Электронная библиотека » Сванте Пэабо » » онлайн чтение - страница 13


  • Текст добавлен: 3 ноября 2017, 11:20


Автор книги: Сванте Пэабо


Жанр: Биология, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 22 страниц)

Шрифт:
- 100% +

А пока суд да дело, появляется статья молодого талантливого генетика Джеффри Уолла из Сан-Франциско, с которым мне несколько раз доводилось встречаться. Он сравнил 750 тысяч нуклеотидов из Vi-33.16, полученных нами по методу 454 и представленных в Nature, с 36 тысячами нуклеотидов, прочтенных группой Эдди Рубина по методу бактериального клонирования из наших экстрактов той же кости и опубликованных в Science. Уолл вместе с соавтором по имени Сун Ким указали на ряд различий, многие из которых мы уже обсудили при подготовке статей к печати. Они предположили, что дело может быть в недоработках методик 454, но, скорее всего, нужно винить современные загрязнения в наших библиотеках. По их расчетам, 70–80 процентов ДНК, которую мы считали неандертальской, нужно отнести к современной человеческой[55]55
  J.D. Wall and Sung K. Kim. Inconsistencies in Neanderthal genomic DNA sequences. PLoS Genetics 10:175 (2007).


[Закрыть]
.

Расчеты настораживали. Мы знали, что загрязнения могут замешаться и в набор данных, опубликованный в Nature, и в библиотеки из Science, мы ведь отсылали экстракты в лаборатории, где не было необходимых стерильных условий нашей “чистой комнаты”. Также мы знали, что уровень загрязнений наверняка больше в данных по 454, если уж говорить о разнице в уровнях загрязнения двух наборов данных. Но при этом понимали, что в любом случае уровень загрязнений не может быть 70–80 процентов, потому что в основе расчетов Уолла лежало предположение о равном количестве Г и Ц в коротких и длинных фрагментах, а мы уже знали, что это предположение неверно.

Пытаясь прояснить ситуацию, мы попросили Nature опубликовать короткую заметку, а в ней указывали, что некоторые отличительные черты в наборах данных следует отнести за счет разницы в технологиях бактериального клонирования и секвенирования по 454. Кроме того, нелишне было бы вспомнить те дополнительные эксперименты по секвенированию, которые отражали крайне низкий уровень загрязнений. Но вдруг выяснилось, что кое-какие загрязнения были внесены в наши данные по 454, вероятно, из библиотек ДНК Джеймса Уотсона, которые как раз тогда и секвенировали. Так что в заметке мы ограничились высказыванием, что “уровень загрязнений может оказаться выше того, который определяется по мтДНК”. Но насколько выше, этого мы сказать не могли. Мы дали для читателей ссылку на статью Уолла и на ту, где мы описываем методику мечения библиотечных последовательностей, которая позволяет навсегда решить вопрос с загрязнениями вне наших “чистых комнат”. Еще дали ссылку на доступную базу данных геномных последовательностей, откуда любой желающий может взять данные и сам поразбираться с волнующими его вопросами. Я очень досадовал, когда после рецензирования Nature решил нашу заметку отклонить[56]56
  A.W. Briggs et al. Patterns of damage in genomic DNA sequences from a Neanderthal. Proceedings of the National Academy of Sciences USA 104, 14616–14621 (2007).


[Закрыть]
.

Мы обсуждали, стоило ли публиковать ту статью в Nature, не слишком ли мы поспешили. Не увлеклись ли соревнованием с Эдди? Может, стоило подождать? Некоторые говорили, что стоило, другие – что нет. Даже теперь, оглядываясь назад, я уверен, что тот прямой тест загрязнения по мтДНК не соврал, оно было очень низким. У анализа по мтДНК имеются свои ограничения, но, по-моему, прямые доказательства всегда перевешивают косвенные рассуждения. В той заметке, которую Nature так и не опубликовал, мы написали: “Никаких тестов на загрязнение по ядерной ДНК пока не существует, но чтобы получать надежные данные по древней ДНК, необходимо их разработать”. И в следующие несколько месяцев это стало главной темой наших пятничных собраний.

Глава 14
Карта генома

Ну вот, необходимые библиотеки ДНК составлять мы научились, скоро команда из 454 запустит свои мощные машины и все прочитает. Так что можно браться за новую задачу: картирование. Нам предстояло найти для каждого короткого фрагмента неандертальской ДНК соответствие в эталонном геноме человека. Звучит просто, но на деле задача оказалась колоссально сложной, примерно как если бы вы складывали гигантскую головоломку, в которой часть кусочков потеряна, часть попорчена и еще множество попало в коробку из других наборов и поэтому не подходит вообще.

Суть задачи по сортировке фрагментов состояла в том, что нужно было одновременно держать в голове две противоположных возможности. С одной стороны, если требовать абсолютно точного соответствия неандертальских и человеческих отрезков ДНК, то можно упустить или отбросить те, в которых имеются значимые отличия (или ошибки). И в результате неандертальский геном предстанет более похожим на человеческий, чем на самом деле. Но с другой стороны, если позволить слишком приблизительное соответствие, то в неандертальский геном попадут фрагменты бактериальных ДНК, которые иногда похожи на те или иные участки человеческой последовательности. В этом случае неандертальский геном будет слишком сильно отличаться от человеческого – больше, чем в реальности. Собственно, на том этапе можно было забыть обо всех остальных частностях и сосредоточиться на балансировании между этими двумя крайностями; от выбранного баланса зависел весь дальнейший анализ и подсчет различий между человеческим и неандертальским геномами.

Кроме того, была еще и практическая сторона дела. Компьютерные алгоритмы для картирования не могли учитывать слишком много параметров: мы ведь хотели сравнивать массивы в 3 миллиарда человеческих нуклеотидов с миллиардом неандертальских фрагментов по 30–70 нуклеотидов каждый (именно такое количество ДНК мы планировали секвенировать из костей). Программам с такими объемами быстро не справиться.

Несколько человек взялись за монументальную задачу по составлению алгоритма картирования: Эд Грин, Дженет Келсо и Удо Штенцель. Дженет приехала к нам в лабораторию в 2004 году из Университета Западно-Капской провинции в своей родной ЮАР и возглавила у нас группу биоинформатики. Как-то незаметно, но очень эффективно из самых разных и необычных личностей она создала целостную сплоченную команду. Взять, например, Удо: немного мизантроп, убежден, что большинство тех, кто выше его в академической должностной иерархии, – спесивые дураки. Удо бросил университет, так и не получив диплом по информатике. И тем не менее, когда дело касалось программирования и умения логически мыслить, большинство его учителей не шли с ним ни в какое сравнение. Нам повезло, что он нашел неандертальский проект достойным своего внимания, хотя временами он сводил меня с ума своей абсолютной убежденностью в непогрешимости собственных знаний. Честно говоря, если бы не Дженет, я бы с ним, скорее всего, не сработался.

Все работы по картированию полученных фрагментов, по сути, координировал Эд, чей собственный проект по сплайсингу РНК тихо и незаметно скончался. Вместе с Удо они разработали алгоритм картирования, который учитывал закономерности появления ошибок в последовательностях неандертальских ДНК. Эти закономерности, в свою очередь, определяли Эдриан с Филипом Джонсоном, талантливейшим студентом из группы Монти Слаткина из Беркли. Они-то и выяснили, что ошибки располагались в основном на концах фрагментов ДНК. Дело в том, что, когда молекула ДНК рвется, получаются две неравных по длине нити, и у той, что длиннее, конец торчит, становясь уязвимым для химических атак. Эдриан провел тщательный анализ и понял, что ошибки происходят из-за отщепления молекул азота от цитозинов, а не от аденинов, как мы ошибочно посчитали годом раньше. Даже больше: если Ц стоит на самом конце цепочки, то риск появления его в наших последовательностях в виде Т оценивается в 20–30 процентов.

Эд по-хитрому сумел включить в алгоритм эту Эдрианову закономерность: вероятность ошибок в зависимости от позиции нуклеотида в отрезке последовательности. Например, если неандертальская молекула имела Т на конце, а человеческий геном – Ц, то это считалось как точное соответствие, так как вероятность ошибки “отщепление и замена Ц на Т” очень часто встречается. И напротив, Ц на конце неандертальской молекулы и Т – человеческой считалось как полное несовпадение. Теперь мы не сомневались: алгоритм Эда значительно снизит уровень ложного наложения фрагментов и увеличит, соответственно, уровень корректных попаданий.

Дальше нам предстояло решить, какой из человеческих геномов выбрать для сравнения с неандертальским. Мы хотели понять – и это было одной из целей наших исследований, – будет ли генная последовательность неандертальцев ближе к европейскому человеку или к людям из других частей света. Ведь если мы составим карту фрагментов неандертальского генома относительно европейского варианта (а примерно половина эталонного генома принадлежит индивиду европейского происхождения, как известно)[57]57
  Эталонный, или референсный, геном составлен из геномов тринадцати анонимных людей. Однако узким специалистам хорошо известно, что примерно половина последовательностей принадлежит одному из этих тринадцати и он европеец. (Прим. перев.)


[Закрыть]
, то фрагменты, совпадающие с европейским геномом, останутся, тогда как те, что больше напоминают африканские геномы, отсеются. И тогда в результате мы получим геном неандертальца, слишком сильно похожий на европейский, что будет неверно. Понятно, что для сравнения нужно что-то нейтральное, и мы остановились на геноме шимпанзе. У неандертальцев, людей и шимпанзе был общий предок, и жил он, скорее всего, в промежутке от 4 до 7 миллионов лет назад. Это означало, что геном шимпанзе отличается и от человеческого, и от неандертальского. Мы также составили карту фрагментов неандертальской ДНК относительно гипотетического генома общего предка гоминидов и шимпанзе; этот геном разрабатывали в других лабораториях. После того как мы произведем картирование по геномам нашего общего отдаленного предка, фрагменты неандертальской ДНК можно будет сравнить с соответствующими последовательностями современных человеческих геномов из разных частей света. И тогда появится смысл обсуждать найденные различия, не опасаясь ошибок неверного начального выбора.

Все это вместе требовало значительных компьютерных мощностей, и, к счастью, Общество Макса Планка поддерживало нас безотказно. Специально для нашего проекта общество выделило блок из 256 мощных аппаратов в компьютерном центре в Южной Германии. Но даже с таким оборудованием обработка данных, прочтенных за один только запуск секвенатора, занимала несколько дней. Значит, на картирование всех данных уйдут месяцы. Удо считал, что лучше него никто с задачей не справится, и потому всю работу хотел сделать сам. Я призвал все имеющееся у меня терпение и стал ждать результатов.

Мы получили карты первых партий последовательностей ДНК из Брэнфорда. И тут Эд сразу же наткнулся на нечто чрезвычайно тревожное. У меня упало сердце, группа заволновалась: в коротких фрагментах обнаруживалось все больше отличий от человеческого генома, чем в длинных. Нечто похожее уже обсуждали Грэм Куп, Эдди Рубин и Джефф Уолл после нашей публикации в Nature. Они считали, что данная закономерность отражает появление загрязнений, и полагали, что длинные фрагменты на самом деле являются не чем иным, как занесенными в библиотеки современными ДНК. И именно поэтому в длинных фрагментах наблюдается меньше отличий. А мы-то надеялись, что “чистые комнаты” и специальные ДНК-метки избавят нас от этого ужасного бедствия – загрязнений! Эд как сумасшедший бросился снова перетряхивать данные: занесли мы загрязнения или нет.

И выяснил, что, к счастью, нет, не занесли. Он очень быстро увидел, что если установить более строгие критерии совпадения фрагментов, то распределение отличий от эталонного генома будет одинаковым и для коротких, и для длинных. И он наглядно показал, что если использовать обычные, принятые в генетике критерии сходства, то короткие фрагменты бактериальной ДНК оказываются близки к человеческой ДНК, и тогда исследователи (и мы, и Уолл, и все другие) ошибочно включают их в анализ. В этом случае в среднем на выборку получалось, что короткие фрагменты сильнее отличаются от человеческого генома, чем длинные. Стоило Эду ужесточить критерии сходства и отсева лишних фрагментов, как проблема исчезла. Я мысленно похвалил себя за то, что, несмотря на очевидную разницу в коротких и длинных фрагментах, не верил в гипотезу загрязнений.

Вскоре группа опять столкнулась с препятствием. На сей раз вопрос стоял еще более запутанный, и мне потребовалось некоторое время, чтобы вообще понять, в чем дело, – так что наберитесь терпения, и я попробую объяснить. Для человеческого генома нормой является некоторая вариабельность: в одной и той же хромосоме на тысячу нуклеотидов в среднем бывает одно отличие. И это результат мутаций в предыдущих поколениях. Так что когда нам при сравнении двух хромосом встречаются в определенной позиции два разных нуклеотида (или два разных аллеля, как сказали бы генетики), мы вправе спросить, который из аллелей старше (какой будет считаться “предковым аллелем”, а какой более поздним “продвинутым аллелем”). Это, по счастью, проверить не так трудно – посмотреть, который из нуклеотидов в данной конкретной позиции найдется в геномах шимпанзе и других человекообразных обезьян. Тот аллель, который у них обнаружится, и является предковым: скорее всего, он-то и был у общего предка шимпанзе и человека.

Нам важно было выяснить, насколько часто у неандертальца появляются продвинутые аллели, общие с современными людьми. Чем больше их найдется, тем, значит, позже разделились эволюционные ветви неандертальцев и людей. Взявшись за анализ новой информации из 454 летом 2007– го, Эд забил тревогу. Он подтвердил более раннее наблюдение, сделанное на небольшой выборке, – его опубликовали Уолл с группой ученых в 2006 году. По сути, они написали, что длинные фрагменты неандертальской ДНК – а речь идет о фрагментах в 50 нуклеотидов и более – содержат больше продвинутых аллелей, чем короткие. Таким образом, получалось, что длинные фрагменты связаны более тесным родством с современным человеком, чем короткие, – наблюдение парадоксальное, но, вполне возможно, опять-таки являющееся результатом все тех же загрязнений.

На пятничных собраниях мы ни о чем другом и не говорили, только об этом вопросе. Одно предположение следовало за другим, и все безрезультатно. В какой-то момент у меня кончилось терпение, и я приготовился к ужасному поражению: может, действительно виной всему чужеродные ДНК и пришло время сдаться. Признать, что составить сколько-нибудь правдоподобный неандертальский геном невозможно. Мыслей больше не было ни одной, хотелось рыдать. Я, конечно, себе этого не позволил, но все равно многие в группе почувствовали, что мы по-настоящему близки к провалу. Может быть, именно это и подстегнуло группу, придало участникам куражу. Я заметил, что у Эда появились круги под глазами, будто он не спал несколько недель. Он-то и решил головоломку.

Вспомним, что продвинутый аллель появляется как мутация у отдельного индивида – что по определению делает продвинутый аллель редкостью. Если рассматривать геном в целом, то примерно 35 процентов индивидуальных различий в нуклеотидных позициях приходится на продвинутые аллели, а 65 – на предковые. Эд догадался вот о чем: такое распределение означает, что если во фрагменте неандертальской ДНК присутствует продвинутый аллель, то от соответствующего фрагмента человеческого генома он будет отличаться в 65 процентах случаев и совпадать только в 35 процентах. Таким образом, получается, что фрагмент неандертальской ДНК скорее совпадет с человеческим, если присутствует предковый аллель! Кроме того, Эд понял, что компьютерная программа картирования часто не распознает короткие фрагменты, не совпадающие с человеческими аналогами. А длинные, наоборот, узнает: они естественным образом имеют больше совпадений по позициям, и потому программа их засчитывает, даже если в них имеется отличие-другое. В результате программа чаще отсеивает короткие фрагменты с продвинутыми (более редкими) аллеями, чем длинные, и на выходе получается, что в коротких фрагментах меньше продвинутых аллелей, чем в длинных. Эду пришлось несколько раз втолковывать мне всю эту логику, пока я не уразумел. И даже тогда я не до конца верил собственному чутью, все надеялся, что Эд сумеет отыскать более наглядное доказательство.

В конце концов Эд изобрел-таки хитроумный способ – что угодно, только бы не видеть, как я рыдаю на собрании в пятницу. Он просто взял из выборки длинные фрагменты ДНК и разрезал их пополам – естественно, виртуально, в компьютере, – получив таким образом фрагменты вдвое короче. Затем он прогнал эти короткие фрагменты через программу картирования. И, как по волшебству, частота появления продвинутых аллелей снизилась по сравнению с частотой продвинутых аллелей в длинных фрагментах. А ведь из них-то и были нарезаны короткие фрагменты. А недостача продвинутых аллелей получалась как раз из-за того, что короткие фрагменты с такими аллелями “вызывали подозрение” у компьютерной программы и она их отсеивала. Ну наконец-то, вот оно, объяснение, и вовсе это не загрязнения! Хотя казалось очевидным, что дело в них. По крайней мере, теперь мы имели возможность выявить картину загрязнений в том первом, пробном анализе материала из Nature. Я мысленно выдохнул с облегчением, когда Эд представил свой эксперимент. Мы опубликовали наши догадки в узкоспециальной статье в 2009 году[58]58
  R.E. Green et al. The Neanderthal genome and ancient DNA authenticity. EMBO Journal 28, 2494–2503 (2009).


[Закрыть]
.

Работа Эда еще раз убедила меня в том, как необходим прямой количественный анализ загрязнений. Каждую пятницу мы заново обсуждали способы оценки уровня загрязнений ядерной ДНК. Но теперь, когда об этом заходила речь, я оставался спокоен. Я знал, что мы на верном пути.

Глава 15
От костей к генам

К 2008 году команда 454 проделала 147 запусков по девяти библиотекам, приготовленным из образцов Vi-33.16. Так что было в результате получено 39 миллионов отсеквенированных фрагментов. Цифра внушительная, без сомнения, но я надеялся, что к этому времени у меня уже будет больший объем отсеквенированной ДНК. С таким набором данных мы и думать не могли подступиться к составлению генома. Тем не менее очень хотелось отработать сам алгоритм картирования. Поэтому мы затеяли гораздо менее масштабное предприятие по реконструированию митохондриального генома. Ведь чем мы, да и другие тоже, располагали до того момента? Всего 800 нуклеотидов одного из вариабельных участков неандертальского мт-генома. А нам хотелось иметь его целиком, все 16 500 нуклеотидов.

Эд Грин принялся просеивать 39 миллионов прочтенных фрагментов ДНК; он решил сложить вместе кусочки, напоминавшие последовательности мт-генома современных людей. Затем нужно было сравнить их и, обнаружив перекрывающиеся участки, наложить друг на друга. И так шаг за шагом выстраивалась неандертальская последовательность. Затем он снова прошерстил 39 миллионов фрагментов, но уже ориентируясь на проступающую неандертальскую цепочку. Этот новый поиск выявил фрагменты, упущенные на первом этапе. Ему удалось идентифицировать 8341 митохондриальный фрагмент неандертальца, в среднем длиной в 69 нуклеотидов. Из них получилась полная цепочка молекулы мтДНК в 16 565 нуклеотидов – самая длинная из когда бы то ни было реконструированных мтДНК.

Глядя на результат, совершенно конкретный, осязаемый, я испытывал чувство удовлетворения, пусть даже анализ этого генома не открыл ничего нового о неандертальцах. Зато мы поняли кое-что существенное о технических особенностях методик. Например, число фрагментов, относящихся к определенным участкам генома, неодинаково. Как выяснил Эд, оно зависит от относительного количества Г и Ц по сравнению с А и Т. Иными словами, те фрагменты, где Г и Ц больше, сохраняются в кости лучше, чем те, где превалируют А и Т. Или, возможно, не в кости, а у нас в экстрактах. Но самое прекрасное, что никакие части мт-генома не потерялись. У меня появилось ощущение, что нам теперь подвластны технические трудности анализа древней ДНК. Мы также выявили 133 позиции, по которым мт-ДНК неандертальцев отличалась от мтДНК современных людей[59]59
  R.E. Green et al. A complete Neanderthal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).


[Закрыть]
. До того нам были известны лишь три такие позиции, приходящиеся на те короткие фрагменты, которые мы реконструировали в 1997 году. А ведь с этими 133 отличиями мы могли бы по-настоящему надежно оценить уровень загрязнений в наших новых данных. Получилось 0,5 процента. Мы даже вернулись к старым данным эксперимента 2006 года из Nature и к дополнительным экспериментам по этой статье (к тем, что мы проделали, пока статья лежала на рецензии). Из 75 митохондриальных фрагментов 67 соответствовали неандертальским вариантам. Так что получилось 11 процентов загрязнений в наших библиотеках: мы рассчитывали на меньший процент, но ведь это и не те 70–80, которые пророчили Уолл и Ким. Мы собрали всю эту информацию и включили ее в статью для журнала Cell, где в 1997 году опубликовали наши первые результаты по неандертальским генам. И снова мы подчеркнули, что прямое тестирование на загрязнения в ядерных генах послужило бы лучше. На пятничных собраниях эта тема – как тестировать ядерные загрязнения – стала звучать все настойчивее.

Когда сбор данных для этой статьи был закончен, на первый план снова вышли проблемы с секвенированием неандертальского материала. “Не слишком ли мы медлительны?” – беспокоился я. Шел уже второй год проекта, и от публикации предварительных результатов – тех самых 3 миллиардов нуклеотидов, которые мы так громко пообещали, – нас отделяло всего несколько месяцев. Из-за этого наши пятничные собрания проходили очень напряженно. Я стал громогласным и язвительным (о чем очень потом сожалел), раздражался из-за некоторых бессодержательных споров или из-за не слишком лаконичного изложения текущего положения лабораторных дел. Но в действительности под всем этим лежало мое внутреннее ощущение, что двигаемся мы чересчур медленно. Частично наша медлительность объяснялась низким содержанием неандертальской ДНК в полученных библиотеках, но также, со всей очевидностью, и невысокой производительностью 454. В марте 2007 года компания 454 была продана фармацевтическому гиганту Roche. И хотя Майкл Эгхольм оставался целиком и полностью в нашем проекте, но те, кто занимался непосредственно секвенированием наших образцов, к осени уволились. Я подозревал, что Эгхольму и его коллегам непросто отдавать все внимание неандертальским делам. У меня впервые появился соблазн обратиться к конкурентам 454.

Одним из таких конкурентов был Дэвид Бентли, очень грамотный генетик, специалист по человеческому геному. Я встречался с ним на конференции в Колд-Спринг-Харбор в мае 2007 года. В 2005– м он перешел из Института Сэнгера под эгидой Wellcome Trust в компанию Solexa, недавно образованную на базе химического факультета Кембриджского университета. В Solexa он заведовал отделом разработки секвенаторов, представлявших серьезную конкуренцию даже ротберговской 454. В Solexa тоже прикрепляли к концам молекул адаптеры и эти фрагменты с адаптерами использовали для изготовления библиотек, амплификации и секвенирования. Но в отличие от 454 в Solexa амплификация производилась не внутри жировых капелек, а на стеклянных шариках: к их поверхности и прикреплялись адаптеры с цепочками ДНК. И получалось, что каждая молекула, осевшая на стеклянной поверхности, умножалась и вокруг нее образовывалось пятно, или кластер, с миллионом ее копий. Эти кластеры затем секвенировались с помощью добавления праймеров, ДНК-полимеразы и четырех нуклеотидов в достаточном количестве; каждый из четырех типов нуклеотидов метился своей флуоресцентной краской.

Первые пробные секвенаторы этого типа поступили в технологические центры в 2006 году. С их помощью можно было отсеквенировать фрагменты длиной в 25 нуклеотидов, а кроме того, как я слышал, они все время ломались. Но в принципе их потенциал был исключительно высок, потому что они обещали одновременное чтение не сотен или тысяч отдельных нитей, как в 454, а сразу нескольких миллионов. А в перспективе, когда технология будет отлажена, даже больше. Вскоре длина читаемых фрагментов увеличилась до 30 нуклеотидов, и пошли разговоры о некоем усовершенствовании, которое позволит читать нить сразу с двух сторон, так что общая длина может достигнуть 60 нуклеотидов. Это уже звучало интереснее для нас, исследователей древних ДНК. И другие стали обращать внимание на эти секвенаторы. В ноябре 2006– го биотехнологическая компания Illumina с базой в США перекупила Solexa, и Дэвид Бентли стал в этой обновленной компании заведующим по науке и вице-президентом.

На конференции в Колд-Спринг-Харбор я обсуждал с Дэвидом наш проект. Мы договорились, что я пошлю ему наши материалы с мамонтовыми или неандертальскими ДНК и он на них протестирует работу машин Illumina. Вообще-то мы даже уже начали потихоньку такое тестирование. В феврале 2007 года мы послали один из лучших экстрактов мамонтовой ДНК Джейн Роджерс в Институт Сэнгера, в Кембридж, а она как раз отвечала там за секвенаторы Solexa. Но к тому моменту она еще не откликнулась, поэтому, вернувшись с конференции, я принялся нетерпеливо забрасывать коллег из Сэнгера запросами. И вот в начале июня пришли результаты, которые нас несколько разочаровали. Эти технологии явно генерировали много ошибок. Компания изо всех сил работала над усовершенствованием технологий, но, кроме того, я понял, что большое число ошибок можно скомпенсировать огромным числом прочтенных фрагментов. В принципе можно попросту каждый фрагмент из библиотеки прочитать много раз, и тогда ошибки секвенирования будут хорошо видны, и их можно будет не учитывать при интерпретации. У Illumina, к сожалению, не было своего центра по секвенированию, поэтому нам пришлось покупать собственную машину. Из-за высокой востребованности этой технологии мы смогли получить ее только полгода спустя. Теперь машина могла читать уже 70 нуклеотидов, правда, все с тем же количеством ошибок. Их число возрастало по мере удлинения читаемой последовательности. В 2008 году новые поколения машин позволяли секвенировать с обоих концов цепочки каждый фрагмент из наших библиотек. Считая, что в древней ДНК фрагменты состоят примерно из 55 нуклеотидов, каждый фрагмент можно прочесть дважды, с одной и с другой стороны. А значит, практически для каждого фрагмента мы получим надежную последовательность.

В эту работу включился Мартин Кирхер, пришедший в 2007 году еще студентом-дипломником в группу биоинформатиков Дженет Келсо. Ему предстояло проанализировать данные, выданные Illumina. Его обманчиво широкая мальчишеская улыбка скрывала, как я чувствовал, излишнюю самоуверенность, граничащую с высокомерием, – наверное, с легкой руки его негласного наставника Удо. Сначала меня это ужасно раздражало, но потом я мало-помалу стал понимать, что парень часто оказывается прав. Я научился уважать его способность мгновенно ухватывать суть технической проблемы и организовывать непрерывный поток данных от секвенаторов к компьютерам, превращая решения в четко поставленные технические задания лаборантам. Да и работал он невероятно много. Мы все, и я, и Дженет, все больше и больше полагались на его хозяйское отношение к Illumina и на организованную им компьютерную обработку иллюминовских данных.

К 2008 году стало ясно, что если мы хотим закончить проект в обозримые сроки, то с технологией 454 нужно прощаться. Сильной стороной 454 считалась возможность считывать длинные фрагменты, но так как в наших материалах таких не было, это преимущество не играло на нас. Нам требовалось, наоборот, прочитать много коротких фрагментов, и как можно быстрее. В этом случае у Illumina было решительное преимущество перед 454. Но так сразу уйти от 454 мы не могли, потому что все наши программы, разработанные Эдом Грином и остальными, были адаптированы для обработки данных по 454. Нужны были существенные преобразования в процедуре обработки данных и возможность слияния различных наборов отсеквенированных прочтений. Ведь все эти технологии едва появились, так что просто взять и загрузить готовый софт было неоткуда. Все приходилось разрабатывать самим.

Приближалось лето 2008–  го, и голова была забита всеми этими насущными проблемами. В середине июля как раз минет два года с той пресс-конференции. Ко времени мы, очевидно, не успеваем. Но журналисты начнут задавать вопросы – а когда? – и я должен хотя бы представлять новые сроки. У нас теперь имеются и кости, и наготовленные экстракты, и их хватит для получения 3 миллиардов нуклеотидов, но чтобы достичь цели, нужно перебросить секвенирование на Illumina. И тогда я решил взять деньги, отложенные для секвенирования на 454, и использовать их для покупки четырех новых машин Illumina. Если у нас будет одновременно работать пять машин, то мы справимся, а если машины доставят в срок, то даже успеем доделать геном к концу года. И снова приходилось обрывать сотрудничество. Я встретился с Майклом Эгхольмом на совещании в Дании. К счастью, он понял мои объяснения, но предсказал, что потом мы пожалеем, когда придется разбираться с этими “записками с описками”, как он пренебрежительно называл короткие прочтения Illumina.


Посреди всех эмоциональных взлетов и разочарований неандертальских дел я выкроил время для счастья. Первого июля мы с Линдой отправились на Гавайи, в Каилуа-Кона. Официально (как я объяснил в лаборатории свою отлучку) я поехал туда по приглашению Академии достижений на ежегодный съезд знаменитостей – музыкантов, политиков, ученых, писателей, – где можно в свободной обстановке поговорить, поделиться идеями и опытом друг с другом и сотней студентов со всего мира.

Меня, естественно, приятно будоражила перспектива провести несколько дней в компании знаменитых и мудрых людей, но не в этом главное. А в том, что мы с Линдой решили заодно и пожениться. Мы все откладывали свадьбу, в основном из-за меня: мне она казалась старомодной формальностью. Теперь же вот решились, отчасти из практических соображений (нужно было оформить пенсию в Германии на случай, если я отойду в мир иной раньше Линды), но хотели провести этот день вдвоем и отметить его каким-нибудь маленьким сумасбродством. Мы организовали церемонию со служительницей культа нью-эйдж на берегу моря – романтичнее не придумаешь. Жрица взывала к гавайским духам, дудела в раковину на четыре стороны света, извлекая из нее низкое гудение… Мы дали друг другу обет верности, и она объявила нас мужем и женой. Несмотря на практические цели женитьбы, я чувствовал, что церемония должным образом отразила связывавшую нас взаимную преданность. С Линдой моя жизнь стала насыщеннее, богаче, особенно после рождения Руне в 2005– м – не сравнить с моим прежним монашеским существованием мюнхенского профессора.

После церемонии на пляже мы отправились в поход. Линда отыскала такой район на Большом острове, где вокруг была красотища и ни души. Мы шагали с тяжелыми рюкзаками под палящим солнцем по лунным пейзажам из застывшей лавы, пока не достигли моря. На побережье мы провели четыре дня: валялись голышом на безлюдном пляже, плавали с рыбками и черепахами, любили друг друга на песке под пальмами. И когда я засыпал под рокот океанских волн и шелест пальмовых листьев, холодная неандертальская степь уходила куда-то в неизбывное далеко. Вот такая восхитительная передышка случилась у меня в тот крайне напряженный период.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации