Электронная библиотека » В. Черепенчук » » онлайн чтение - страница 2

Текст книги "Генетика за 1 час"


  • Текст добавлен: 13 января 2017, 18:40


Автор книги: В. Черепенчук


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 6 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +
1.5. Эксперименты с горохом

В Англии практически одновременно с исследованиями Кёльрейтера ставил опыты талантливый селекционер, основатель Лондонского общества садоводства – Томас Эндрю Найт (1759–1838 гг.). Он известен в первую очередь как исследователь явления гравитропности, объясняющего, почему корень растения всегда направлен вниз, а стебель – вверх. Помимо связи земного притяжения с ростом растений, Найт интересовался способами повышения урожайности и возможностью влиять на различные свойства даров природы.

В качестве материала для экспериментов англичанин избрал обычный горох. Такие особенности растения, как разнообразие окрасок, крупные семена, быстрый рост, делали его весьма удобным объектом исследования. Но в своих исследованиях Найт зачастую ограничивался обычным описанием хода эксперимента. Так, он обращал внимание на то, что при опылении цветков обычного гороха пыльцой, взятой от сорта с яркими семенами и цветами, в стручке сформировались обычные по виду семена. Будучи посеяны в землю, они уже породили яркие, схожие с «отцовскими» растения.

Но никаких внятных однозначных объяснений этому исследователь не дает. Тот факт, что при скрещивании двух сортов гороха – низкорослого кустовидного и обладающего длинными плетями – гибридное растение получилось огромным, Найт истолковал как положительное воздействие скрещивания. Хотя современные исследователи просто признали бы размер одного из исходных растений доминантным признаком. Правда, британский садовод обратил внимание на то, что отдельные характерные черты того или иного растения устойчиво сохраняются у гибридных потомков, внеся тем самым свой вклад в формулирование понятия наследуемых признаков.

Томас Эндрю Найт долгое время был уверен в том, что представители разных видов не могут производить гибриды, хотя впоследствии он пересмотрел эту точку зрения. Надо сказать, что в XIX в. не было единого мнения по этому вопросу. Соотечественник Найта, ботаник Уильям Герберт (1778–1847 гг.), заявил, что имеющееся на данном этапе разнообразие видов, скорее всего, формировалось постепенно, значит, выделение новых видов под влиянием природных условий и скрещивание между видами вполне вероятно. В этом вопросе Герберт стал предшественником Чарлза Дарвина.

Не лишним будет вспомнить соотношение между понятиями «род», «вид», «семейство».

Все живые существа и растения – как существующие, так и вымершие – занимают определенное место в биологической систематике. Не будем подробно рассматривать все ее ранги, ограничимся в упрощенном виде пятью низшими: класс (например, насекомые); порядок, или отряд (чешуекрылые); семейство (белянки); род (огородные белянки); вид (капустница). Как видим, основной единицей систематики является вид. Представителей одного вида объединяет схожесть физических признаков, биохимических процессов, поведения, а также способность воспроизводить плодовитое потомство в рамках внутривидового скрещивания. Но, как видим, скрещивание возможно не только в пределах вида. А вот способность или неспособность различных гибридов к размножению зависит от очень многих условий…

Современное определение вида сложилось далеко не сразу. Много лет ученые спорили о том, каковы вообще критерии в этом вопросе. Карл Линней считал, что вид – это группа сходных по строению особей, способных дать плодовитое потомство. Бюффон также ставил плодовитость во главу угла: с его точки зрения, только схожие особи, дающие способное к размножению потомство, могут быть отнесены к одному виду. Жан Батист Ламарк (1744–1829 гг.) полагал, что виды непрерывно изменяются (так что Дарвин не был революционером в этом вопросе), следовательно, в реальности видов как таковых нет и быть не может. Современное понятие вида было дано только к середине XX в. В настоящее время для описания того или иного вида используются несколько критериев, которые нельзя рассматривать отдельно друг от друга. Так, морфологический критерий важен, но не является определяющим: согласно ему, представители одного вида должны быть схожи по своему внешнему и внутреннему строению. Но как быть с тем, что, например, цветы одного вида, выросшие в разных климатических условиях, будут несколько отличаться друг от друга? Таким образом, нужно учитывать биохимический критерий (особенности процессов, протекающих «внутри» представителей вида), экологический критерий (сходство условий окружающей среды, в которых развиваются разные представители вида), физиологический (схожие процессы жизнедеятельности) и, конечно, генетический критерий – определенный набор хромосом. Последний стали рассматривать относительно недавно, и разговор о хромосомах нам тоже еще предстоит. Пока просто отметим, что в природе существуют виды, практически неотличимые друг от друга внешне, но обладающие разными хромосомными наборами.

1.6. Огюстен Сажрэ. Огород и сад как лаборатория

Множество важных выводов в области наследственности и изменчивости у растений сделал французский садовод Огюстен Сажрэ (1763–1851 гг.). В первую очередь он занимался разведением фруктовых деревьев, но, заинтересовавшись вопросами гибридизации, поставил сотни опытов по скрещиванию различных цветов, тыквенных и бахчевых культур. Как мы помним, многие предшественники Сажрэ обращали внимание на то, что различные признаки родителей – окраска, размеры, форма цветов и плодов – в той или иной степени проявляются у гибридных растений, но не выявляли никаких строгих закономерностей. Встречались также утверждения, что гибрид всегда представляет собой «среднее арифметическое»: условно говоря, если мы скрестим гвоздику с красными цветками и гвоздику с белыми цветками, то получим растение с лепестками розового цвета.

Огюстен Сажрэ усомнился в принципе смешения. Сделать это ему помогли обыкновенные дыни разных сортов, которые садовод неутомимо скрещивал в самых разнообразных сочетаниях. Он первым обратил внимание на наследование отдельных признаков – таких как рисунок и расцветка кожуры, вкус (сладкий, кислый, с пряным оттенком), цвет мякоти, расположение и форма семян. «Например, – рассуждал Сажрэ, – мы скрещиваем два вида дыни – один с ярко-желтой коркой и белыми семенами, другой – с белой коркой, покрытой сеткообразным рисунком, и семенами коричневого оттенка. Если следовать логике сторонников смешения признаков, то гибридная дыня должна иметь светло-желтую корку с едва заметной сеткой, а семена ее будут светло-бежевыми. Если же взять два сорта – один с медово-сладкой мякотью, другой – с кислой, то в итоге должно получиться растение с кисло-сладкими плодами. То есть различные признаки двух сортов, смешавшись, породят нечто среднее». Но… полученные французским садоводом гибриды упорно не желали подтверждать эту теорию. Они наследовали признаки родителей в чистом виде, но в самых разных вариациях. Выходит, что в разведении растений не действует тот же принцип, что и в смешивании красок: смешав белое и ярко-желтое, мы не получим бледно-желтое – здесь действуют какие-то иные правила!

Свои выводы Огюстен Сажрэ представил в статье 1825 г. «Соображения об образовании гибридов, вариант и разновидностей», впоследствии несколько раз переизданной. «Варианта» в изложении французского исследователя означает некое незначительное отличие, которое возникает скорее благодаря внешнему воздействию – составу почвы, перепадам температуры, – нежели в ходе гибридизации.

У растений одного и того же вида, растущих в разных регионах, цвет листьев может несколько различаться из-за разной продолжительности светового дня и различных химических характеристик почвы.

Сажрэ не только обратил внимание на факт неизменности многих отдельных признаков и появление «вариант». В своих исследованиях он рассмотрел явление атавизма (от лат atavus – отдаленный предок): когда растение или животный организм наследует признаки не только родительских особей, но и имеет явное сходство с более отдаленными предками. По мнению Сажрэ, имевшего дело в первую очередь с культурными садовыми и огородными растениями, атавизм и «варианты» находятся в противодействии: по сути «одичание» культурных растений, которое происходит без надлежащего ухода, это и есть атавизм. Задача садовода – противодействовать этому процессу при помощи культивации почвы, внесения удобрений, обрезки растений и прочих необходимых операций. В случае продолжительного целенаправленного ухода культурные признаки будут закреплены, и положительные варианты станут наследоваться в новых поколениях.

А что же с наследованием гибридными растениями цвета плодов, формы листьев и прочего? Признав, что «перемешивание» не происходит, Сажрэ констатировал тот факт, что отдельные черты проявляются у гибридных дынь более ярко, чем все остальные. Он также обратил внимание на то, что некоторые заболевания могут передаваться от родительских растений их потомкам, причем иногда разные дефекты могут проявиться через несколько поколений. Но закономерность в наследовании признаков и их доминировании он все же не обнаружил. Поэтому Огюстена Сажрэ обычно называют одним из предшественников Грегора Менделя. Описав и подтвердив множество фактов, необходимых для понимания процессов наследственности и изменчивости, он, как и Иозеф Кёльрейтер и Томас Найт, остановился на полпути.

1.7. Шарль Ноден: за несколько шагов до революционных открытий

Дополнить и развить предположения Огюстена Сажрэ смог его соотечественник – Шарль Ноден (1815–1899 гг.).

Вообще в середине XIX в. развернулся новый виток дискуссии о том, каковы признаки и границы вида, рода и разновидности и каковы возможности скрещивания их представителей. Несмотря на то, что уже много лет прошло с того времени, когда вел свои изыскания Карл Линней, ясности в вопросах систематизации видов не было. Исследователи занимались выведением наиболее урожайных сортов фруктов и овощей, поэтому вполне закономерно, что их интересовал вопрос плодовитости гибридов. Представители Парижской академии наук в начале 1860-х гг. в основном сошлись во мнении, что плодовитыми могут быть только гибриды, полученные от родителей, принадлежащих к одному виду. Если же удавалось скрестить растения двух разных видов, то полученный в ходе эксперимента гибрид был бесплоден – получить потомство можно было только при помощи опыления обычной пыльцой, принадлежащей или родительскому растению, или негибридному представителю вида.

Под разновидностью в биологии принято понимать некую внутривидовую группу особей, которые, полностью соответствуя общим характеристикам вида, имеют некоторые незначительные особенности – окраску, форму, размер.

Шарль Ноден, наблюдения которого играли далеко не последнюю роль в развитии «протогенетики» XIX в., был сотрудником Музея естественной истории в Париже и много времени проводил в оранжереях Ботанического сада, ставя бесчисленное множество опытов. В своих ранних исследованиях Ноден обращал внимание на то, что при скрещивании растений гибриды первого поколения обнаруживают большее сходство либо с отцовским, либо с материнским растением. А в последующих поколениях уже проявляется значительное многообразие (о «расщеплении» и его закономерностях напишет позднее Грегор Мендель). Далее ботаник задает вопрос: от чего же зависит сходство гибридов первого поколения с изначальными образцами? В последующих опытах Ноден констатирует важнейший факт. Скрещивая разные виды дурмана, он замечает, что внешние признаки одного родителя преобладают в гибридах всегда, независимо от того, использовался этот вид как материнское или как отцовское растение. Такие виды Ноден именует «более деятельными» – как видим, до формулирования понятия «доминантный признак» оставалось совсем немного. (Используя понятие «признак» применительно к исследованиям «доменделевской» эпохи, мы имеем в виду отдельные характеристики исходного организма или гибрида. В то время еще не рассматривались такие термины, как «ген», «хромосома» и другие, неразрывно связанные с понятием «признака» в современной генетике.) Более того, исследователь ведет статистику скрещивания растений с разными внешними признаками – сохранились его записи, сделанные входе опытов по гибридизации примулы. Но… словно оборвав ход собственных размышлений, Шарль Ноден пишет, что, вероятнее всего, единого закона наследования тех или иных признаков не существует, а процесс варьируется, протекая у каждого вида растений по-своему. Следовательно, цифры и подсчеты особого смысла не имеют. Он допускает фактор случайности, признавая существование некоей «беспорядочной изменчивости» и предполагая, что у гибридов второго и последующих поколений происходит нечто вроде разрыва связей между различными признаками – следовательно, выводить правила и законы бесполезно.

Несмотря на некоторую незавершенность и большое количество допущений и предположений, работы Нодена были высоко оценены Академией наук и во второй половине XIX в. считались практически непререкаемым авторитетом.

1.8. Чарлз Дарвин. Гипотеза о «частицах наследственности»

Свой вклад в изучение механизмов наследственности внес автор теории эволюции Чарлз Дарвин (1809–1882 гг.).

Ключевым понятием в его разработках был «естественный отбор». Дарвин считал, что если при разведении культурных садовых растений и домашних животных на первое место ставится искусственный отбор (он же селекция), проводимый человеком, то в природных условиях роль селекционера играет отбор естественный, организованный самой природой. Выживают особи, наиболее приспособленные к природным условиям, обладающие наиболее совершенным набором признаков. Например, если у белой медведицы родились два медвежонка с густой пушистой шерстью и один – по какой-то причине обладающий редким и слабым шерстным покровом, то последний, скорее всего, не выживет в суровых условиях. А его более приспособленные братья передадут следующим поколениям признаки, необходимые для проживания в холодном климате. Причем если природные условия будут изменяться – в соответствии с ними будут меняться и характеристики растений и животных. Конечно, какое-то количество особей постоянно будет «отбраковываться». Ведь любые организмы производят на свет значительно больше детенышей (отпрысков, семян и т. д.), чем необходимо для поддержания природного равновесия. Поэтому между всеми организмами существует жесткая конкуренция, в ходе которой погибают особи, не обладающие полным набором необходимых характеристик.


Чарлз Дарвин (фото 1869 г.)


Какой вывод из этого следует? Организмы, наиболее приспособленные к жизни в окружающем мире, передают свои ценные признаки потомству – в то время как слабые в большинстве случаев не успевают этого сделать. Таким образом, благодаря внешним условиям с течением времени представители вида могут значительно измениться – как внешне, так и внутренне! Именно естественный отбор, по мнению Дарвина, является одной из главнейших причин эволюции. А эволюционный процесс складывается из адаптации организмов к внешнему миру, появления новых видов и угасания старых, а также – в итоге – изменения целых природных систем. Конечно, к числу причин эволюции относятся и другие факторы, например, мутации, но Дарвин этим термином еще не оперировал. Мы же к понятию «мутация» обязательно обратимся чуть позже.

Предположения Дарвина вызвали живой интерес в научном сообществе и породили ожесточенные споры, ведь в то время доминировала версия, что существующие виды созданы высшей силой и в основе своей неизменны.

В 1859 г. был опубликован труд Чарлза Дарвина «Происхождение видов» (полное название «Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь»). Представленные в ней данные отчасти основывались на результатах исследований, которые британский натуралист провел в ходе длительного путешествия на корабле «Бигль» к берегам Австралии и Южной Америки. Интересно, что собственно понятие «вид» Дарвин считал искусственным и по большому счету ничего не значащим, ведь он был уверен, что виды непрерывно изменяются, порождая все новые и новые варианты. С его точки зрения, процесс изменения вида в ходе эволюции приводит сначала к появлению разновидностей – натуралист назвал их зарождающимися видами.

Надо сказать, что во времена Чарлза Дарвина снова начали пересматривать и уточнять систему родов и видов, заложенную Карлом Линнеем, но не только дарвиновские труды послужили тому причиной. Развитие техники и транспорта сделало доступными для ученых отдаленные уголки земного шара. Были обнаружены новые виды и подвиды животных и растений. Соответственно, многое в системе знаний об окружающем мире подлежало пересмотру.

Вполне логично, что Дарвина интересовали проблемы появления гибридов и закономерности, которые можно выявить в этой области. Он тщательно изучил работы своих предшественников и современников (о большинстве из них мы говорили в предыдущих разделах), а также самостоятельно провел множество опытов, связанных со скрещиванием и селекцией. Тот факт, что гибриды начинают проявлять признаки, характерные для того или иного родителя или еще более отдаленного пращура, Дарвин объяснил так называемой реверсией – возвратом к предшествующим поколениям. В его глазах это было еще одним доказательством эволюционного процесса, в частности, вероятного происхождения разных видов от общего предка.

Но как передаются от поколения к поколению разнообразные признаки? По мнению Чарлза Дарвина, существуют некие «частицы наследственности», которые он называл геммулами. Дословно это понятие переводится с латыни как маленькая почка. Геммулы содержатся во всех без исключения тканях любых организмов, откуда при помощи кровотока переносятся в половые клетки, обеспечивая таким образом передачу будущим поколениям общей информации о признаках организма. Эта теория, представленная в книге «Изменение животных и растений в домашнем состоянии» (1 868 г.; книга также издавалась под названием «Прирученные животные и возделанные растения»), получила название пангенеза. Но дальше предположений о существовании геммул Дарвин не продвинулся, и точный механизм наследственности им так и не был рассмотрен. Интересно, что Чарлз Дарвин был современником «отца генетики» Грегора Менделя, но, судя по всему, был не в курсе его исследований и открытий – правда, как будет сказано далее, теория Менделя не была оценена при его жизни.

1.9. Август Вейсман и другие: «черновик» хромосомной теории наследственности

Дарвиновская теория была значительно доработана немецким зоологом Августом Вейсманом (1834–1914 гг.). Первоначально он был горячим сторонником дарвинизма и много сил положил на популяризацию и защиту этого учения; естественный отбор как основа эволюции не вызывал у Августа Вейсмана сомнений. Но с течением времени он стал обнаруживать в теории Чарлза Дарвина слабые места и занялся экспериментами, желая опытным путем либо подтвердить, либо опровергнуть то, что его смущало. Вначале Вейсман заинтересовался возможностью наследования приобретенных признаков. Опыт, поставленный им, вошел в учебники по генетике: немецкий ученый хирургическим путем удалял хвосты у мышей из нескольких поколений одной семьи и выяснил, что в любом случае у бесхвостых родителей всегда рождаются мышата с обычными длинными хвостами!

Получается, что в вопросах наследственности роль первой скрипки играет не окружающая среда, а некие внутренние процессы. Значит, делает вывод Вейсман, механические повреждения, даже повторяющиеся постоянно, на потомство никак не повлияют. Следовательно, половые клетки, которые впоследствии дадут жизнь зародышу, не получают информацию о том, что, например, та или иная конечность больше не используется или какая-либо мышца развивается более активно, чем все прочие. В результате Вейсман отверг рассуждения Дарвина о геммулах, которые являются связующим звеном между тканями и половыми клетками. Но как же тогда в организме человека, животного или в тканях растения происходит передача информации? Ведь опыты с мышами не отменяли факта существования наследственности!

Деятельность Вейсмана не ограничивалась опытами над грызунами. Для того чтобы рассмотреть и оценить его вклад в теорию наследственности, нам нужно ознакомиться с открытиями, которые были сделаны биологами к тому времени (самые значимые свои исследования немецкий ученый проводил в 1880-е – 1890-е гг).

Как говорилось ранее, клеточное строение растений и живых организмов уже давно ни для кого не было секретом. К 1838 г. немецкие ученые Маттиас Шлейден (1804–1881 гг.) и Теодор Шванн (1810–1882 гг.) сформулировали основы так называемой клеточной теории. Она не просто подтвердила клеточное строение животных и растений. Шлейден и Шванн констатировали: рост и развитие немыслимы без возникновения новых клеток, причем строение клеток растений, бактерий, животных весьма схоже. За несколько лет до этого британский ботаник Роберт Броун (1773–1858 гг.), рассматривая клетки орхидеи, углядел в каждой из них ядро в виде маленькой темной точки и предположил, что оно является постоянной частью любой растительной клетки.

На самом деле фамилия ученого – Браун, но в русском языке утвердилось именно такое написание. Он же – первооткрыватель броуновского движения.

Рудольф Вирхов (1821–1902 гг.), немецкий биолог, патологоанатом и физиолог, обратил внимание на связь клеток с патологическими болезненными состояниями организма и стал основателем нового направления – целлюлярной (клеточной] патологии. Согласно результатам исследований Вирхова, любой сбой в работе организма, любая болезненная патология объясняются нарушениями жизнедеятельности клеток. По сути клетка – это отдельный организм, имеющий все необходимое для своего жизнеобеспечения. Вирхова критиковали за чрезмерное выпячивание значимости отдельной клетки – мол, он низвел целый организм до простой совокупности «кирпичиков», не уделив внимания согласованности всех его систем. Но его заслуги перед наукой (он подробно описал физиологические основы нескольких десятков серьезных заболеваний) многократно перевесили критику.

Начиная с 1840-х гг. цитология (от греч. κύτος – клетка; λόγος – наука; учение о клетке) бурно развивалась и была выделена в отдельную отрасль биологии. Благодаря совершенствованию лабораторной техники стали возможны все более и более тонкие наблюдения, и постепенно клетка начала открывать исследователям свои тайны. Выяснилось, что новые клетки образуются путем деления уже имеющихся, а самыми главными их частями следует считать цитоплазму (содержимое клеточной оболочки) и ядро, а не оболочку, как предполагали многие ученые ранее. Именно цитоплазма объединяет в сложнейшую систему все элементы клетки и обеспечивает бесперебойное протекание всех биохимических процессов.

Что касается ядра, то результаты его исследований были поистине революционными. Немецкий ученый Вальтер Флемминг (1843–1905 гг.) в 1870-х гг. при помощи анилиновых красителей обнаружил, что в ядрах клеток имеется некая субстанция, способная интенсивно впитывать эти красители. Он дал ей название «хроматин». Объектом интереса Флемминга также был процесс клеточного деления, который он подробнейшим образом изучил и представил в своей работе «Клеточная материя, ядро и деление клетки». Исследователь обратил внимание, что в хроматине содержатся структуры, напоминающие короткие нити или низки бус – впоследствии их назовут хромосомами. Первоначально же их именовали сегментами, или хроматиновыми элементами. Кстати, многие историки науки оспаривают тот факт, что именно Флемминг был первооткрывателем хромосом. Дело в том, что практически одновременно эти элементы обнаружили и описали Эдуард Страсбургер, Отто Бючли и Иван Чистяков, а термин «хромосома» появился только в 1888 г. благодаря Генриху Вальдейеру.

В общем, к концу XIX в. биологи накопили внушительный научный багаж. Но вернемся к исследованиям Августа Вейсмана.

В 1892 г. вышел его «Очерк о наследственности и связанных с ней биологических вопросах». В этой работе ученый использует термин «зародышевая плазма» – так он обозначил субстанцию, которая, по его мнению, отвечает за хранение и передачу наследственной информации. Зародышевая плазма постоянна, неизменна и не подвержена никакому внешнему воздействию. Ее назначение – сохранять наследственные зачатки, из которых потом будет развиваться плазма телесная, которая составит все остальные части нового организма. Но где конкретно содержится зародышевая плазма? Вейсман предполагал, что в хроматине ядра, точнее в хромосомах. Так как еще Флемминг и Страсбургер достаточно подробно описали деление хромосом в процессе деления клетки, Август Вейсман сделал вывод, что, вероятнее всего, эти элементы играют ключевую роль в наследственности. Обратите внимание: Вейсман не писал ни о генах (это понятие тогда еще не существовало), ни об особых закономерностях проявления отдельных наследственных признаков. Он создал сложную и громоздкую структуру описания зародышевой плазмы, которая, по его мнению, состояла из биофор, детерминант, идант (их он отождествлял с хромосомами) и так далее. Но его умозрительные предположения предвосхитили хромосомную теорию наследственности, которую уже в XX в. будут разрабатывать Теодор Бовери, Уолтер Саттон, Томас Морган. Вейсман практически на блюдечке преподнес исследователям будущего «образ» некой единицы наследственности, которой впоследствии будет суждено именоваться геном.

Ну а как же, по теории Вейсмана, у представителей того или иного вида возникают новые признаки? Ведь опыт с мышиными хвостами вроде бы доказал малозначимость внешнего воздействия? Август Вейсман считал, что наследственность можно изменить, если воздействовать непосредственно на зародышевую плазму.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации