цилиндр с конической верхушкой входит в криогенную систему с погруженным в жидкий гелий эталонным источником, чей сигнал сравнивался с излучением неба. Измерения на этой установке на более короткой, чем у Пензиаса с Вильсоном, длине волны подтвердили наличие 3-градусного фонового излучения. (Фотография Принстонского университета.)


Но действительно ли открытое Пензиасом и Вильсоном излучение осталось от первых мгновений существования Вселенной? Прежде чем говорить об экспериментах, поставленных после 1965 г. и призванных ответить на этот вопрос, давайте поинтересуемся: чего мы теоретически должны ожидать? Каковы общие свойства этого излучения, которое наверняка заполняет Вселенную, если наши современные космологические представления верны? Среди прочего необходимо понять, что происходит с этим излучением, когда Вселенная расширяется. Причем мы должны охватить не только эпоху нуклеосинтеза или первые три минуты, но и весь долгий период до настоящего времени.


Солнечный спектр, полученный на 13-фунтовом солнечном спектографе Спектр Солнца. На фотографии запечатлен солнечный свет, разложенный с помощью спектрографа с фокусом около 4 м на различные длины волн. Интенсивности отдельных полос в среднем такие же, какие излучались бы полностью непрозрачным («черным») телом при температуре 5800 К. Однако темные вертикальные (так называемые фраунгоферовы) линии в спектре свидетельствуют о том, что часть света поглощается в сравнительно холодных и частично прозрачных внешних областях, известных как обращающий слой. Такие темные линии возникают из-за выборочного поглощения на определенных длинах волн. Чем линия темнее, тем больше света поглотилось на данной длине волны. Над спектрами приведены длины волн в ангстремах (10–8 см). Многие из этих линий обозначаются тем химическим элементом, который поглощает свет: кальцием (Ca), железом (Fe), водородом (H), магнием (Mg), натрием (Na) и т. д. В частности, благодаря таким линиям поглощения мы можем оценить обилие различных химических элементов в космосе. Соответствующие линии в наблюдаемых спектрах далеких галактик оказываются смещенными в длинноволновую область. Именно по этому красному смещению мы и делаем вывод о расширении Вселенной. (Фотография Обсерватории Хейла.)


Сейчас рациональнее будет отказаться от классической картины излучения, состоящего из электромагнитных волн, которой мы пользовались до сих пор. Лучше перейти к более современному квантовому описанию, гласящему, что излучение есть поток частиц, или фотонов. Обычно световая волна объединяет огромное число летящих вместе фотонов. Но если очень точно измерять переносимую цепочкой волн энергию, то можно увидеть, что она всегда кратна определенной величине, которую и называют одиночным фотоном. Как мы увидим, энергия одного фотона зачастую довольно мала, поэтому на практике кажется, что энергия электромагнитной волны может принимать любые значения. Однако во взаимодействиях с атомами или атомными ядрами фотоны, как правило, участвуют по одному. Поэтому, когда речь идет о таких процессах, вместо волнового описания необходимо рассматривать фотоны. Их масса и электрический заряд равны нулю, однако они вполне реальны – каждый из них имеет определенные энергию и импульс и, кроме того, обладает спином.

Что происходит с одиночным фотоном, когда он летит через Вселенную? Почти ничего, если говорить о современном мире. Свет от объектов, удаленных от нас на 10 миллиардов световых лет, не встречает на своем пути особых препятствий. Какое бы вещество ни заполняло межгалактическое пространство, оно достаточно прозрачно для того, чтобы фотон, находящийся в свободном полете на протяжении почти всего времени жизни Вселенной, не успел рассеяться или поглотиться.

Красные же смещения далеких галактик свидетельствуют о расширении Вселенной – значит, когда-то вещество в ней было упаковано гораздо плотнее, чем сейчас. Если жидкость сжимать, то она, как правило, нагревается, поэтому приходим к выводу, что вещество во Вселенной в прошлом также было гораздо горячее. На самом деле считается: когда-то давно (как мы ниже увидим, примерно в первые 700 тысяч лет жизни Вселенной) вещество в космосе было настолько горячим и плотным, что оно еще не могло сбиваться в звезды и галактики. Не существовало даже целых атомов – они были разбиты на ядра и электроны.

В таких неблагоприятных условиях фотоны не могли свободно перемещаться на большие расстояния, как это им удается в современной Вселенной. На своем пути они встречали целые сонмы электронов, которые их тут же поглощали или рассеивали. Когда фотон рассеивается на электроне, он обычно либо отдает последнему часть энергии, либо, наоборот, получает – в зависимости от того, у кого из них ее больше. Период, в течение которого бо́льшая часть фотонов поглотится, отдаст или приобретет энергию, называется временем свободного пробега. В ту эпоху этот промежуток был очень маленьким – намного меньше характерного времени расширения Вселенной. Время свободного пробега для остальных частиц – электронов и атомных ядер – было еще меньшим. Получается, что, хотя Вселенная тогда расширялась в некотором смысле довольно быстро, с точки зрения фотонов, электронов и ядер этот процесс занимал целую вечность. Прежде чем Вселенная успевала заметно расшириться, каждая частица проходила множество взаимодействий: рассеяний, поглощений и испусканий.

Любая система такого рода, где отдельные частицы то и дело взаимодействуют друг с другом, обычно приходит в состояние равновесия. Количество частиц, физические характеристики (координаты, энергия, скорость, спин и т. д.) которых находятся в заданном диапазоне, остается постоянным: каждую секунду их появляется столько же, сколько и уходит. То есть свойства подобной системы определяются не начальными условиями, а устанавливаются таким образом, чтобы она находилась в равновесии. Здесь термин «равновесие», конечно, не означает, что частицы останавливаются, – каждую продолжают толкать ее соседи. Речь, скорее, о статистическом равновесии: не меняется (или меняется, но медленно) характер распределения частиц по координатам, энергиям и другим параметрам.

Подобное статистическое равновесие называют еще термодинамическим (или тепловым), потому что такому состоянию всегда можно приписать определенную температуру, одинаковую во всей системе. Строго говоря, понятие температуры имеет смысл только в системе, пребывающей в идеальном термодинамическом равновесии. Статистическая физика – один из самых развитых и обширных разделов теоретической физики – располагает мощным математическим аппаратом, позволяющим вычислять характеристики любой системы, находящейся в термодинамическом равновесии.

Движение к термодинамическому равновесию чем-то напоминает механизм ценообразования, как его себе представляет классическая экономика. Если спрос превышает предложение, то цены на товары растут, из-за чего спрос начинает падать, а производство – расти. Если предложение превышает спрос, то цены падают, спрос возрастает, а объемы производства снижаются. Так или иначе, спрос и предложение выравниваются. Аналогично если в некотором диапазоне энергий, скоростей и т. д. слишком много (мало) частиц, их количество будет уменьшаться быстрее, чем пополняться (и наоборот), пока система не придет в равновесие.

Конечно, механизмы ценообразования не всегда работают так, как предсказывает классическая экономическая теория. Но ведь и большинство реальных физических систем далеки от термодинамического равновесия. Почти идеальное равновесие имеет место лишь в центрах звезд, поэтому тамошние физические условия мы и оцениваем довольно уверенно. Но вот, например, на поверхности Земли о термодинамическом равновесии говорить не приходится: нельзя точно сказать, будет завтра дождь или нет. Во Вселенной же идеально равновесного состояния никогда и не было – как-никак, она расширяется. Однако можно говорить о том, что на ранних стадиях, когда между столкновениями и поглощениями отдельных частиц проходило значительно меньше времени, чем было нужно для заметного расширения, она «медленно» эволюционировала от одного околоравновесного состояния к другому.

Для рассматриваемого в этой книге сценария важно, что Вселенная однажды пребывала в термодинамическом равновесии. Согласно статистической физике, свойства системы, находящейся в равновесии, полностью определяются температурой и несколькими сохраняющимися величинами (подробнее – в следующей главе). То есть мироздание хранит лишь выборочную информацию о начальных условиях. Если мы хотим узнать, что происходило в самом начале, этот факт играет против нас. Но, с другой стороны, мы избавлены от необходимости изобретать многочисленные гипотезы для установления хода космической истории.

Как уже говорилось выше, считается, что реликтовое излучение, открытое Пензиасом и Вильсоном, осталось во Вселенной с тех времен, когда она пребывала в равновесном состоянии. Следовательно, чтобы понять, какие свойства микроволнового фона мы ожидаем увидеть в наблюдениях, нужно задаться вопросом: как обычно ведет себя излучение, находящееся в термодинамическом равновесии с веществом?

Как ни странно, именно этот вопрос положил начало квантовой теории и представлению об излучении как о потоке фотонов. К 1890-м гг. стало понятно: свойства равновесного излучения зависят только от температуры. Точнее, количество энергии излучения в единичном объеме и в заданном диапазоне длин волн вычисляется по универсальной формуле, переменными в которой являются только длина волны и температура. По ней же рассчитывается излучение в ящике с непрозрачными стенками – т. е. радиоастроном с ее помощью может определить «эквивалентную температуру» радиошума, который он регистрирует. Эта же по сути формула позволяет посчитать, сколько излучения каждой длины волны испускает за секунду с единицы своей площади полностью поглощающая поверхность. Поэтому-то такое излучение называют еще излучением абсолютно черного тела. Резюмируя вышесказанное, для чернотельного излучения характерна определенная зависимость энергии от длины волны, представленная универсальной формулой, в которую входит еще только температура. В 1890-х гг. на поиски этой формулы бросились самые горячие головы теоретической физики.

В последние недели XIX в. правильную формулу для вычисления излучения черного тела посчастливилось найти Максу Карлу Эрнсту Людвигу Планку. В графической форме догадка Планка показана на рис. 7 для температуры зарегистрированного реликтового шума – 3 К. На словах же формулу Планка можно описать следующим образом. В ящике, заполненном чернотельным излучением, энергия в заданном диапазоне длин волн сначала резко растет с увеличением длины волны, достигает максимума, а затем резко спадает. Так называемое планковское распределение носит универсальный характер – оно не зависит от природы вещества, с которым взаимодействует излучение, а определяется лишь его температурой. Сегодня термин «чернотельное излучение» применяют к любому излучению, распределение энергии которого по длинам волн описывается формулой Планка – и не важно, действительно ли оно испущено абсолютно черным телом или нет. Итак, по крайней мере в первый миллион лет или около того, когда излучение и вещество находились в термодинамическом равновесии, Вселенную, должно быть, заполняло чернотельное излучение с температурой, равной температуре окружающей материи.


Рис. 7. Планковское распределение. На графике представлена зависимость плотности энергии чернотельного излучения в единичном интервале длин волн от длины волны для температуры 3 К. (Чтобы получить график для температуры, превышающей 3 К в f раз, достаточно сжать ось длин волн в 1/f раз, а вертикальную – растянуть в f 3 раз.) Прямой участок кривой с правой стороны описывается более простой формулой распределения Рэлея-Джинса. Помимо излучения черного тела, линия с таким наклоном возникает в самых разнообразных случаях. Крутой спад кривой слева объясняется квантовой природой излучения и является отличительной чертой излучения черного тела. Прямая с надписью «излучение Галактики» отображает интенсивность радиошума, испускаемого Млечным Путем. (Одна из стрелок указывает на длину волны, на которой Пензиас и Вильсон выполняли свои пионерские наблюдения, а второй отмечена длина волны, соответствующая возбуждению первого вращательного уровня молекулы межзвездного циана. Открыть реликтовый фон также можно было бы, заметив линию поглощения на этой длине волны.)


Значение открытия Планка простирается далеко за пределы проблемы излучения абсолютно черного тела: он первым предложил считать, что энергия поступает отдельными порциями, или квантами. Сам Планк предполагал, что разбивать на кусочки следует лишь энергию вещества, находящегося в равновесии с излучением. Однако несколькими годами позже Эйнштейн выдвинул гипотезу, что и само излучение существует в виде квантов (позже их стали называть фотонами). Этими-то идеями и вымощена дорога к одной из величайших в истории научной мысли революций, произошедшей в 1920-х гг.: на смену классической механике пришла квантовая.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации