Электронная библиотека » Виктор Печорин » » онлайн чтение - страница 4


  • Текст добавлен: 6 сентября 2015, 22:16


Автор книги: Виктор Печорин


Жанр: Религия: прочее, Религия


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 19 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Вечна ли Вселенная?

Когда был открыт закон сохранения энергии, сторонники материализма ликовали: они восприняли этот закон как главный аргумент в пользу вечности Вселенной, главное доказательство того, что материальная Вселенная никогда не возникала и никогда не уничтожится, что она всегда существовала и всегда будет существовать, изменяясь лишь внутри себя. В материалистических представлениях вечная и всемогущая материя с её законами сохранения фактически занимает место Бога.

Действительно, если количество энергии во Вселенной есть постоянная величина, которая не уменьшается и не увеличивается, то это как бы подразумевает, что сама Вселенная тоже сохраняется. То есть вечна.

Но в этих рассуждениях кроется очевидное противоречие.

Если количество энергии во Вселенной не изменяется, значит, это какая-то, пусть даже очень большая, но вполне конкретная, конечная величина. А это значит, что и Вселенная конечна, ограничена имеющимся в ней количеством энергии. Ведь энергия лежит в основе вещества, значит, вещества во Вселенной тоже ограниченное количество. Значит, и вся материя имеет какую-то конечную величину. А поскольку атрибутом материи является пространство, а материя ограничена – значит ограничено и занимаемое ею пространство. Вторым атрибутом материи является время. Значит, материальная вселенная ограничена и во времени!

Существует самая прямая и непосредственная связь между пространством и временем, выражаемая таким принципом: то, что ограничено в пространственном отношении, ограничено и во времени.

В самом деле, сколь ни велика Вселенная, но, коль скоро она ограничена в пространстве, у нее должна быть периферия и должен быть центр. И все объекты, находящиеся на каком-то удалении от центра, под влиянием гравитационных сил должны постоянно и, со всё возрастающими скоростями, падать в направлении этого центра. И, в конечном счете, упасть на него, что и будет означать гибель Вселенной. Возможен и другой вариант: Вселенная расширяется от центра к периферии, её объекты – звезды, галактики, туманности – разлетаются во все стороны, как осколки после взрыва. А разлетаясь, как мы уже знаем, – распадаются в силу явления энтропии. В конце концов, они потеряют друг друга из виду и рассеются в холодном и темном пространстве – и это тоже будет означать гибель Вселенной2727
  Какой именно из этих вариантов реализован на практике, т. е. какой конец реально ожидает нашу вселенную: «горячий» или «холодный», зависит от того, какова средняя плотность вселенной и нынешняя скорость ее расширения. Если плотность меньше некоторого критического значения, зависящего от скорости расширения, то гравитационное притяжение будет слишком мало, чтобы остановить расширение. Если же плотность больше критической, то в какой-то момент в будущем из-за гравитации расширение вселенной прекратится и начнется сжатие. Скорость расширения вселенной оценивается пока весьма грубо: исходя из того, что мы знаем на сегодняшний день, вселенная расширяется на 5—10% за каждую тысячу миллионов лет. Неопределенность в современном значении средней плотности Вселенной еще больше. Если сложить массы всех наблюдаемых звезд в нашей и других галактиках, то даже при самой низкой оценке скорости расширения сумма окажется меньше одной сотой той плотности, которая необходима для того, чтобы расширение Вселенной прекратилось. Однако и в нашей, и в других галактиках должно быть много темной материи, которую нельзя видеть непосредственно, но о существовании которой мы узнаем по тому, как ее гравитационное притяжение влияет на орбиты звезд в галактиках. Кроме того, галактики в основном наблюдаются в виде скоплений, и мы можем аналогичным образом сделать вывод о наличии еще большего количества межгалактической темной материи внутри этих скоплений, влияющего на движение галактик. Сложив массу всей темной материи, мы получим лишь одну десятую того количества, которое необходимо для прекращения расширения. Но нельзя исключить возможность существования и какой-то другой формы материи, распределенной равномерно по всей Вселенной и еще не зарегистрированной, которая могла бы довести среднюю плотность Вселенной до критического значения, необходимого, чтобы остановить расширение. Таким образом, имеющиеся данные говорят о том, что более вероятен вариант расширяющейся Вселенной.


[Закрыть]
. Невозможен только стационарный вариант. Пространственно ограниченная Вселенная не стабильна, она не может существовать вечно: действующие в ней силы рано или поздно разорвут её.

Несмотря на свою очевидность, эта идея лишь сравнительно недавно пришла людям в голову. Вплоть до начала ХХ века Вселенная считалась стационарной, пребывающей в одном и том же состоянии. Даже Эйнштейн, разрабатывая в 1915 г. общую теорию относительности, был уверен в статичности Вселенной.

Однако, применив свою теорию к Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная не получается. Этот результат не удовлетворил великого учёного. Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввёл в них дополнительное слагаемое – так называемую космологическую постоянную («лямбда-член»).

Фактически «лямбда-член» Эйнштейна означает допущение существования некоторой «антигравитационной» силы, которая в отличие от других сил не порождалась каким-либо источником, а была заложена в саму структуру пространства-времени. Эйнштейн утверждал, что пространство-время само по себе всегда расширяется и этим расширением точно уравновешивается притяжение всей остальной материи во Вселенной, так что в результате Вселенная оказывается статической. Однако до сих пор никто не смог найти какого-либо физического обоснования этой таинственной силы.

В начале 20-х гг. советский математик Александр Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два решения для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время.

В 1929 г. американский астроном Эдвин Хаббл подтвердил расширение видимой части Вселенной по смещению положения спектральных линий наблюдаемых галактик.

Таким образом, теория относительности Эйнштейна и наблюдения астрономов подтверждают: вселенная конечна во времени.

Впрочем, к этому выводу можно прийти и гораздо более простым путем. Можно ли из неизменности количества вещества, находящегося в запаянной колбе, сделать вывод о вечности самой колбы? Закон сохранения вещества (являющийся частным случаем закона сохранения энергии) будет справедлив пока и поскольку система (в данном случае – колба с находящимся в ней веществом) остается замкнутой. Но вдруг: мышка бежала, хвостиком махнула, колба упала – и разбилась. И закон сохранения тут же перестал действовать. Или, скажем, безо всякой мышки произошел распад материала колбы…

Стало быть, из закона сохранения энергии нельзя сделать вывод о вечности Вселенной. Из этого закона следует совершенно противоположный вывод: Вселенная не вечна. Она ограничена в пространственном отношении и конечна во времени.

Энергия энергии рознь

Закон сохранения энергии позволяет сформулировать еще одно, возможно, более убедительное возражение относительно вечности вселенной.

Согласно определению Большой Советской Энциклопедии, «весь окружающий нас мир представляет собой движущуюся материю». Обратите внимание – «движущуюся», а не застывшую. Действительно, согласно материалистическому воззрению, движение есть форма существования материи. Иными словами, есть движение – есть материя, есть Вселенная. Нет движения – нет материи, нет Вселенной. А мера движения – это энергия.

Как мы знаем, энергия бывает двух видов: свободная и связанная.

Если говорить о связанной энергии, то да, она как бы всегда присутствует в любой системе – иначе просто никакой системы не было бы.

Она присутствует, безусловно, и во Вселенной, но какой от неё прок? Она же не совершает работу. Не светит, не греет, не вращает небесные тела. Эта энергия вроде бы есть, но её как бы и нет. Она – потенциальная, а не актуальная. Что о ней говорить? Представьте себе первобытный хаос, в котором нет ни галактик, ни звезд, ни планет – вообще ничего. Что такая, с позволения сказать, Вселенная, что её отсутствие – велика ли разница?

Если вам трудно представить хаос, представьте незаведённые часы. Энергия-то в них, несомненно, есть, – равная их массе, умноженной на квадрат скорости света. Но толку от той энергии никакого, сколь большой бы она ни была.

Потому что это связанная энергия.

Не эта энергия крутит колесики и стрелки, бьет в колокольчик звонка, а та свободная энергия, которую вы сообщаете часовой пружине, когда заводите часы.

Функционирование часов зависит только от величины свободной энергии.

А величина свободной энергии равна той, которую вы затратили на подзавод часов (если пренебречь той небольшой частью, что ушла на преодоление трения, на нагрев вращающихся частей и т. д.).

Но часы – это не замкнутая система: энергия в них поступает извне.

Если говорить о по-настоящему замкнутой системе, не обладающей внутренними источниками энергии, и рассматривать её в длительном периоде, то, если там и было какое-то количество свободной энергии, оно рано или поздно перейдет в связанную форму. К этому ее принуждают законы термодинамики, с которыми мы познакомимся чуть позже.

И вот, представьте себе, что вся свободная энергия абсолютно замкнутой системы перешла в связанное состояние. Все процессы внутри системы прекратились, ее движение остановилось. По сути, система превратилась в неподвижный труп. Пусть даже она обладает массой, а стало быть и энергией. Но это – связанная энергия. Энергия, которая не может работать, энергия, не приводящая систему в движение…

А теперь вспомним определение: движение есть форма существования материи. Нет движения, – значит нет и существования материи, ничего нет.

Получается, что нет никакой разницы между несуществованием Вселенной – и ее существованием в виде системы со связанной энергией. Между переходом всей энергии Вселенной в связанное состояние – и уничтожением Вселенной.

Жизнь – это только свободная энергия. Связанная энергия – это смерть. Энергия энергии рознь.


А теперь давайте задумаемся. Если бы изначально вся энергия нашей Вселенной находилась в связанной форме, то откуда в такой системе может вообще появиться свободная энергия, которая бы привела ее в движение?


Поскольку в реальной материальной Вселенной свободная энергия, тем не менее, присутствует, это значит, что мнение о том, что кроме материи ничего не существует, ошибочно.

По-видимому, замкнутая в физическом смысле материальная Вселенная не является всё же абсолютно замкнутой.

Наверно, существует что-то вне её, нечто нематериальное, что сообщило ей какое-то количество свободной энергии.

Количество свободной энергии в незамкнутой системе равно сумме сообщенной ей свободной энергии и той энергии, которая благодаря этому, высвободилась внутри системы из связанного состояния за вычетом той части энергии, которая вновь перешла в связанное состояние.

Попросту говоря, Вселенная в энергетическом смысле напоминает рекламного кролика Энерджайзера, в которого кто-то вставил батарейку.

О количестве энергии во Вселенной

А теперь вернемся к вопросу о том самом количестве энергии во Вселенной, которое, согласно закону сохранения энергии, неизменно, то есть представляет собой некую абсолютную константу.

Давайте спросим: а каково же это постоянное и неизменное количество энергии во Вселенной?

Поскольку закон сохранения энергии действует всегда и при любых обстоятельствах, а количество энергии всегда одно и то же, нельзя ли хоть приблизительно установить величину этой константы? Ну что вы – возразят нам, – Вселенная ведь бесконечна, значит и количество энергии в ней бесконечно!

Это уже подозрительно. Где это вы видели безразмерную константу, стремящуюся к бесконечности?

И здесь уместно вспомнить шутливую задачку, на которой спотыкаются даже серьезные физики. Представьте себе, что хулиганы привязали к хвосту кошки консервную банку. Известно, что таким образом экипированная кошка производит бешеный шум, который пугает, прежде всего, её саму, от чего она бежит ещё быстрее. Но чем быстрее она бежит – тем больший шум производит, и так далее. Спрашивается: с какой скоростью должна бежать кошка, чтобы не слышать этого шума?

На ум сразу приходит сверхзвуковая скорость – если разогнать кошку до такой скорости, она не будет слышать производимого ею шума, потому что он будет запаздывать, распространяясь с меньшей скоростью.

А ведь есть и другое, более простое и естественное решение этой задачи!

Чтобы не слышать шума кошка… не должна бежать! Или, если угодно, она должна иметь скорость, равную нулю.

Эта шутка – прямая аналогия с нашей проблемой. Когда говорят о том, что количество энергии в замкнутой системе есть величина постоянная, это не обязательно означает, что такой системе в целом действительно присуще какое-то определённое количество энергии. Иначе говоря, общее количество энергии системы может равняться нулю.

Как это может быть?

В 1747 г. американский физик Бенджамин Франклин, тот самый, чей портрет украшает стодолларовую купюру, открыл еще один закон сохранения – закон сохранения электрического заряда, смысл которого заключается в точном равенстве величин положительного и отрицательного элементарных зарядов. Этот закон формулируется так: «Алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему2828
  Электрически изолированной принято считать систему, через поверхность которой нет переноса зарядов.


[Закрыть]
, не изменяется при любых процессах, происходящих в этой системе». В 1843 закон сохранения электрического заряда был экспериментально подтвержден англичанином Майклом Фарадеем.

Оказалось, что разноименные заряды (заряженные частицы) появляются и исчезают парами: положительные и отрицательные. Так что, каково бы ни было их количество, в сумме они дают ноль.

Макроскопические тела, как правило, электрически нейтральны, т. е. в них в равных количествах содержатся как положительные, так и отрицательные заряды.

Если говорить о Вселенной, то, как считают ученые, её полный электрический заряд равен нулю; число положительно заряженных частиц равно числу отрицательно заряженных элементарных частиц.

А теперь вспомним открытый Уоллисом закон сохранения количества движения, утверждающий, что «общее количество движения в замкнутой системе постоянно». Согласно третьему закону Ньютона «действие равно противодействию», то есть силы взаимодействия двух тел равны по величине и противоположны по направлению.

Если рассматривать, скажем, систему, состоящую из камня и земли, на которой лежит камень, то сила сопротивления земли согласно закону Ньютона равна, но противоположна силе давления на нее камня, а общая сумма этих двух сил (с учетом знака) равна нулю. Именно по этой причине эта система находится в состоянии покоя. Если бы сила земли превысила силу камня, земля бы подбросила камень вверх, а если бы сила камня превысила силу земли – камень бы погрузился в землю (такое случается с метеоритными камнями, с чудовищной силой ударяющимися о землю).

Несложно представить себе систему, состоящую из многих взаимодействующих (движущихся в разных направлениях) тел, даже такую большую, как вся Вселенная, в которой моменты взаимодействующих между собой тел взаимно погашаются и их сумма равна нулю.

Как видим, и в законе сохранения количества движения, и в законе сохранения заряда константы равны нулю. Нет оснований думать, будто с законом сохранения энергии дело обстоит иначе. Во всяком случае, это должно быть справедливо в отношении свободной энергии, частными случаями которой являются энергия движения (кинетическая энергия) и электрическая энергия (энергия электрического поля, создаваемого зарядами). Это дает нам право предположить, что общее количество свободной энергии в изолированной системе равно нулю. Потому это количество и постоянно. Похоже, это единственное приемлемое решение для величины энергетической константы Вселенной.

Первое начало термодинамики

Давайте еще немного углубимся в физику, точнее в науку о движении теплоты – термодинамику. Несмотря на скучное название, эта наука удивительно интересная. Она на многое открывает глаза. Взять хотя бы тот факт, что на основании законов термодинамики была точно установлена невозможность создания perpetuum mobile – вечного двигателя, над которым ломали головы многие поколения энтузиастов2929
  В 1775 году Парижская академия наук приняла решения не рассматривать заявки на патентование вечного двигателя из-за очевидной невозможности его создания.


[Закрыть]
.

Термодинамика изучает превращения энергии в различных явлениях, сопровождающихся тепловыми эффектами. А надо сказать, что тепловая форма энергии является базовой по отношению к другим – практически при любом переходе энергии из одного вида в другой некоторая часть энергии (порой – довольно значительная) выделяется в виде теплоты. Например, когда мы превращаем электрическую энергию в световую (включаем электролампочку), эта лампочка кроме света выделяет также и довольно много тепла, даже если это нам не требуется. Когда мы ту же электрическую энергию превращаем в механическую, например, пользуемся электрической дрелью, то двигатель дрели ощутимо нагревается, что приводит к его ускоренному износу. Но поделать с этим ничего нельзя. Даже создание холода в холодильнике не обходится без выброса в атмосферу тепла.

Тепловая энергия – универсальный вид энергии. Любой вид энергии в конечном счете превращается в тепло. Поэтому термодинамика и представляет для нас такой интерес.

Термодинамика основывается на опытных законах, которые называют началами термодинамики.

Первое начало термодинамики описывает тот очевидный факт, что при наличии разности потенциалов (энергетических уровней) энергия всегда перемещается в направлении от более высокого уровня к более низкому, от избытка к недостатку. Представьте себе водопад – резкий перепад уровня воды. В какую сторону течет вода? Конечно, с высокого уровня – на более низкий. При этом она совершает работу, которую можно использовать, например, заставив её крутить лопасти турбины и вырабатывать ток, на чём, собственно, основана идея любой гидроэлектростанции. Может ли вода двигаться в обратном направлении, снизу вверх? Конечно, не может.

Ну, это вода. Может быть, тепло ведет себя по-другому? Возьмем два предмета, имеющих различную температуру, например, горячий чай (температура 80 °С) и обычную чашку (температура комнатная, 20°С) и приведем их в соприкосновение, т. е. нальем чай в чашку. Что будет происходить? Через какое-то время мы заметим, что чай остыл, так что его можно пить, а чашка нагрелась. Очевидно, часть тепла перешла от чая к чашке. Могло ли быть по другому? Могла ли часть тепла, имевшаяся у чашки (все-таки 20 °С!) перейти к чаю, так, чтобы он вскипел, а чашка бы при этом охладилась до нуля? Нет, это уже похоже на фантастику. Тепло, как и вода, переходит всегда от более нагретого тела к менее нагретому, то есть с более высокого уровня на более низкий, и никогда иначе.

Вот этот простой факт и демонстрирует действие первого начала термодинамики. Любой вид энергии (не только теплота) всегда переходит с более высокого уровня на более низкий. И скорость этого перехода тем больше, чем больше разница уровней (разность потенциалов). Очевидно, что поток воды Ниагарского водопада низвергается гораздо быстрее, чем, скажем, «течет река Волга – издалека долго». Если в процессе энергообмена разность потенциалов имеет возможность выравниваться, то скорость движения потока энергии постепенно снижается, до тех пор, пока оба уровня не уравновесятся. Тогда поток энергии прекратится и система не сможет больше производить работу. Система в этом случае перейдет в равновесное состояние, характеризующееся нулевой энергией. В нашем примере с чашкой чая это произойдет тогда, когда температура нагретой чашки сравняется с температурой остывшего чая; например, равновесие может быть достигнуто на уровне 50 °С.

Обладает ли наша система, достигшая такого равновесия, какой-нибудь энергией?

Вроде бы, не обладает, потому что поток энергии прекратился и никакая работа больше не совершается (в данном случае работа заключалась в нагреве чашки или в остывании чая). Но как же так, ведь 50 °С – это тоже энергия? А это зависит от того, какую систему рассматривать. Если в качестве замкнутой рассматривать систему «чашка-чай», то для неё не имеет значения, какую температуру имеют оба компонента, важно, что эта температура одинакова. Свободная энергия такой системы равна нулю. Если же включить в систему также и комнату, в которой находится чашка (предположим, что температура в комнате 20 °С), то в этой системе наша чашка с чаем, конечно, будет обладать энергией. До тех пор, пока не остынет до комнатной температуры. И тогда в системе «комната-чашка с чаем» тоже наступит равновесие и свободная энергия системы опять примет нулевое значение. Продолжая расширять границы нашей системы, мы придем к тому, что рано или поздно равновесие должно наступить в пределах всей Вселенной, и что её свободная энергия будет равна нулю.

Второе начало термодинамики

Незнание второго начала термодинамики равносильно незнанию произведений В. Шекспира.

Чарльз Сноу

Пусть общее количество энергии во Вселенной равно нулю, – возразят нам, – но ведь это как бы усредненное значение. При этом энергия отдельных объектов во Вселенной может отличаться от нуля и сильно отличаться – как в положительную, так и в отрицательную сторону. Не получится ли у нас как в том анекдоте, когда дежурная медсестра заверяла главврача, что во время ее дежурства все было хорошо, средняя температура больных – 36 °С.

– А как вы определяли среднюю температуру? – поинтересовался главврач.

– У половины больных температура 42 °С – у них жар, а у второй половины 30 °С, поскольку они уже померли. А в среднем – 36 °С.

Суть вопроса заключается вот в чём: могут ли внутри системы, в целом обладающей нулевой энергией, сами собой, без какого бы то ни было внешнего воздействия, возникнуть разности потенциалов, позволяющие ей совершать некоторую работу?

Для наглядности рассмотрим два простых примера.

Предположим, у нас есть система, состоящая из двух сообщающихся сосудов, в которые налита вода. Уровни воды в обоих сосудах одинаковы – так всегда бывает в сообщающихся сосудах. Возможно ли, что бы уровни воды в сосудах сами собой вдруг изменились?

Теперь возьмем более простую систему, состоящую из одного сосуда с водой. Плотность воды в каждом месте сосуда одинакова, приблизительно 1 г/см3. Возможно ли, чтобы без всякого внешнего воздействия в каком-то месте сосуда вода вдруг приобрела большую (или меньшую) плотность? Например, в одном месте сосуда плотность воды стала бы 1,2 г/см3 а в другом – 0,8 г/см3?

Ответ представляется очевидным. Конечно, ни то, ни другое – невозможно!

Однако не торопитесь с выводами.

Правильный ответ, – говорит нам наука, – такой: уровень воды самопроизвольно подниматься, конечно, не может, а вот плотность её увеличиться без постороннего вмешательства – пожалуйста!

Да в чем же разница? – спросите вы, – и почему никто никогда такого явления не наблюдал?

А разница между двумя рассмотренными нами случаями в том, что переход на более высокий уровень запрещает Первое начало термодинамики, имеющее безусловный характер, тогда как внутренними свойствами вещества ведает Второе начало термодинамики, которое носит вероятностный характер. Объясняется это довольно просто. Первое начало имеет дело с макрообъектом, в данном случае – с жидкостью, поведение которой предсказуемо, и мы точно знаем, чего можно от нее ожидать, а чего нельзя. А Второе начало определяет поведение частиц, составляющих вещество, предсказать поведение каждой из которых в принципе невозможно – мы можем говорить лишь о вероятности того, где каждая из этих частиц окажется в тот или иной момент времени. Поэтому, не запрещая, вроде бы, самопроизвольно менять плотность жидкости, Второе начало лишь замечает, что вероятность такого события исчезающее мала. То есть, в принципе такое событие могло бы иметь место, однако вряд ли такое случится на самом деле. Сильная вещь – наука!

Обычно, когда речь заходит о Втором начале термодинамики, приводят другой пример. Представьте себе замкнутую систему, состоящую из двух сосудов, соединенных трубкой. Сосуды заполнены каким-нибудь газом, да хоть обычным воздухом, который, само собой, равномерно распределяется по всему предоставленному ему объему. Как сделать так, чтобы в одном сосуде воздух нагрелся, а в другом охладился? Вспомним, что температура тела (и газа тоже) определяется интенсивностью колебаний составляющих его частиц. Чем быстрее движутся частицы, тем выше температура (и ниже плотность). При любой исходной температуре в газе имеются частицы, колеблющиеся с разной скоростью. Вот если бы мы могли разделить их: медленные – налево, быстрые – направо – тогда бы между сосудами возникла разница температур. Но как это сделать?

Наука убеждает нас: если сидеть у таких сосудов очень долго, очень-очень долго, века, тысячелетия, миллионы, а может быть и миллиарды лет, или еще дольше, то однажды произойдет чудо, и все быстрые частицы соберутся в одном сосуде, а медленные – в другом.

Можно этому верить, можно нет.

Вот, у Максвелла, например, не хватило терпения: он предложил на трубке, соединяющей сосуды, установить кран и посадить у крана демона, который бы в одну сторону пропускал только быстрые частицы, а в другую – только медленные. Этот неутомимый демон вошел в учебники под названием «демон Максвелла».



Но в жизни таких демонов не бывает, а потому и самопроизвольного возникновения разности потенциалов в замкнутой системе не бывает тоже.

На практике Второе начало термодинамики означает, что равномерное, равновесное состояние Вселенной является наиболее вероятным, и поэтому она всегда, в любой момент времени, стремится именно к такому состоянию, что сопровождается неуклонным возрастанием энтропии.

Это явление выражает закон возрастания энтропии, который можно сформулировать следующим образом: «В изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс».

По существу это утверждение является ещё одной формулировкой Второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

А когда такое равновесие наступило, выйти из него (перейти в неравновесное состояние) система самостоятельно уже не может.

Согласно Второму началу термодинамики, для того, чтобы вывести Вселенную из равновесного состояния, её необходимо «раскачать», а для этого на неё должно быть оказано некоторое внешнее воздействие. Иначе говоря, процессы, происходящие во Вселенной, необъяснимы в рамках самой Вселенной, и для того, чтобы их объяснить, надо выйти за эти рамки!

Таким образом, физика, в лице термодинамики, привела нас к следующему парадоксальному выводу: если в системе, которую мы полагаем замкнутой, вдруг появляются какие-то энергетические аномалии (неравномерности), приводящие к убыванию энтропии, то причину этих аномалий с большей вероятностью следует искать не внутри системы, а вовне. Применительно к Вселенной этот вывод можно сформулировать так: хотя Вселенная является абсолютно замкнутой (в физическом смысле) системой, на самом деле должно быть нечто, что существует за ее пределами и способно оказывать на нее воздействие.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации