Электронная библиотека » Терренс Сейновски » » онлайн чтение - страница 1


  • Текст добавлен: 12 января 2022, 09:00


Автор книги: Терренс Сейновски


Жанр: Программы, Компьютеры


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 23 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Терренс Сейновски
Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

Terrence J. Sejnowski

The Deep Learning Revolution


© 2018 Massachusetts Institute of Technology

© Райтман М. А., перевод на русский язык, 2019

© Сазанова Е. В., перевод на русский язык, 2021

© Оформление. ООО «Издательство «Эксмо», 2022

* * *

Предисловие

Используя распознавание голоса в смартфоне на Android или в Google Переводчике в Интернете, вы сталкиваетесь с нейросетью, натренированной глубоким обучением. За последние несколько лет глубокое обучение обеспечило компании Google прибыль, достаточную для того, чтобы покрыть расходы на все футуристические проекты Google X, включая беспилотные автомобили, очки Google Glass и научно-исследовательский проект Google Brain[1]1
  Астро Теллер, «капитан муншотов» Google (moonshot – полет на Луну, в переносном смысле – смелый и передовой проект), 6 февраля 2015 года сказал, что глубокое обучение помогло снизить потребление энергии на 15 % и тем самым ежегодно экономить компании Google X сотни миллионов долларов. – Прим. авт.


[Закрыть]
. Она одной из первых начала применять глубокое обучение. В 2013 году Google наняла Джеффри Хинтона, отца-основателя глубокого обучения, и сейчас другие компании пытаются угнаться за ней.

Современные достижения в области искусственного интеллекта (ИИ) получены благодаря реверсивной инженерии[2]2
  Реверсивная инженерия, или обратное проектирование, – исследование объекта с целью понять принцип его работы. – Прим. ред.


[Закрыть]
человеческого мозга. Алгоритмы обучения многоуровневых нейронных сетей основаны на том, как нейроны взаимодействуют друг с другом и изменяются в процессе получения опыта. Внутри сети вся многогранность мира превращается в калейдоскоп моделей деятельности, которые и являются основными составляющими ИИ. Модели нейросетей, с которыми я работал в 1980-х годах, едва сравнимы с современными, состоящими из миллионов искусственных нейронов и десятков слоев. Человеческое упорство, огромный объем данных и мощные компьютеры позволили глубокому обучению совершить прорыв в решении самых сложных проблем искусственного интеллекта.

Сложно предугадать, какое влияние новые технологии окажут в будущем. Кто мог предсказать в 90-х годах прошлого века, когда Интернет стал коммерческим, как он повлияет на музыкальный бизнес? А на такси, политические кампании, да и практически все стороны нашей жизни? Когда появились первые компьютеры, тоже тяжело было вообразить, как они изменят нашу жизнь. В 1943 году Томаса Джона Уотсона, президента IBM, спросили, как повлияют компьютеры на наш мир, и он ответил: «Я думаю, мировой рынок компьютеров вряд ли превысит пять штук». Что действительно сложно представить, так это то, как будет использоваться новое изобретение – и сами изобретатели не скажут больше, чем любой другой человек. Глубокое обучение и ИИ находятся на столь же ранней стадии. Есть множество вариантов развития событий – от утопического и до апокалиптического, – но даже авторы научной фантастики с очень развитой фантазией вряд ли предскажут последствия.

Первые наброски этой книги я сделал через несколько недель после пешего тура по северо-западному побережью Тихого океана и изучения важных изменений в мире ИИ, появившихся десятилетия назад. История рассказывала о небольшой группе ученых, бросивших вызов государственному институту, занимавшемуся вопросами ИИ и не имевшему конкурентов. Они сильно недооценивали сложность задачи и полагались на интуицию, что оказалось ошибкой.

Жизнь на Земле таит в себе множество загадок, и происхождение разума – одна из самых сложных. В природе достаточно его форм, от «интеллекта» простейших бактерий до разума человека, и каждая из них адаптирована к своей нише. Искусственный интеллект так же будет представлен разнообразием форм, которые займут свои места в этом спектре. Так как ИИ основывается на создании глубоких нейронных сетей, по мере своего развития он может подтолкнуть к переосмыслению понятия биологического интеллекта.

Книга, которую вы держите в руках, – гид по прошлому, настоящему и будущему глубокого обучения. Она не охватывает все аспекты данного вопроса – скорее, это личный взгляд на основные достижения, а также на исследователей, их добившихся. Человеческая память, обращаясь к одним и тем же воспоминаниям, все больше их искажает. Этот процесс называется реконсолидацией. Истории, рассказанные в книге, охватывают период более сорока лет, и хотя некоторые из них свежи в моей памяти так, словно они были вчера, я осознаю, что определенные детали стерлись.

В первой части речь пойдет о предпосылках к рождению глубокого обучения и основных этапах его создания, необходимых для понимания его сути. Во второй части объяснены алгоритмы обучения нейронных сетей с различной структурой. Наконец, в третьей части исследуется влияние ИИ на нашу жизнь. Но, как говорил бейсболист «Нью Йорк Янкиз» Йоги Берра, известный своими «философскими» высказываниями: «Трудно делать прогнозы, особенно насчет будущего». Есть также девять блоков с технической информацией, необязательной для понимая текста. Хронология охватывает события более шестидесяти лет.

Часть I. Переосмысление интеллекта: хронология

1956 – Дартмутский летний исследовательский семинар положил начало разработке ИИ и мотивировал целое поколение ученых исследовать потенциальные возможности информационных технологий с целью добиться воспроизведения ИИ возможностей человека.

1962 – Фрэнк Розенблатт опубликовал книгу «Принципы нейродинамики. Перцептроны[3]3
  Перцептрон – математическая или компьютерная модель восприятия информации мозгом. – Прим. ред.


[Закрыть]
и теория механизмов мозга»[4]4
  В переводе на русский книга вышла в 1965 году. – Прим. ред.


[Закрыть]
. В ней были представлены обучающие алгоритмы для моделей однослойных нейронных сетей, ставшие предшественниками современных алгоритмов глубокого обучения.

1962 – Дэвид Хьюбел и Торстен Визел выпустили статью «Рецептивные поля, бинокулярное взаимодействие и функциональная архитектура зрительной коры кошек», где впервые были описаны характеристики отклика нейронов, записанные при помощи микроэлектрода. Архитектура глубокого обучения нейросетей подобна иерархии областей зрительной коры.

1969 – Марвин Минский и Сеймур Пейперт опубликовали книгу «Перцептроны»[5]5
  В переводе на русский книга вышла в 1971 году. – Прим. ред.


[Закрыть]
, которая показала вычислительные ограничения перцептронов и ознаменовала начало «зимы» в изучении нейросетей.

1979 – Джеффри Хинтон и Джеймс Андерсон провели в Ла-Хойя в Калифорнии семинар по параллельным моделям ассоциативной памяти, на которых основывались нейросети нового поколения.

1986 – Первая конференция по машинному обучению и системам обработки нейронной информации, проходившая в Денвере, собрала вместе исследователей из различных областей науки.

Глава 1. Развитие машинного обучения

Не так давно считалось, что компьютерная оптическая система не способна сравниться со зрением даже годовалого ребенка. Сейчас это утверждение уже неверно, и компьютеры могут распознавать объекты на изображении так же хорошо, как и человек, а машины на автопилоте едут аккуратнее, чем шестнадцатилетний подросток. Более того, компьютерам никто не говорил, как смотреть или водить, – они научились на собственном опыте, следуя тем же путем, что и природа на протяжении миллионов лет. Их успехи подпитывает огромный объем данных – нового топлива современного мира. Из потока необработанных данных обучающие алгоритмы извлекают информацию. Информация превращается в знание. Знание, в свою очередь, лежит в основе понимания, а понимание порождает мудрость. Это долгий путь, который требует времени. Добро пожаловать в дивный новый мир глубокого обучения![6]6
  «О дивный новый мир, где обитают такие люди!» – «Буря», Шекспир, пер. О. Сорока, 1989. – Прим. авт.


[Закрыть]

Глубокое обучение – ветвь машинного обучения, основанного на математике, информатике и нейробиологии. Глубокие нейросети учатся на данных, как дети, – исследуя окружающий их мир, переходят от полной неопытности к способности ориентироваться в незнакомой среде.

Глубокое обучение зародилось с появлением информационных технологий в 1950-х годах. Тогда существовали два подхода к созданию ИИ: первый доминировал на протяжении нескольких десятилетий и основывался на логике и компьютерных программах, второй предполагал обучение непосредственно на полученных данных, но занимал гораздо больше времени.

В XX веке, когда компьютеры были намного примитивнее, а хранение данных стоило дороже, чем сегодня, логика оставалась единственным способом решения задач. Опытные программисты писали различные программы для различных задач, и чем масштабнее была задача, тем сложнее была программа. Сейчас компьютеры обладают большой мощностью, способны обрабатывать огромный объем информации и благодаря особым алгоритмам решают задачи быстрее, точнее и эффективнее. Одни и те же алгоритмы могут использоваться для решения многих задач, и это куда проще, чем писать программу для каждой.

Учим водить

Машина по имени Стэнли (Stanley), сконструированная командой Себастьяна Труна из Стэнфордского университета (рис. 1.1), выиграла два миллиона долларов в гонке беспилотных автомобилей от Управления перспективных исследовательских проектов Министерства обороны США (Defense Advanced Research Projects Agency; DARPA). Стэнли ориентировался в калифорнийской пустыне благодаря машинному обучению. На семимильной трассе встречались узкие туннели и резкие повороты, а также первад Бир-Ботл[7]7
  Beer Bottle Pass – перевал в горной цепи Люси-Грей-Маунтинс в штате Невада. – Прим. ред.


[Закрыть]
– ветреная горная дорога с обрывом с одной стороны и горами с другой (рис. 1.2). Вместо того чтобы пойти традиционным путем и написать компьютерную программу, которая могла бы предвидеть любую неожиданность, Трун провел Стэнли по всей пустыне, чтобы машина училась ездить, опираясь на данные с оптических датчиков и датчиков расстояния.


Рис. 1.1. Себастьян Трун на фоне Стэнли, выигравшего в 2005 году гонку беспилотных автомобилей от DARPA. Этот прорыв положил начало технической революции в сфере транспорта


Рис. 1.2. Beer Bottle Pass. Во время гонки беспилотных автомобилей, организованной DARPA в 2005 году, этот сложный участок местности находился ближе к концу трассы длиной 212 километров, пролегавшей в пустыне по бездорожью. Грузовик вдали только начинает подъем


Позже Себастьян Трун основал Google X – исследовательскую лабораторию по разработке высокотехнологичных проектов, где технологии беспилотных автомобилей получили дальнейшее развитие. С тех пор беспилотные автомобили Google проехали по району залива Сан-Франциско миллионы километров. В декабре 2016 года проект был выделен в отдельную компанию Waymo. Uber запустил беспилотные автомобили в Питсбурге. Apple также разрабатывает беспилотные автомобили, чтобы расширить спектр устройств под управлением их операционной системы в надежде повторить свой успех на рынке мобильных телефонов. Производители машин, чьи технологии практически не менялись на протяжении ста лет, следуют по их стопам. General Motors заплатил миллиард долларов за Cruise Automation, проект в Кремниевой долине, занимающийся разработкой транспорта, который не нуждается в водителе, а также инвестировал шестьсот миллионов долларов в его развитие и совершенствование[8]8
  Власич Б. General Motors хочет управлять беспилотными автомобилями будущего. New York Times, 4 июня 2017 года. www.nytimes.com/2017/06/04/business/general-motors-self-driving-cars-mary-barra.html


[Закрыть]
. Ставки на участие в секторе перевозок, где крутятся триллионы долларов, высоки.

Вскоре беспилотные автомобили станут серьезной проблемой для водителей грузовиков и легковых такси. В конечном итоге не будет необходимости покупать автомобиль, если беспилотные машины смогут прибыть через минуту и безопасно доставить вас к месту назначения. Кроме того, вам не нужно будет парковаться! Среднестатистический автомобиль проводит четыре процента времени в дороге, а остальные 96 стоит без дела. Огромные участки в городах, которые сейчас занимают парковки, можно будет использовать для других целей, тогда как беспилотные автомобили станут парковаться за городом. Также это повлияет на многие другие сферы, например на страховые компании и магазины запчастей. Станет гораздо меньше смертей из-за вождения в нетрезвом виде и из-за того, что водители засыпают за рулем. Время, которое мы тратим, чтобы добраться до работы, можно будет использовать для других целей. Согласно переписи населения, проведенной в США в 2014 году, 139 миллионов человек тратят на дорогу на работу и с нее в среднем 26 минут в каждую сторону. Это 29,6 миллиарда часов в год, целых 3,4 миллиона лет человеческих жизней, которые можно было бы использовать гораздо лучше[9]9
  Ингрем К. Невероятный человеческий потенциал, потраченный на дорогу на работу. Washington Post, 24 февраля 2016 года. www.washingtonpost.com/news/wonk/wp/2016/02/25/how-much-of-your-life-youre-wasting-on-your-commute


[Закрыть]
. Кто захочет угнать машину без руля, которая, вдобавок ко всему, еще и сама вернется домой? Придет конец автомобильным кражам. Пока еще на этом пути стоит множество нормативных и правовых препятствий, однако когда беспилотные автомобили начнут использовать повсеместно, мы будем жить в дивном новом мире. Первыми – вероятно, уже лет через десять – беспилотными станут грузовики, такси – через пятнадцать, а личные автомобили завершат переход лет через 25–50.

Беспилотные автомобили – лишь самая заметная часть сдвига в экономике, вызванного информационными технологиями. Данные текут в Интернете, как вода по городскому трубопроводу. Они собираются в огромных информационных центрах, управляемых такими компаниями, как Google, Amazon, Microsoft и др. Для их работы требуется огромное количество электроэнергии, поэтому центры располагаются рядом с гидроэлектростанциями – при передаче потока информации вырабатывается столько тепла, что только реки могут его охладить. В 2013 году информационные центры в США потребили 10 миллионов мегаватт, что сравнимо с энергией, которую вырабатывают 34 большие электростанции[10]10
  Американские центры обработки данных потребляют все больше энергии. Совет по защите природных ресурсов, 2015. www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy


[Закрыть]
. Но гораздо большее значение для экономики имеет то, как используются эти данные. Необработанная информация превращается в знание о людях: что вы делаете, чего хотите и что вообще из себя представляете. Более того, эта информация передается от вас через устную речь.

Учим переводить

В настоящее время глубокое обучение применяется в компании Google для сотни приложений, от Street View и до Inbox Smart Reply, а также для голосового поиска. Несколько лет назад инженеры Google поняли, что необходимо доработать эти приложения до очень высокого уровня, и приступили к созданию специального чипа, предназначенного для глубокого обучения. Для удобства плата спроектирована так, что входит в стандартный слот для жесткого диска в стойке центра обработки данных. Тензорный процессор Google (Google Tensor Processing Unit; Google TPU) сегодня внедрен на множестве серверов по всему миру, значительно повышая производительность приложений с глубоким обучением.


Рис. 1.3. Приложение Google Translate мгновенно переводит с других языков дорожные указатели, стоит навести на них камеру. Это особенно актуально, если вам нужно сесть на поезд в Японии


Пример того, как быстро глубокое обучение может изменить мир, – его влияние на перевод с иностранных языков. Перевод с одного языка на другой – заветная мечта ИИ, поскольку основан на понимании предложений целиком. В 2016 году компания Google запустила новый Переводчик, основывающийся на глубоком обучении, что стало большим шагом на пути к живому переводу. Буквально в одночасье перевод превратился из беспорядочного смешения отдельных фраз в связные предложения (рис. 1.3). Раньше программа искала комбинации слов, которые можно было бы перевести вместе, но глубокое обучение создает перевод, исходя из смысла всего предложения.

18 ноября 2016 года научный сотрудник Токийского университета Юн Рекимото заметил внезапное усовершенствование Google Переводчика. Чтобы протестировать новую систему, он перевел в приложении начало рассказа Эрнеста Хемингуэя «Снега Килиманджаро» на японский, а затем обратно на английский. Читателю нужно определить, какой отрывок принадлежит Хемингуэю, а какой – Google Переводчику[11]11
  Льюис-Краус Гидеон. New York Times Magazine, 14 декабря 2016 года. www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html?_r=0 Hemingway is # 1


[Закрыть]
:

1. Килиманджаро – покрытый вечными снегами горный массив высотой в 19 710 футов, как говорят, высшая точка Африки. Племя масаи называет его западный пик «Нгайэ-Нгайя», что значит «Дом Бога». Почти у самой вершины западного пика лежит иссохший мерзлый труп леопарда. Что понадобилось леопарду на такой высоте, никто объяснить не может[12]12
  Цит. по: Хемингуэй Э. Снега Килиманджаро / Перевод с английского Н. А. Волжиной. М., 1968.


[Закрыть]
.

2. Килиманджаро – это заснеженная гора высотой 19 710 футов, которая считается самой высокой горой в Африке. Его западная вершина называется Масаи «Нгадже Нгаи», Дом Бога. Рядом с западной вершиной находится высушенная и замороженная туша леопарда. Никто не объяснил, что искал леопард на такой высоте[13]13
  Перевод оригинала с английского языка на русский, выполненный Google Переводчиком в 2021 году. – Прим. ред.


[Закрыть]
.

Следующая цель глубокого обучения – научить автопереводчик работать с абзацами, чтобы он мог выявлять связи между несколькими предложениями. У слов глубокие культурные корни. Владимир Набоков, автор романа «Лолита», писавший и на русском, и на английском, пришел к выводу, что невозможно переводить поэзию. Его литературный перевод на английский язык «Евгения Онегина» Пушкина[14]14
  Eugene Onegin. A Novel in Verse by Alexandr Pushkin / Translated from the Russian, with a Commentary, by Vladimir Nabokov. In four volumes. – NY: Pantheon Books, 1964.


[Закрыть]
дополнен пояснениями о культуре той страны и того времени, в котором создавался оригинал; необходимость давать такие сноски подтверждает его точку зрения. Но, возможно, однажды Google Переводчик сможет переводить произведения Шекспира, опираясь на контекст его творчества в целом[15]15
  Ранние попытки приведены в статье «Завышенная эффективность рекуррентных нейронных сетей» по ссылке: karpathy.github.io/2015/05/21/rnn-effectiveness/ – Прим. авт.


[Закрыть]
.

Учим слушать

Еще одна заветная мечта ИИ – распознавание устной речи. До недавнего момента оно применялось в ограниченных областях, например при бронировании авиабилетов. Теперь же возможности безграничны. Летний исследовательский проект Microsoft Research, осуществленный в 2012 году стажером из университета Торонто, значительно улучшил систему распознавания речи (рис. 1.4)[16]16
  G. Hinton, L. Deng, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, B. Kingsbury, «Deep Neural Networks for Acoustic Modeling in Speech Recognition», IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, Nov. 2012.


[Закрыть]
. В 2016 году одно из подразделений Microsoft заявило, что в результате применения глубокого обучения они достигли эффективности, сравнимого с человеческой[17]17
  W. Xiong, Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Achieving Human Parity in Conversational Speech Recognition, arXiv:1610.0525.


[Закрыть]
.


Рис. 1.4. Ричард Рашид, руководитель отдела исследований компании Microsoft, на презентации функции распознавания голоса, использующей глубокое обучение. 25 октября 2012 года в Тяньцзинь в Китае. Две тысячи китайских студентов в аудитории увидели субтитры, созданные с помощью автоматического распознавания речи, которые следовали за устным переводом на китайский язык. Это стало всемирной сенсацией


Последствия этого прорыва будут ощущаться в обществе в ближайшие годы, и в итоге голосовой интерфейс вытеснит клавиатуру. Это уже начало происходить с появлением виртуальных помощников, таких как Алекса, Сири и Кортана, разработчики которых постоянно стремятся превзойти друг друга. Как печатные машинки исчезли из-за повсеместного распространения компьютеров, так и клавиатуры вскоре станут всего лишь экспонатами музеев.

Когда функция распознавания речи соединится с функцией автоматического перевода, станет возможно межкультурное общение в режиме реального времени. Почему же требуется так много времени, чтобы они вышли на тот же уровень, что и у человека? Просто ли совпадение, что они и другие когнитивные способности достигли своего предела одновременно? Ко всем этим достижениям привели огромные потоки данных.

Учим ставить диагноз

Сфера услуг и профессии также изменится с развитием машинного обучения, когда оно начнет применяться в тех областях, где будет доступ к большим массивам данных. Медицинские диагнозы, опирающиеся на информацию о миллионах пациентов, станут более точными. Во время недавнего исследования глубокое обучение было применено к медицинской базе данных, в которой содержалось 130 тысяч изображений, иллюстрирующих более двух тысяч различных дерматологических заболеваний, что в десять раз больше, чем использовалось ранее (рис. 1.5)[18]18
  Esteva A., Kuprel B., Novoa R. A., Ko J., Swetter S. M., Blau H. M., Thrun S. Dermatologist-Level Classification of Skin Cancer With Deep Neural Networks. Nature 542 (7639), 115–118. 2017.


[Закрыть]
. Систему обучили определять заболевания, исходя из изображений, которые ей были до этого неизвестны. В результате система поставила диагнозы, которые не отличались, а в некоторых случаях даже были точнее, которые поставили 21 врач-дерматолог. Вскоре каждый при помощи смартфона сможет сфотографировать подозрительное высыпание на коже и незамедлительно узнать диагноз. Без посещения доктора, длительного ожидания в очереди перед осмотром и потраченной солидной суммы денег, как сейчас. Значительно расширится объем и качество дерматологического лечения. Если пациент сможет быстро получить экспертную оценку, он придет к доктору на ранней стадии заболевания и его будет гораздо проще вылечить. Да и сами врачи станут лучше определять кожные заболевания при помощи глубокого обучения[19]19
  Siddhartha Mukherjee, A. I. Versus M.D. What happens when diagnosis is automated? April 3, 2017 New Yorker. www.newyorker.com/magazine/2017/04/03/ai-versus-md


[Закрыть]
.

Если у вас серьезные проблемы со сном, что случается у 70 процентов людей, то вы запишетесь на прием к доктору, и, за исключением критических ситуаций, может пройти несколько месяцев, до того как вас направят в специализированную клинику. В клинике вам проведут обследование во время ночного сна. Вас облепят десятками электродов для записи электроэнцефалограммы и мышечной активности в то время, пока вы спите. Когда вы засыпаете, мозговые волны на вашей ЭЭГ меняют низкую амплитуду на высокую при переходе в стадию медленного сна, и считать согласованность волн через волосистую часть головы становится намного проще. В течение ночи мозг переключается на другую стадию сна, которая сопровождается быстрым движением глаз.


Рис. 1.5. Обложка журнала Nature от 2 февраля 2017 года. Взгляд художника на диагностирование кожных заболеваний при помощи глубокого обучения


В это время вы видите сны. Бессонница, задержка дыхания во сне (апноэ), синдром беспокойных ног и другие расстройства нарушают схему. Если вам трудно засыпать даже дома, то попытка заснуть в чужой кровати с проводами от медицинского оборудования тем более будет для вас проблемой. Всю следующую неделю доктор будет изучать вашу ЭЭГ и отмечать стадии сна блоками по 30 секунд. Потребуется много времени, чтобы добиться восьмичасового сна. В конце концов вы получите заключение о нарушениях режима сна и счет на две тысячи долларов.

Врачи-сомнологи обучаются по системе наблюдения за стадиями сна, разработанной Рехтсшафеном и Кэйлсом в 1968 году[20]20
  Kales A., Rechtschaffen A. (Eds.) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Allan Rechtschaffen and Anthony Kales, editors. National Institutes of Health publication, no. 204, Bethesda, Md., U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network, 1968.


[Закрыть]
. Тем не менее два эксперта согласятся друг с другом только в 75 процентах случаев, так как особенности сна часто неоднозначны и противоречивы. Филип Лоу, бывший аспирант моей лаборатории, использовал машинное обучение для автоматического определения стадий сна всего за три секунды с достоверностью 87 процентов, что занимает меньше минуты работы компьютера. Более того, нужен всего один провод, закрепленный в одном месте на поверхности головы, что гораздо удобнее, чем пучки проводов, которые сложно ставить и снимать. В 2007 году мы запустили проект Neurovigil, направленный на внедрение этой технологии в специализированных клиниках. Мы были удивлены, когда они не проявили к нему интереса, так как это снизило бы их доход. Пока страховые компании оплачивают большие счета, выписанные пациентам, клиникам невыгодно внедрять более дешевые методы. Они так же зарабатывают на производителях лекарств, ведь тем необходимо тестировать воздействие своих препаратов на сон. Neurovigil сейчас внедряется на рынок долгосрочного медицинского ухода, ведь у пожилых часто проблемы со сном.

Модель сомнологических клиник несовершенна, так как трудно диагностировать проблему, пользуясь только одним методом. У каждого человека свои особенности, которые для него нормальны, и наиболее информативными являются отклонения от этого состояния. Для проекта Neurovigil создано специальное устройство iBrain, которое может записать вашу ЭЭГ дома, отправить данные через Интернет и проанализировать ее на предмет отклонений. Это позволит докторам выявлять проблемы на ранних стадиях, когда их проще лечить и не допустить, чтобы они перешли в хронические. Есть и другие болезни, чье лечение улучшится от продолжительного наблюдения, как, например, сахарный диабет 1-го типа, при котором уровень сахара в крови можно отслеживать и регулировать введением инсулина. Недорогие устройства, на протяжении определенного времени фиксирующие данные, сильно повлияют на диагностику и лечение разных хронических заболеваний.

Из этого опыта можно извлечь несколько уроков. Даже имея более дешевую и совершенную технологию, ее будет трудно внедрить, если другой, пусть и дорогой, продукт закрепился на рынке. Тем не менее есть второстепенные рынки, где новая технология распространится быстрее, так как может экономить время и успешнее конкурировать. Именно так появились солнечная энергетика и ряд новых отраслей. В перспективе мониторинг сна с помощью новых технологий тоже будет доступен пациентам как дома, так и в медицинских клиниках.


Страницы книги >> 1 2 3 4 5 6 7 | Следующая
  • 3.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации