Текст книги "Стоматология собак"
Автор книги: В. Фролов
Жанр: Медицина, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 26 страниц)
Фиксация собак при стоматологической помощи
Любое заболевшее животное требует предварительного осмотра, прежде чем будет поставлен диагноз и назначено соответствующее лечение. Все животные вне зависимости от вида требуют умелого с ними обращения. При проведении обследования ротовой полости собаки и стоматологических лечебно-профилактических манипуляций необходимо строго выполнять все правила и приемы в обращении с ними. Правильный подход к собаке, своевременно применение эффективных способов ее фиксации обеспечивает безопасность ветеринарных специалистов, владельца животного и успех в проведении необходимых стоматологических приемов.
Фиксация животных – укрепление всего тела животного или отдельных его частей в определенном положении для обеспечения безопасности человека при обследовании и оказания помощи животным.
Выбор того или иного способа фиксации собаки при стоматологической помощи зависит от массы тела, возраста, привычек, темперамента животного и характера проведения зубоврачебных манипуляций. При этом следует отметить, что применяемые способы фиксации собаки преследуют три основные цели:
1) придать животному такое положение, при котором можно обеспечить свободный доступ ветеринарного врача к ротовой полости;
2) ограничить защитные движения животного и обеспечить тем самым условия для безопасного проведения необходимых стоматологических манипуляций;
3) устранить возможность нанесения травматических повреждений животному как во время фиксации, так и после нее. Прежде чем фиксировать животное, необходимо выяснить у владельца собаки о ее нраве и вредных привычках. Однако нельзя полагаться на одни заверения владельца, что собака не кусается. Ветеринарному специалисту не следует забывать о том, что место проведения врачебных манипуляций – ротовая полость – является одной из опасных частей тела животного для человека. Собака перед осмотром должна находиться в наморднике, ошейнике и на поводке. Лишь строптивым собакам надевают так называемые строгие металлические ошейники, которые состоят из звеньев с вдавливающимися внутрь шипами, сжимающими горло при рывках животного.
У мелких декоративных пород и у собак с короткой и толстой шеей вместо ошейника применяют шлейки, фиксирующиеся между передними конечностями. К шлейке пристегивают поводок, что делает невозможным побег собаки и одновременно при движении не сдавливает горло.
Осмотр зубов и преддверия ротовой полости можно произвести, если намордник собаки велик и имеет прорези в области челюстей. При наличии плотно прилегающего намордника или же при его отсутствии челюсти собаки фиксируются тесьмой.
Для фиксации челюстей владелец животного одной рукой захватывает кожу животного в области затылка и шеи, а другой рукой сжимает обе челюсти. В этот момент ветеринарный врач берет тесьму или бинт, делает петлю и надевает ее на морду так, чтобы концы тесьмы находились сверху (над переносицей). Затем концы тесьмы опускаются вниз, завязываются одним узлом под нижней челюстью. После этого концы тесьмы в области затылка собаки завязываются простым узлом и на бантик. При серьезных стоматологических вмешательствах (снятии зубных отложений, пломбировании зубов или их экстирпации) животное лучше фиксировать на операционном столе. Для фиксации собак наиболее удобен операционный стол С. П. Виноградова. Он имеет достаточно просторную рабочую поверхность и позволяет фиксировать животное в различных положениях.
Для удобства доступа к различным группам зубов животное фиксируют в лежачем боковом положении, в положении на животе или в положении на спине. При боковом положении доступны губные или щечные поверхности клыков, премоляров и моляров. В положении на животе доступны практически все зубы на нижней челюсти, а при положении на спине – зубы на верхней челюсти. Открывают пасть с помощью бинтов или тесьмы. Они фиксируются на обеих челюстях за клыками. Чтобы бинт не соскочил с челюсти, его завязывают одним узлом на спинке носа или за подбородком у животного. Кроме того, пасть собаки можно открыть с помощью специального инструмента – роторасширителя.
При фиксации агрессивных животных целесообразно применять нейролептики или наркотические вещества.
Исследование ротовой полости
Началом исследования ротовой полости у животных должно быть выяснение врачом жалоб хозяина. В анамнезе надо учитывать время начала заболевания, его течение, прием корма, особенности жевания, слюнотечение, посторонние запахи из ротовой полости, отказ животного играть с палочкой или резиновой игрушкой.
Также следует выяснить перенесенные и сопутствующие заболевания. В ряде случаев важно установить точное время перенесенного заболевания, так как изменения в полости рта могут быть проявлением этого заболевания или его последствием (чума собак, рахит, недостаток минеральных веществ и витаминов и т. д.). Во время опроса необходимо выяснить переносимость организмом животного лекарственных веществ, условия кормления и содержания.
Сбор анамнеза позволяет ветеринарному врачу изучить жалобы владельца животного, установить время возникновения первых симптомов заболевания в ротовой полости больного животного, перенесены ранее заболевания, а также определить влияние факторов внешней среды на организм. В процессе объективного исследования ветеринарному врачу необходимо уточнить все возникшие жалобы на здоровье животного.
При осмотре обращают внимание на внешний вид животного, конфигурацию головы, цвет слизистой ротовой полости, состояние кожи и шерстного покрова лицевой части, наличие асимметрии и дефектов головы. Для раскрытия ротовой полости у собак одной рукой захватывают верхнюю челюсть и между большим и указательным пальцем вдавливают щеку между рядами зубов, а другой рукой поддерживают снизу нижнюю челюсть, а затем сильно, но осторожно отводят ее вниз.
Беспокойным, злым собакам раскрывают ротовую полость с помощью полотняных тесемок, которые укрепляют позади клыков, завязав их над верхней и нижней челюстью (выполняет владелец животного), затем тесемки растягивают вниз и вверх. Если необходимо раскрыть ротовую полость на длительное время применяют нейролептики, анальгизирующие, миорелаксирующие и наркотические средства по усмотрению ветеринарного врача. Для раскрытия ротовой полости животных и ее осмотра эффективен метод блокады нижнечелюстного нерва по И. И. Воронину.
Зубочелюстной аппарат рекомендуется исследовать в два этапа. На первом этапе собирают анамнез, глубоко пальпируют зубные аркады через толщу тканей, а также визуально обследуют зубы и пародонт.
Обращают внимание на комплектность и цвет зубов, на их взаиморасположение и взаимоотношение зубных аркад, на состояние трущихся поверхностей коронок зубов. Одновременно осматривают слизистую оболочку челюстей и десен. Особое внимание уделяют покрытию свободным краем десен зубных шеек и межзубных промежутков, смотрят на цвет десен, наличие на них язв, ран, гингивитов, свищей и зубодесневых карманов.
На втором этапе детально изучают выявленные патологические процессы и ставят окончательный диагноз на фоне транквилизации и блокады нижнечелюстных нервов с помощью специальных инструментов. Это дает возможность выявить подвижность и прочность зубов, наличие зубного налета или камня, глубину патологических полостей при кариесе, глубину свищей и зубодесневых карманов, а также характер их содержимого, размеры ран и язв, место локализации патологического процесса, его ограниченность и распространенность, а также связь с другими органами и тканями, наличие в межзубовом пространстве инородных тел.
Если у ветеринарного врача возникает подозрение на заболевания корней зубов, пульпы, костей верхней или нижней челюстей, то необходимо назначить дополнительные методы диагностики, такие как рентген и электродиагностика. Кроме того, рентген собакам назначают при врожденных дефектах челюстей или зубов, чтобы выявить степень дефекта.
Особого внимания при диагностике заболеваний зубов заслуживает электродиагностика. Она позволяет выявить и дифференцировать болезнь не только в период выраженных клинических признаков, но и на стадии начала заболевания.
Для электродиагностического метода можно использовать аппарат ЭОМ-13. Принцип этого метода заключается в том, что здоровый зуб хорошо проводит электрический импульс. По мере заболевания зуба проведение электрического импульса ослабевает. Больной зуб электрический импульс проводит слабо, а с некротизирующей пульпой данного импульса нет (табл. 4).
Таблица 4
Показания аппарата ЭОМ-13
При осмотре ротовой полости у щенков выясняют время прорезывания молочных зубов, их количество и состояние. Оценивают время и очередность смены молочных зубов на постоянные.
Особо уделяют внимание выпадению молочных зубов, так как зачастую у мелких пород собак происходит их задержка. Бывают случаи, что у взрослых собак остаются молочные зубы на длительное время (той терьер, карликовый пинчер, чихуахуа).
Кроме того, при осмотре щенков уделяют особое внимание качеству прикуса, так как в это время происходит его формирование и нежелательно упускать из виду возникающие дефекты.
При выяснении клинической картины заболевания зубочелюстной системы и ее лечения не следует забывать о бактериологическом исследовании, анализах крови, исследовании органах желудочно-кишечного тракта и т. д.
ГЛАВА VI
РЕНТГЕНОЛОГИЯ
Основы рентгенологии. Историческая справка
В конце 1895 г. в Вюрцбурге (Бавария), Вильгельм Конрад Рентген (1845–1923), исследуя прохождение электрического тока через разреженные газы, обнаружил, что из того места трубки, куда попадают электроны, исходят новые лучи, обладающие замечательным свойством проходить через тела, непрозрачные для видимого света. 8 ноября 1895 г., окончив поздно вечером опыты и собравшись уходить домой, Рентген погасил свет в лаборатории, но забыл выключить ток высокого напряжения, проходивший через круксову трубку (запаянный со всех сторон стеклянный сосуд, из которого до предела выкачан воздух). В темноте он заметил зеленоватое свечение, исходившее от лежавших на столе кристаллов платиново-синеродистого бария. Достаточно было выключить ток, проходивший через трубку, закрытую картонным футляром, чтообы свечение сразу же прекратилось и возникло вновь при включении тока. Всю ночь на 9 ноября 1895 г. Рентген провел в лаборатории, исследуя это загадочное явление.
После достопамятной ночи Рентген установил в лаборатории походную койку, окна завесил темными шторами и, уединившись, ставил опыт за опытом, тщательно анализируя полученные результаты. В последующих опытах для обнаружения нового вида лучей Рентген пользовался экраном – листом картона, покрытым слоем платиново-сине-родистого бария. Поместив толстую книгу между работающей трубкой и экраном, Рентген обнаружил отчетливое свечение последнего. Следовательно, лучи проникали через стекло трубки, покрывающий ее картон и толстую книгу.
В дальнейшем ученый установил, что данные лучи легко проходили через тонкие металлические пластинки, и только достаточно толстые пластинки из тех же металлов оказывались для них непроницаемыми. Кроме того, пластинки одинаковой толщины, но из разных металлов по-разному пропускали или задерживали лучи.
Еще до открытия Рентгена было известно, что нельзя держать фотографические пластинки в том помещении, где работает круксова трубка: пластинки неминуемо портились даже в том случае, если они лежали в деревянных ящиках, непроницаемых для световых лучей. Теперь стала ясна причина этого явления: открытые Рентгеном лучи проникали через дерево и вызывали фотохимическую реакцию в светочувствительном слое пластинки, подобную той, которую вызывают лучи видимого света.
Установив новое свойство лучей оказывать фотохимическое действие, ученый изменил опыты: вместо экрана он подставил под круксову трубку деревянную кассету с фотографической пластинкой. Между трубкой и фотопластинкой Рентген поместил кисть своей руки. Когда же пластинка была проявлена, на ней получилось отчетливое изображение костей руки. Следовательно, лучи прошли через дерево, кожу, мышцы, но задержались костями руки, в результате тень костей запечатлелась на фотографической пластинке. Так был сделан первый в мире снимок костей. За семь недель интенсивной и кропотливой работы Рентгену удалось выяснить основные свойства нового вида лучей.
После многократных проверок результатов опытов, окончательно убедившись в верности и точности их, он изложил полученные данные в брошюре «О новом роде лучей», которая вышла в свет в середине января 1896 г. Открытое им излучение Рентген назвал икс-лучами, аналогично тому, как математики обозначают термином «икс» неизвестные величины: еще не все в природе открытых лучей было ясно. 23 января 1896 г. на заседании физико-медицинского общества в Вюрцбурге Рентген сделал первое публичное сообщение о своем открытии. По предложению председателя Общества, известного анатома и гистолога Келликера, новый вид лучей был назван рентгеновыми лучами. Это новое название икс-лучей, одобренное Обществом, впоследствии было принято во всем мире (лишь в литературе США и некоторых других стран сохраняется название икс-лучи. Дело в том, что американец Ленард еще до Рентгена заметил некоторые явления, происходящие при работе с круксовой трубкой, например порчу фотопластинок, и впоследствии добивался признания своего приоритета в открытии икс-лучей, пытаясь даже называть их своим именем, но, несомненно, приоритет открытия нового вида лучей принадлежит Рентгену, который не только их заметил, но и впервые в мире их изучил.
Это замечательное свойство рентгеновых лучей сразу же привлекло к себе внимание врачей, которые увидели в нем метод исследования внутреннего строения тела человека. Уже в следующем (1896) году началось использование рентгеновых лучей в медицине с диагностической целью. С тех пор и до наших дней лучи Рентгена используются не только в медицине, но и во многих других областях науки и техники. Они помогли более полно исследовать строение вещества и природу света. Благодаря рентгеновым лучам был сделан существенный вклад в разрешение таких вопросов, как теория строения атомов, молекул, кристаллов и жидкостей, в развитие химии, оптики, квантовой теории света.
Природа и получение рентгеновых лучей
Природа рентгеновских лучей аналогична природе радиоволн, видимого света, инфракрасных, ультрафиолетовых и гамма-лучей. Различие этих видов лучистой энергии состоит только в условиях их получения и в их свойствах.
Рентгеновское излучение – это вид электромагнитных колебаний, возникающих при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода рентгеновской трубки. Так как рентгеновские лучи возникают при бомбардировке твердой поверхности потоком быстрых электронов, то для их получения необходимо устройство, которое бы обеспечивало получение свободных электронов, ускорение этих электронов, резкое торможение ускоренных электронов препятствием из твердого вещества.
Таким устройством является электронная рентгеновская трубка, которая была предложена в 1913 г. Кулиджем и целиком заменила используемые ранее ионные трубки, в которых электронный поток получали путем бомбардировки «холодного катода» положительными ионами, находящимися в трубке.
Рентгеновский излучатель, или трубка, представляет собой электровакуумный прибор, преобразующий электрическую энергию в энергию рентгеновского излучения. Любая рентгеновская трубка состоит из стеклянного баллона с высокой степенью разряжения (до 7—10 мм рт. ст.), в котором расположены 2 электрода – катод и анод. Катод рентгеновского излучателя представляет собой вольфрамовую спираль линейной формы, накаливающуюся током низкого напряжения. По числу нитей катода все трубки делятся на двухфокусные и однофокусные.
Анод может быть выполнен в виде массивного медного стержня со скошенной рабочей поверхностью, в которую вмонтирована пластина (зеркало) из тугоплавкого металла. Чаще всего это вольфрам, реже тантал или иридий. Данный вид анода называется «неподвижным». Стремление увеличить мощность рентгеновской трубки, сохранив или даже уменьшив величину оптического фокуса, привело к созданию трубок с вращающимся анодом. Анод в этом случае имеет вид вольфрамового диска диаметром 80—100 мм, толщиной 4–5 мм. Катод смещен таким образом, что электронный луч ударяет о скошенный край анодного диска, вращающегося со скоростью 3000–9000 об/мин. Ротор двигателя, вращающего анод, укреплен на подшипниках, впаянных в колбу трубки, а статор расположен вне колбы – в кожухе трубки. В трубках с подвижным анодом электронный луч соприкасается с подвижной поверхностью большой площади. Рентгеновская трубка обязательно заключается в стальной защитный кожух, заполненный минеральным маслом и имеющий выходное отверстие для рабочего пучка, закрытое пластиковой пробкой. По концам кожуха расположены цилиндрические гнезда для подсоединения высоковольтных проводов.
Нить накала катода разогревается и испускает электронное облачко. Ускорение излученных катодом электронов происходит в электрическом поле, образующемся в результате высокого напряжения, созданного между катодом и анодом; в результате электроны устремляются к аноду. Резкое торможение электронов происходит автоматически, так как свободные электроны, испускаемые катодом, после ускорения в электрическом поле попадают на анод трубки. При столкновении электронов с анодом в результате резкого торможения происходит превращение кинетической энергии электронов в тепловую энергию и энергию рентгеновского излучения.
Рентгеновские лучи, излучаемые анодом, имеют сложный спектральный состав, основу которого составляют два компонента:
1) излучение со сплошным спектром, называемое «тормозным излучением»;
2) излучение с линейчатым спектром, называемое «характеристическим излучением».
Интенсивность рентгеновского излучения пропорциональна силе тока, квадрату напряжения на трубке и атомному номеру вещества анода. Меняя накал анода, можно регулировать интенсивность рентгеновского излучения.
Применение рентгеновских лучей в медицине для диагностики и лечения основано на их способностях:
1) проникать через вещества, не пропускающие видимого света;
2) вызывать свечение некоторых химических веществ (флюоресценцию);
3) оказывать фотохимическое действие – разлагать галоидные соединения серебра (вызывать почернение серебра);
4) вызывать физиологические или патологические изменения (в зависимости от дозы) в облученных органах и тканях, т. е. оказывать биологическое действие, на котором основано их лечебное применение;
5) передавать энергию окружающей среде, вызывая ионизацию.
Защита от излучения при рентгеновской диагностике
Общие положения. Осуществление «полной» защиты от рентгеновых лучей, т. е. многократное уменьшение получаемой дозы по сравнению с предельно допустимой, связано с серьезными затруднениями, так как для этого необходимы очень массивные защитные устройства, которые, особенно в ветеринарной практике, сделали бы невозможной манипуляцию рентгеновской аппаратурой. Поэтому каждый специалист, работающий с рентгеновским аппаратом, должен знать, что нельзя рассчитывать только на одни защитные устройства этих аппаратов. Необходимо усвоить некоторые приемы, влияющие на уменьшение дозы облучения во время работы. Несмотря на то что внимание рентгенолога во время работы поглощено рентгенологическим исследованием, эти приемы должны выполняться обязательно. Многообразие манипуляций, которые совершает рентгенолог при рентгенологическом исследовании, требует от специалиста знания всех защищенных и незащищенных участков около рентгеновского аппарата.
Обязанностью рентгенолога является также предохранение обслуживающего персонала, больного животного и его владельцев от лучевых поражений.
Основным принципом защиты от излучения является уменьшение мощности дозы посредством удаления от источника и его излучения, ослабления при помощи подходящих защитных устройств до такой степени, чтобы при правильном манипулировании аппаратом получаемая персоналом на рабочих местах доза не превышала максимально допустимой при условии, что аппарат работает с наибольшей мощностью, т. е. при самом высоком анодном напряжении и самой большой силе анодного тока (при которых, согласно заводским данным, аппарат может работать).
Защитные устройства можно делать не только из свинца, но и из любого другого материала без трещин и щелей, который покрывал бы защищающую площадь и задерживал рентгеновские лучи. Защитная способность данного ограждения характеризуется свинцовым эквивалентом, надо понимать толщину свинцового слоя, обеспечивающую, при одинаковых условиях, такую же защиту.
Этот эквивалент защитных ограждений, сделанных из материала, не содержащего свинца, в значительной степени зависит от энергии излучения.
Исходными величинами, определяющими толщину защитных ограждений от действия рентгеновского излучения, являются:
1) жесткость излучения, определяемая анодным напряжением;
2) интенсивность излучения, которая при определенном напряжении прямо пропорциональна силе анодного тока и обратно пропорциональна квадрату расстояния (в метрах) от источника излучения (анода);
3) доза, допустимая для исследуемого объекта.
Способность рентгеновых лучей рассеиваться при их попадании на различные тела требует также защиты тех объектов, которые не находятся в конусе первичного излучения (персонала, работающего в рентгенодиагностических кабинетах).
Защита персонала рентгенодиагностических кабинетов обеспечивается путем:
1) использования защитных устройств рентгеновского аппарата, защитных ширм и защитной спецодежды;
2) правильного монтажа рентгеновской установки и планирования рентгеновского кабинета;
3) разработки правильных способов работы на аппаратах.
Защитные устройства рентгеновского аппарата должны обеспечивать достаточную защиту во время большей части исследований, для которых предназначен аппарат. Но так как аппарат должен быть удобен для работы, нельзя сконструировать такие защитные устройства, которые обеспечивали бы полную защиту от лучей при любых условиях работы. Главной частью защиты в рентгеновском аппарате является выложенный изнутри свинцом стальной кожух трубки, предназначеный для ослабления в достаточной степени части неиспользуемого первичного излучения.
Для того чтобы можно было менять охваченное лучами поле, каждый рентгеновский аппарат должен иметь двухщелевую диафрагму такой толщины, которая бы давала тот же защитный эффект, и кожух трубки. Уменьшение поля приводит к уменьшению рассеянного излучения, что, в свою очередь, делает изображение более ясным; последнее косвенно способствует укорачиванию времени экспозиции. Обыкновенные диафрагмы не могут в достаточной степени ограничить излучение, образующееся вследствие рассеивания первичного излучения в различных частях трубки и на внутренней поверхности защитного кожуха. Это вредное излучение приводит к неясности изображения и, что самое главное, увеличивает лучевую нагрузку больного. Во избежание этого эффекта аппараты должны быть оснащены глубокими диафрагмами.
Контроль защиты. Порядок контроля защиты от излучения можно разделить на два этапа.
1. Оценка принятых мер защиты, во время которой проверяется: снабжен ли рентгеновский аппарат всеми необходимыми сооружениями и принадлежностями, отвечают ли они по качеству и конструкции соответствующим нормам, соответствует ли монтаж рентгеновской аппаратуры требованиям защиты, достаточен ли свинцовый эквивалент защитных ширм, имеются ли и в каком состоянии защитные фартуки, перчатки и пр., как ведется работа с рентгеновским аппаратом с точки зрения предохранения рентгенолога и обслуживающего персонала, а также больных от лучевых поражений.
2. Дозиметрический контроль годности защиты. Кроме описанного выше контроля, совершаемого до пуска в эксплуатацию или после перемещения любой рентгеновской аппаратуры, рекомендуется проведение индивидуального контроля доз, получаемых персоналом, так как индивидуальная чувствительность к лучевоу воздействию колеблется в очень широких границах. Необходим периодический медицинский осмотр персонала, работающего в сфере ионизирующего излучения (не менее 1 раза в год). Во время осмотров проводится диагностика ранних симптомов хронической лучевой болезни – изменения картины крови, нарушения нервной системы, кожных изменений, нарушения функций органов и систем. Данные периодического медицинского контроля вписываются в индивидуальную карточку, которая сопровождает врача-рентгенолога при его переходе на работу в другое лечебное заведение или предприятие, где он так же будет работать в сфере ионизирующего излучения.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.