Текст книги "Материалы для ювелирных изделий"
Автор книги: Виктор Лившиц
Жанр: Хобби и Ремесла, Дом и Семья
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]
Развитие ювелирного художественного литья
История украшений, в частности литейных, уходит корнями в глубокую древность.
Наряду с эстетической функцией ювелирные украшения выполняли и другие задачи: служили амулетами и талисманами; были отличительными знаками власти и богатства; ими скрепляли или застегивали одежду, обувь, пояса; поддерживали прическу и т. д.
На территории России и Украины (Киевская Русь X–XI вв.) были найдены бронзовые и золотые украшения, свидетельствующие о том, что нашим предкам были известны процессы литья по выплавляемым моделям.
При Петре I появились ювелирные изделия из драгоценных металлов с драгоценными камнями, предназначавшиеся для украшения одежды знати. Появились небольшие портреты на эмали Екатерины I, Меншикова и др. Изделия выполнялись литьем и чеканкой, а затем украшались эмалью и драгоценными камнями.
В период правления Александра II (1870-е гг.) ювелирное дело претерпевает новый подъем. Появляются фирмы Фаберже, Овчинникова, Хлебникова. Они украшают предметы для церквей литьем, чеканкой, гильошировкой. Применяются глухие, оконные и опалесцирующие эмали. Скульптурные произведения Фаберже, отлитые фирмой Грачевых, пользовались большим успехом.
В производстве ювелирных изделий можно выделить четыре направления: ручное изготовление, литье, обработка металлов давлением и станочное. Ручное индивидуальное изготовление является основой развития как совершенных технологий, так и новых художественных направлений (стилей) ювелирного искусства. Кроме того, ни одна совершенная технология не обходится без образца, выполненного вручную. Следует отметить, что в ювелирной терминологии серийным производством считают выпуск изделий одного образца, в количестве более 200 штук, единичным производством – выпуск до 200 изделий. Индивидуальным (эксклюзивным) считается изготовление единственного экземпляра по рисунку (замыслу) автора.
Классификация и ассортимент ювелирных изделий
Общепринятая классификация ювелирных изделий – это объединение их в группы по назначению: личные украшения, предметы туалета, принадлежности для курения, предметы для сервировки стола, письменные принадлежности, принадлежности для часов (цепочки, браслеты, брелоки), сувениры. Классификация по назначению объединяет группы товаров, выполненных из разных материалов (драгоценных и недорогих) в различной технике (не только ювелирной).
Систематика по материалам.
1. Ювелирные изделия – изделия, изготовленные из драгоценных металлов с применением ювелирных камней и без них.
2. Художественные изделия из мельхиора и нейзильбера, изготовленные вручную с применением ювелирных камней и без них.
3. Ювелирная галантерея – литые и штампованные изделия, изготовленные из недрагоценных металлов с недорогими вставками и без них.
4. Изделия, изготовленные вырезанием из камня, – декоративные и художественные украшения из ювелирно-поделочных и поделочных камней с применением металлов и без них.
2. Литье как основной элемент изготовления сложнопрофильных ювелирных украшений
Способы изготовления художественных изделий из металлов весьма многообразны, а технология их производства может быть как простой, так и достаточно сложной.
Ювелирные украшения (кольца, серьги, броши и пр.) можно получать как методами литья заготовки с последующими штамповкой, отделкой и покрытием, так и только литьем с дальнейшей полировкой и эмалированием. Предметы сервировки стола получают из литой заготовки, прокаткой листа с последующей штамповкой, правкой и гальваническим покрытием. Изделия для украшения интерьера (вазы, шкатулки, фигурки и пр.) получают как точным литьем с последующими отделочными операциями, так и литьем заготовки с дальнейшей термообработкой, ковкой и отделочными операциями, например оксидированием.
Единственно возможным методом изготовления и тиражирования сложнопрофильных ювелирных и орнаментных изделий являются точные способы литья в разовые (разрушающиеся) формы, заполняемые литейными сплавами с принудительной заливкой, потому что при других технологиях, например ковке или штамповке, сложнопрофильные изделия невозможно извлечь из штампов и пресс-форм, применяемых в этих процессах.
К точным способам литья можно отнести литье по выплавляемым или выжигаемым моделям, литье в керамические формы, литье в гипсовые формы и литье в резиновые формы. Последний метод применяется для художественных украшений, изготовляемых из сплавов, температура плавления которых не превышает 400–450 °C.
Таким образом, мы видим, что любой технологический процесс, как простой, так и сложный, начинается с получения литой заготовки или непосредственно ювелирного изделия. Сложнопрофильные отливки можно получать только литьем. Кроме того, литые изделия могут имитировать любую технику исполнения (монтировку, филигрань и т. д.)
Поэтому в дальнейшем будут рассмотрены деформированные и литейные сплавы на медной, алюминиевой, цинковой основах и сплавы драгоценных металлов, применяемые в ювелирном деле. Будет рассказано об особенностях их выплавки и термической обработки.
Наиболее универсальным способом получения ювелирных изделий служит метод литья по выплавляемым моделям (ЛПВМ). Он является развитием применявшегося с древних времен способа изготовления литых художественных и ювелирных изделий по восковым моделям. Советские археологи установили, что искусством литья бронзы по восковым моделям хорошо владели наши предки скифы, населявшие более 2500 лет тому назад Среднее Приднепровье, берега Черного и Азовского морей, Алтай и другие местности.
Рис. 2.1. Процесс изготовления украшений по восковой форме: а – на огнеупорную поверхность нанесен сдой воска; б – воску придана форма будущей отливки; в – на плоскость восковой модели наложены валики из воска; г – на воск острием инструмента нанесен орнамент, в ушко продет стержень – восковая модель готова; д – восковая модель залита жидкой глиной; е – воск выплавлен, на его место залит металл; ж – готовая отливка (застежкα-лунница).
Позже, в Древней Руси, медное, бронзовое и серебряное литье по восковым моделям производилось в большом количестве. Например, еще в VI–VII вв. и даже раньше литейщики, жившими в районе Днепра, отливали по восковым моделям различные украшения (подвески, височные кольца, браслеты, пряжки и др.). Ажурные литые изделия были недавно обнаружены при раскопках на Кавказе (в городе Гори и др.).
Процесс отливки украшений, применявшийся в те времена (восстановленный Б. А. Рыбаковым), показан на рис. 2.1. Применение восковых моделей подтверждается сложностью отливок, диктующих необходимость разрушения формы для извлечения отливки, тонким орнаментом на поверхности, как бы вырезанным резцом и, в особенности, отпечатками пальцев мастера, лепившего восковую модель, обнаруженными на некоторых литых изделиях.
В совершенстве технология литья по выплавляемым моделям была разработана в 1950-х гг. Характерно, что этому расцвету литья способствовали новые формовочные массы на основе этилсиликата, кристобалита, гипса, специальных резин и синтетических восков.
Суть технологического процесса литья по выплавляемым моделям
В пресс-формах изготавливают модели из воскоподобных материалов (наиболее распространенный вариант техпроцесса) и их компонуют в блоки моделей с литниковой системой. Затем приготовляют суспензию, состоящую из кремнийорганического жидкого связующего и пылевидного огнеупора. Суспензия послойно наносится на блок моделей. Обсыпается зернистым огнеупором и отверждается. Число слоев определяется массой блока и колеблется от 3 до 15. Из полученной формы нагревом удаляют модельный состав, затем ее прокаливают при 800—1000 °C и в горячем состоянии заливают металлом. Отливки отделяют от литниковой системы, очищают в щелочной среде, термически обрабатывают и передают на окончательную отделку, включающую шлифовку, полировку, гальванические покрытия, эмалирование, чернение и пр. (материалы для эмалирования и чернения приведены в Приложении). Приведенный технологический процесс применяется для отливок из металлов и сплавов, температура плавления которых превышает 1100 °C, или для художественных отливок большой массы.
Ювелирные отливки из сплавов на медной, алюминиевой, цинковой основах, а также из серебра и золота выполняются эстрих-процессом, где операции проводят в несколько другой последовательности и применяют другие материалы. Пресс-формы, в которых изготовляют модели из воскоподобных материалов, выполняются из ласила, виксинта или резины. После того как изготовлены модели и получены блоки, их помещают в трубчатые опоки и заливают суспензией, состоящей из огнеупорных материалов (динаса или кристобалита), гипса и воды. После отвердения суспезии опоки помещают в муфельную печь и производят выплавку модельного состава. Затем форму прокаливают при 750–800 °C и заливают расплавленным металлом. Дальнейшие операции выполняются по приведенной выше технологии, за исключением выщелачивания. Удаление формовочной массы производится под струей воды (вспомогательные материалы, используемые при литье по выплавляемым моделям для сплавов с температурой плавления свыше 1100 °C и литье эстрих-процессом, приведены в Приложении).
В нашей стране этот вид литья получил развитие в 1968 г. Тогда были произведены закупки оборудования в ФРГ и Италии. Технология стала высокопроизводительной и экономичной, благодаря чему ювелирные изделия подешевели.
В производстве ювелирных изделий выделяют ручное, точное литье, прокатку в вальцах, штамповку и механическую обработку.
Точное литье по выплавляемым моделям позволяет существенно удешевить производство, копировать и тиражировать ювелирные изделия в любом количестве. Кроме того, механической обработки требуется меньше, и себестоимость изделия в целом оказывается значительно ниже, чем при использовании любого другого метода литья. Все это дает возможность быстро реагировать на изменение рыночной ситуации и обеспечивает литейным ювелирным изделиям большую конкурентоспособность. Поэтому возникает потребность механизации ювелирного дела – от ручной сборки до тиража, выполняемого точным литьем. Кроме того, необходимо специализировать технологические процессы изготовления ювелирных изделий и оснастить рабочие места специализированным оборудованием.
В наше время Россия в числе передовых стран – таких, как Италия, Германия, США, Израиль и Турция, – занимает одно из ведущих мест по производству ювелирной продукции.
3. Основы строения материалов
3.1. Структура вещества в твердом состоянии
В твердом состоянии большинство неорганических материалов (более 96 %) имеют кристаллическое строение, т. е. правильное, упорядоченное, периодическое расположение атомов, ионов или молекул в пространстве.
Характер расположения атомов, ионов или молекул в пространстве принято описывать с помощью кристаллической решетки. Если мысленно соединить центры тяжести атомов, ионов или молекул прямыми, то образуется пространственная решетка, в узлах которой находятся те частицы, из которых состоит вещество. Так как положение атомов в пространстве является периодическим, правильным, а следовательно, симметричным, то и кристаллическая решетка также будет обладать определенной симметрией.
Симметрией кристаллов называют их свойство совмещаться с собой при поворотах, отражениях, параллельных переносах или при комбинации этих операций.
На рис. 3.1 показаны пример правильного, периодического расположения атомов в пространстве и кристаллическая решетка.
Рис. 3.1. Схема расположения атомов в твердом теле.
В кристаллической решетке можно выделить минимальный объем, с помощью которого описываются положение атомов и симметрия решетки в целом. Этот параллелепипед называется элементарной ячейкой.
Таблица 3.1
Варианты кристаллических решеток
Ребро такого параллелепипеда называется периодом или параметром решетки. Величина параметра решетки соизмерима с размерами атома. Для металлов параметры решетки составляют 0,2–0,6 нм, в зависимости от размера атома и типа кристаллической решетки. Элементарные ячейки могут иметь прямые или косые углы, ребра параллелепипедов могут быть равны друг другу или не равны, а следовательно, у них разная симметрия.
По симметрии формы элементарные ячейки, и соответственно кристаллические решетки, разделены на три категории: низшую, среднюю и высшую. Низшая категория содержит три сингонии: триклинную, моноклинную и ромбическую. Средняя – также три сингонии: тригональную, тетрагональную и гексагональную. Высшая категория включает одну сингонию – кубическую (табл. 3.1).
Свойства вещества зависят от природы тех частиц, из которых оно состоит, типа связи и ее энергии, а также от типа кристаллической решетки. Так, например, углерод в твердом состоянии существует в двух кристаллических формах: в виде графита с гексагональной решеткой и в виде алмаза с кубической решеткой. Возможность существования одного и того же вещества в нескольких кристаллических формах называется аллотропией или полиморфизмом. Этим свойством обладают некоторые металлы (олово, железо, титан, марганец и др.).
Любое вещество в природе может существовать в трех агрегатных состояниях: газообразном, жидком и твердом. В подавляющем большинстве случаев в твердую фазу вещество переходит из жидкой.
Процесс перехода вещества из жидкого состояния в твердое называется кристаллизацией. В расплавленном, жидком состоянии металл не имеет правильного кристаллического строения. Однако расположение атомов не полностью хаотично. В жидкости имеются группы атомов с правильным расположением, характерным для кристаллической решетки данного вещества. Группы эти нестабильны из-за большой подвижности атомов. Они образуются, рассыпаются, распадаются, возникают в новых местах. Такие группы атомов служат зародышами кристаллов в процессе кристаллизации, происходит при температуре ниже температуры плавления. Эта температура является константой для каждого вещества. Так, например, температура плавления меди составляет 1083 °C, серебра – 960 °C и т. д. При температурах ниже указанных эти металлы пребывают в твердом состоянии.
Процесс кристаллизации начинается с зарождения мелких кристалликов – зародышей кристаллизации. Их образование носит случайный характер. Другими словами, возникновение кристалла может произойти в любой части объема жидкости. Одновременно формируется не один, а несколько кристаллов (в некоторых случаях множество). Скорость зарождения – это число кристалликов, появляющихся в единице объема в единицу времени.
Образованные кристаллики растут за счет присоединения атомов из жидкости. При этом грань растущего кристалла перемещается в сторону жидкой фазы. Линейная скорость перемещения грани растущего кристалла называется скоростью роста кристалла.
На рис. 3.2 приведен пример кристаллизации в схематическом виде. Скорость зарождения составляет 4 зародыша в секунду, скорость роста кристалла – 1 мм в секунду. За первую секунду в объеме образовалось 4 кристаллика (обозначены цифрой 1). За вторую еще 4 (обозначены цифрой 2), а ранее возникшие кристаллы выросли на 1 мм с каждой стороны. В следующую секунду образовалось еще 4 кристалла (обозначены цифрой 3), и выросли все, образованные ранее, и т. д.
Рис. 3.2. Кинетика процесса кристаллизации.
Скорость зарождения – 4 зародыша в секунду; скорость роста кристалла – 1 мм в секунду. Наименее симметрична триклинная сингония, наиболее симметрична – кубическая.
Как видно из приведенной схемы, форма растущего кристалла остается правильной, пока он окружен жидкостью со всех сторон. Однако в ходе кристаллизации количество жидкой фазы уменьшается, кристаллы сталкиваются и рост их в сторону друг друга, естественно, прекращается. Кристалл продолжает расти в тех направлениях, в которых он соприкасается с жидкостью. В связи с этим кристалл теряет правильность формы.
Таким образом, структура металлов в твердом состоянии состоит из множества кристаллов неправильной формы.
Эти кристаллы называют зерном или кристаллитами, а саму структуру – поликристаллической.
Размер зерна металла зависит от скорости зарождения и скорости роста кристаллитов при кристаллизации. Чем выше скорость зарождения, тем меньше размер получаемого зерна. Чем выше скорость роста, тем оно крупнее.
В зависимости от состава жидкости при переходе ее в твердое состояние кристаллиты-зерна имеют разный состав. В частности, могут состоять из простого вещества – химического элемента, например чистого золота. Если расплав состоит не из одного, а из двух или более компонентов, то в результате кристаллизации возможны следующие виды взаимодействия:
1. Состав сплава таков, что соответствует химическому соединению. Тогда при кристаллизации все зерна однородны по составу, соответствующему этому химическому соединению, одинаковы по структуре. Так же как в случае кристаллизации чистого вещества, структура сплава однофазна.
2. Если в составе расплава присутствуют два или более компонентов, то в определенных случаях после кристаллизации состав всех зерен оказывается однородным и соответствует составу расплава. При этом структура всех зерен также одинакова и их кристаллическая решетка соответствует решетке одного из компонентов. Такое вещество называется твердым раствором. Например, при сплавлении золота и серебра в любых пропорциях образуется твердый раствор этих компонентов. Твердые растворы наиболее характерны для металлических сплавов. Два металла образуют твердый раствор замещения: атомы одного компонента замещают атомы другого компонента в его кристаллической решетке. На рис. 3.3 а приведен пример такого твердого раствора. В узлах кристаллической решетки находятся не только атомы золота (они показаны светлыми кружками), но и атомы серебра – темные кружки. Количество узлов, занятых атомами серебра, соответствует составу сплава, т. е. концентрации серебра в нем. Так, если сплав содержит 20 % Ag и 80 % Аи, то 20 % всех узлов кристаллической решетки заняты атомами серебра, а остальные 80 % – золота.
Рис. 3.3 а. Схема кристаллической решетки твердого раствора замещения.
Атомная концентрация Au: Ag = 80: 20.
Если атомы двух металлов мало отличаются по размерам (не более 13 %) и имеют одинаковые кристаллические решетки, то между ними образуются непрерывные твердые растворы. Это означает, что при любой концентрации компонентов структура сплава – твердый раствор. Пример такого взаимодействия – сплавы золота и серебра. Между этими двумя металлами существует неограниченная растворимость в твердом состоянии. Если атомы двух металлов значительно отличаются по размерам и металлы имеют разные кристаллические решетки, то они растворимы друг в друге ограниченно. Это значит, что твердый раствор существует только до определенной концентрации второго компонента. При увеличении концентрации выше растворимости образуется химическое соединение.
Твердые растворы могут образовываться и на базе химических соединений. Так, например, кристаллы чистого корунда (окиси алюминия AI2O3) бесцветны и называются лейкосапфиром. Если часть атомов алюминия замещена хромом, то цвет кристалла становится красным – это рубин, если титаном, то синим – сапфир. Интенсивность окраски зависит от концентрации хрома или титана. Таким образом, рубин – это твердый раствор хрома в кристаллической решетке корунда AI2O3, сапфир – твердый раствор титана в решетке корунда.
3. После кристаллизации состав зерен неоднороден: существуют зерна одного состава, имеющие определенное кристаллическое строение, и зерна другого состава со своим кристаллическим строением.
Такое происходит, например, при сплавлении меди и свинца. Их расплав представляет собой однородную жидкость, состав которой в любой точке одинаков. После кристаллизации часть зерен состоит из чистого свинца (100 % РЬ), часть – из чистой меди (100 % Си). Количество тех и других зерен определяется соотношением компонентов сплава. Так, если расплав состоял из 20 % РЬ и 80 % Си, то количество зерен свинца и меди будет находиться в пропорции 20: 80.
Приведенный пример является крайним случаем, и подобные ситуации, когда при кристаллизации образуются чистые компоненты, довольно редки. Чаще всего расплав кристаллизуется с образованием двух твердых растворов или твердого раствора и химического соединения.
В таком случае говорят, что сплав состоит из двух (если кристаллиты двух сортов) или из нескольких фаз. Под фазой понимается часть системы, имеющая определенный состав, строение и свойства.
Таким образом, структура большинства веществ, в частности металлов, в твердом состоянии образована множеством зерен-кристаллитов. Состав и кристаллическая решетка их могут быть одинаковы (однофазный сплав) или различны (двух– или многофазный сплав). Размер этих зерен редко превышает доли миллиметра. Для металлов это 10—100 мкм.
Получение единичных кристаллов достаточно крупного размера – десятки миллиметров и более – довольно сложная техническая задача. Она решена для получения синтетических минералов – ювелирных камней.
Чтобы разобраться в материалах ювелирных изделий, полученных ковкой, штамповкой или методами литья, необходимо привести классификацию ювелирных материалов, поскольку в первую очередь от материала зависит общий вид изделия и его способ изготовления. Поэтому раздел 3.2 будет посвящен основам классификации ювелирных материалов.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?