Текст книги "100 великих научных достижений России"
Автор книги: Виорель Ломов
Жанр: Биографии и Мемуары, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 34 страниц)
Астрономия, космология
Кометы и метеоры Бредихина
Астроном, астрофизик, популяризатор науки, общественный деятель; профессор, декан физико-математического факультета Московского университета; академик Петербургской АН, член ряда отечественных и европейских академий и научных обществ, почетный доктор многих университетов России и Европы; организатор и глава первой русской астрофизической школы; президент Московского общества испытателей природы, член-учредитель Московского математического общества, первый президент Русского астрономического общества; директор Московской астрономической университетской обсерватории и Николаевской Главной астрономической обсерватории в Пулкове, Федор Александрович Бредихин (1831–1904) является автором более 150 научных трудов, создателем теории кометных форм и теории происхождения метеорных потоков из комет.
Прежде чем говорить о научном вкладе Ф.А. Бредихина, несколько слов о предмете астрономии. Воспользуемся энциклопедией.
Астрономия – наука о движении, строении и развитии небесных тел и их систем, от черных дыр до Солнца, от межзвездного вещества до Вселенной. Этой наукой занимались тысячи лет назад, о чем свидетельствуют египетские пирамиды, Стоунхендж, древнейшие манускрипты. Именно астрономия позволяла жрецам, земледельцам и мореплавателям предсказывать затмения Солнца, заниматься сельхозработами, не теряться в морях. А еще – вдохновлять философов и поэтов.
До 1609 г. ночным небосводом не только любовались, но и наблюдали его, а с изобретением телескопа стали устремлять свой взор и вовсе в неоглядные космические дали.
Из четырех основных задач астрономии (поиск закономерностей и причин видимых движений небесных тел; создание моделей строения небесных тел; выявление происхождения и развития небесных тел; построение теорий Метагалактики) во второй половине XIX в. решались главным образом две первые задачи, и то – в самом первом приближении.
Позднее, в XX в., астрономия разделилась на две взаимосвязанные ветви – наблюдательную и теоретическую. Наблюдательная наблюдает небесные тела, теоретическая объясняет результаты наблюдений, после чего наблюдательная наблюдает еще «глубже», дабы подтвердить выводы и гипотезы теоретической. И т. д. Ну а до этого астрофизика успешно совмещала в себе обе ипостаси, в первую очередь в самом ярком представителе этой науки – Ф.А. Бредихине.
Исследования ученого, охватывавшие все основные разделы современной ему астрономии (наблюдения на меридианном круге, определение положений малых планет, изучение поверхности Солнца и планет, спектров комет и туманностей, составление рисунков диска Юпитера и «красного» пятна на нем и пр.), имели для самого ученого два центра притяжения: кометы и метеорные потоки. Именно в изучении этих небесных тел Федор Александрович добился самых выдающихся результатов, которые стали базой всех дальнейших изысканий в мире.
Кометами, издавна привлекавшими и пугавшими людей, называют небольшие небесные тела, имеющие туманный вид.
Ф.А. Бредихин. Неизвестный художник
Эти тела разной яркости обращаются вокруг Солнца, как правило, по вытянутым орбитам. К Солнцу комета подлетает в виде шарообразного облака из пыли и газа поперечником до 80 000 км вокруг ледяного ядра диаметром в несколько километров. Часто у комет появляется шлейф – хвост протяженностью до 1,5 млн км и более.
Первым изучать механическую природу комет начал Ф.В. Бессель в начале XIX в. Бредихин, поставив перед собой задачу – разъяснить процесс образования кометных хвостов, установить причины, обусловливающие разнообразие их форм, продолжил исследования немецкого коллеги и занялся познанием особенностей физического строения этих небесных тел и их химической природы, что привело его к созданию механической теории кометных форм, теории хвостов и к классификации хвостов, используемой в астрономии и поныне. Решение этой задачи стало возможным в связи с появлением спектрального анализа и фотографии, которые Бредихин буквально насадил во все российские обсерватории.
Начиная с первой печатной работы «Несколько слов о хвостах комет» (1861), магистерской – «О хвостах комет» (1862) и докторской диссертации – «О возмущениях комет, не зависящих от планетных притяжений» (1864) ученый базировался на предположении И. Кеплера, что главной силой, действующей при образовании кометных хвостов, является отталкивательная сила Солнца. Разное поведение комет с разными хвостами Бредихин объяснил различным химическим и физическим составом частиц, из которых состоят кометы, и наличием двух противоположно направленных сил – силы тяготения к Солнцу и светового давления от Солнца. Для определения величины отталкивательной силы электрического происхождения и скорости излияния материи из ядра ученый вывел соответствующие формулы гиперболического движения, которые помогли ему установить зависимость между этой силой и скоростью, а также характеристики хвостов комет. Эти соотношения объясняли также необъяснимые никакими другими соображениями волнистые очертания хвоста, поперечные полосы в хвосте и движение в хвосте облачных масс.
Согласно Бредихину, хвосты комет подразделяются на три типа: I тип – прямые и узкие, направленные прямо от Солнца, с самой большой отталкивательной силой; II тип – широкие и немного искривленные в виде рога, уклоняющиеся от Солнца, с отталкивательной силой средней величины; III тип – короткие, слабые, сильно уклоненные от центрального светила, с чрезвычайно низкой отталкивательной силой.
Полагая, что все хвосты газовые, астроном высказал догадку, что отталкивательные силы обратно пропорциональны молекулярному весу, то есть хвосты разных типов отличаются друг от друга по химическому составу. Позднее ученый своими спектральными наблюдениями определил некоторые химические элементы хвостов, а окончательно состав был установлен уже в XX в. Тогда же было найдено, что чаще всего встречаются хвосты I типа, а хвосты III типа – крайне редки.
Таких же впечатляющих результатов Бредихин достиг и в развитии теории образования метеорных потоков в результате распада ядра кометы. Высказав гипотезу об образовании некоторых комет путем отделения частей от кометы-родоначальницы, движущейся по параболической орбите (1889), Бредихин истолковал существование семейств комет – групп комет с идентичными орбитами. Ученый обратил внимание на небольшие аномальные хвосты, направленные не от Солнца, а к Солнцу. Получалось, что на частицы в этих хвостах отталкивательные силы не действовали – что было возможно только для крупных частиц, а не пыли или газа. На этом посыле астроном обосновал свою знаменитую теорию происхождения падающих звезд (метеоров) – одну из самых изящных теорий астрономии.
В зависимости от начальной скорости частиц, излетевших из ядра, одни из них покидают Солнечную систему по гиперболическим орбитам, а другие остаются пленниками системы и, вращаясь по эллиптическим орбитам, рано или поздно проливаются на Землю звездным дождем.
Как выяснилось со временем (и выясняется до сих пор) вся научная и организаторская деятельность Бредихина обладала удивительным эффектом дальнодействия.
Созданная Бредихиным школа астрофизиков – В.К. Цераский, А.А. Белопольский, С.К. Костинский, П.К. Штернберг и др. – содействовала быстрому развитию основных направлений астрофизики в нашей стране, причем стараниями не только учеников Федора Александровича, но и учениками его учеников, одной из любимых тем исследований которых остаются кометы.
Технически оснащенная Бредихиным по последнему слову науки и техники и реорганизованная по кадровому составу Пулковская обсерватория дала миру немало выдающихся научных открытий. Этой реорганизации многие русские астрономы обязаны своим профессиональным ростом, а отечественная наука поистине астрономическими достижениями.
Собственные разработки и идеи Бредихина неувядаемы и по сей день. Революционный подход астронома к решению самых трудных проблем вдохновляет его потомков на такие же славные дела.
Расширяющаяся вселенная Фридмана
Математик, механик, физик, геофизик, астроном, космолог, инженер, метеоролог, популяризатор теории относительности; профессор Пермского и Петроградского университетов; сотрудник Аэрологической обсерватории в Павловске под Петербургом; участник Первой мировой войны, летчик-наблюдатель, один из организаторов аэронавигационной и аэрологической службы на Северном и других фронтах; создатель и первый директор завода «Авиаприбор» в Москве; директор Главной геофизической обсерватории; главный редактор «Журнала геофизики и метеорологии»; лауреат Премии им. В.И. Ленина (посмертно), Александр Александрович Фридман (1888–1925) знаменит в мире как создатель теории нестационарной Вселенной, ставшей основным теоретическим развитием общей теории относительности А. Эйнштейна.
Один из важных разделов современной астрономии – космология – изучает свойства и эволюцию Вселенной в целом. Занимаются этой наукой математики, физики, астрономы, философы, богословы, а ее возникновение связано с жаждой человечества иметь полное описание Вселенной, в которой оно обитает. По словам знаменитого астронома Э. Хаббла, «стремление к знаниям древнее истории. Оно не удовлетворено, его нельзя остановить». Из русских ученых наибольший вклад в развитие космологии внес А.А. Фридман. Собственно, с него и начался современный этап развития этой науки. Более того, научное сообщество считает открытие Фридманом расширяющейся Вселенной одним из великих интеллектуальных переворотов XX в.
Несколько слов об авторе этой теории.
Несмотря на то что Фридман прожил всего 37 лет (он скончался от брюшного тифа в 1925 г.), Александр Александрович успел раскрыть в полную силу свой талант в нескольких науках. Собраны еще не все публикации математика, разбросанные в редких изданиях и малодоступных журналах, тем не менее главные сочинения Фридмана можно сгруппировать по трем областям знания.
Во-первых, это фундаментальные труды ученого по физике атмосферы и по динамической метеорологии (геофизической гидродинамике). Разработав теорию атмосферных вихрей и порывистости ветра, теорию разрывов непрерывности в атмосфере, теорию атмосферной турбулентности, исследовав вертикальные течения и изменения температуры с высотой, выведя общее уравнение для определения вихря скорости, Фридман заложил основы теории изучения погоды и ее прогнозирования. Многие теоретические выводы математика нашли практическое применение в аэронавигации.
В другом важном направлении научной деятельности – гидромеханике и гидродинамике ученый исследовал кинематические свойства движения и вихри в сжимаемой жидкости, определил условия возможных движений этой жидкости при воздействии на нее определенных сил, построил основы статистической теории турбулентности и стал одним из создателей новой теории, изложенной в работе «Опыт гидромеханики сжимаемой жидкости» (1922).
Практическая метеорология и гидротехника из абстрактных уравнений в частных производных Фридмана по сию пору черпает нужные ей сведения.
И наконец, релятивистская космология. Устойчивый интерес к астрономии, проявленный Александром еще в школе, привел Фридмана к созданию космологической теории. Совмещая в начале 1920-х гг. работу в Главной физической обсерватории с преподаванием в ряде петроградских вузов, математик увлекся общей теорией относительности (ОТО), обнародованной А. Эйнштейном в 1915–1916 гг., – одной из многочисленных теорий гравитации.
А.А. Фридман
Эйнштейн, базируясь на работах своих предшественников, начиная с неэвклидовой геометрии Н.И. Лобачевского, рассмотрел гравитацию как проявление искривления пространства-времени, то есть как некий геометрический эффект, и отождествил гравитационное поле (поле тяготения) с тензорным метрическим полем или метрикой четырехмерного пространства-времени. Свои уравнения физик распространил и на описание Вселенной.
Несмотря на ряд революционных идей, Эйнштейн был верен традиционному представлению о стационарности Вселенной. Для этого ученый специально внес в уравнения т. н. космологическую постоянную – «антигравитационную» силу, которой он наделил структуру пространства-времени. По мысли Эйнштейна, такой подход примирял непрерывное расширение пространства-времени (уравновешиваемое притяжением всей остальной материи) с вечностью и неизменностью Вселенной в пространстве и во времени. Однако получить стационарное решение уравнений ОТО Эйнштейну не удалось.
Фридман, став одним из первых апологетов и популяризаторов ОТО в нашей стране, тем не менее критически отнесся к идее стационарности Вселенной. Предположив, что Вселенная изотропна, то есть одинакова в любом из наблюдаемых направлений, даже в случае наблюдений «со стороны», ученый предложил нестационарное решение уравнений ОТО, согласно которому Вселенная расширяется. Основополагающий вывод новой концепции сводился к «началу времен» – к тому моменту, когда Вселенная имела ничтожно малый объем с бесконечной плотностью вещества. Тем самым Фридман доказал несостоятельность воззрений «отца» ОТО и использования им космологической постоянной. Поначалу Эйнштейн резко возражал против теории русского ученого, пытался найти в ней противоречия, но, в конце концов, вынужден был признать ее справедливость.
Интерпретаторы теории расширяющейся Вселенной любят уподоблять модель Фридмана с разбегающимися друг от друга галактиками с надуваемым шариком, на котором нанесены точки. При надувании отрезки между любыми двумя точками увеличиваются, хотя ни одна из точек и не является центром расширения. Чем больше расстояние между точками, тем быстрее они разбегаются.
Этот теоретический вывод был подтвержден в 1929 г. открытием американского ученого Э. Хаббла т. н. красного смещения света от отдаленных галактик, свидетельствующего об их удалении от нашей галактики со скоростью, которая пропорциональна их расстоянию от нас.
Астрофизик католический священник Ж. Леметр, не зная о работах Фридмана, объединил ОТО с данными Хаббла и также пришел к выводу, что Вселенная расширяется во времени из состояния «первичного атома», из состояния т. н. Большого взрыва. Нестационарная Вселенная до 1960-х гг. называлась именем бельгийского аббата, а после того, как из забвения было вызвано имя основоположника релятивистской космологии Фридмана, получила имя модели Фридмана – Леметра.
В 1946–1956 гг. ученик Фридмана советский и американский физик-теоретик Г.А. Гамов уточнил концепцию «Большого взрыва и расширяющейся Вселенной»: предложил модель «горячей Вселенной» и разработал теорию образования химических элементов путем последовательного нейтронного захвата – нуклеосинтеза. В рамках этой теории было предсказано существование фонового микроволнового (реликтового) излучения, открытого в 1965 г.
Космогония Шмидта
Математик, геофизик, географ, астроном, путешественник, альпинист, исследователь Арктики и Памира, лектор, просветитель, организатор науки, реформатор школьной и вузовской системы, общественный и государственный деятель; профессор, заведующий кафедрой алгебры Московского университета; основатель и руководитель Геофизического отделения в МГУ; создатель и глава Московской научной школы по теории групп; руководитель секции естественных и точных наук в Коммунистической академии; академик, вице-президент, председатель географической группы АН СССР; директор Арктического института, создатель и директор Института теоретической геофизики АН СССР; начальник и организатор полярных экспедиций (Земля Франца-Иосифа, Северная Земля, Северный морской путь, пароход «Челюскин» – челюскинская эпопея, дрейфующая станция «Северный полюс-1» «СП-1»); начальник Главного управления Северного морского пути; заведующий Государственным издательством, главный редактор Большой советской энциклопедии и журнала «Природа»; член ЦИК СССР, коллегий наркоматов продовольствия, финансов, просвещения; депутат Верховного Совета СССР 1-го созыва; кавалер трех орденов Ленина, других орденов и медалей, Герой Советского Союза, Отто Юльевич Шмидт (1891–1956) является автором трудов по высшей алгебре (теории групп), геофизике Курской магнитной аномалии. Мировую славу Шмидту принесла его космогоническая концепция образования Солнечной системы в результате конденсации околосолнечного газово-пылевого облака.
В 14 лет Отто составил «план своей дальнейшей жизни. В нем было подробно описано, какие книги он должен прочесть, какими науками овладеть, какие проблемы решить, как развиваться физически. Но когда он подсчитал, сколько лет ему потребуется для выполнения программы, обнаружил – ему необходимо было 900 лет! Он «ужал» программу до 150 лет. Ученый к концу жизни выполнил ее, перекрыв норму почти в три раза» (М.Ф. Гильмуллин). Собственно, Шмидт и прожил не одну, а три жизни – ученого, путешественника и гражданина (в некрасовском смысле). В Шмидте-ученом нас интересует прежде всего его космогоническая концепция, которой Отто Юльевич посвятил последние 14 лет жизни.
О.Ю. Шмидт делает доклад о разделении двойных звезд
Начало интереса к процессу возникновения Земли и других планет у Шмидта относится к 1923 г., когда геофизик принимал участие в обработке данных инструментальных измерений Особой комиссии по изучению Курской магнитной аномалии. Тогда же ученый начал заниматься математической разработкой задачи трех гравитирующих тел, которая пригодилась ему через 20 лет в построении космогонической теории.
С 1943 г. Шмидт стал разрабатывать «метеоритную» теорию аккумуляции Земли из небольших тел, увязав ее с последними достижениями геофизики и геохимии. Образовав в руководимом им Институте теоретической геофизики АН СССР «Отдел эволюции Земли», Отто Юльевич привлек к решению этой проблемы его сотрудников.
Отказавшись от преобладавшей тогда в астрономии гипотезы гигантских газовых протопланет и положив в основу рассуждений идею первоначально холодной Земли, «слепившейся» из небольших твердых тел, а также догадку захвата Солнцем допланетного роя, ученый математически доказал принципиальную возможность этого захвата в системе трех тел и тем самым объяснил механизм образовании планеты. Эта гипотеза сняла математическое противоречие, которое до Шмидта не могла объяснить ни одна астрономическая теория, между скоплением основной массы Солнечной системы в ее центре и моментом количества движения, сосредоточенном в основном на ее периферии.
Концепции были посвящены «Четыре лекции о происхождении Земли», прочитанные автором в Геофизическом институте в 1948 г. и опубликованные в 1949 г., а затем переведенные на английский язык. Опередив своей работой западных исследователей как минимум на 10–15 лет, русский ученый дал в руки всем астрономам фактически завершенную и совершенную планетную космогонию, которую ныне признали во всем мире. После смерти Отто Юльевича теорию происхождения Земли и планет развивали коллеги и ученики Шмидта – Б.Ю. Левин, Г.Ф. Хильми, В.С. Сафронов и др.
Как признают сегодня ученые, в 1940-х гг. Шмидт нашел единственно возможный путь решения проблемы происхождения Земли и планет как комплексную астрономо-геолого-геофизическую проблему. (До этого времени проблема происхождения планет считалась чисто астрономической.)
Разбив задачу на три части (происхождение допланетного облака, вращавшегося вокруг Солнца; образование в этом облаке планетной системы; эволюция Земли и планет) и придав второй части статус центральной задачи, ученый постарался найти на них ответы в том объеме, который позволяла ему сделать тогдашняя астрофизика. Как отмечали специалисты, такое «решение О.Ю. Шмидта в значительной мере определялось его богатой интуицией».
Проанализировав все геофизические и геохимические данные, Шмидт заключил, что Земля (и другие планеты) не проходила через расплавленное «огненно-жидкое» состояние, а сформировалась из мелких тел, точнее, из пылевых сгущений (пылевого субдиска), которые, объединяясь в тысячекилометровые тела, падали на главный зародыш Земли, разогревая ее недра и образуя мантию и ядро.
Дав объяснение основных физико-механических закономерностей планетной системы, Шмидт вывел формулу для скорости роста планеты, вычерпывающей вещество, находящееся в ее зоне. Эта формула в дальнейшем стала одним из важнейших соотношений количественной теории роста планет.
Выдвинув идею создания моделей внутреннего строения планет для сравнительного анализа с Землей, Шмидт заложил основу созданной позднее сравнительной планетологии. В конце XX в. в Институте им. О.Ю. Шмидта была разработана модель образования Луны и спутников планет как процесс, сопровождающий аккумуляцию планет.
Дал Шмидт и объяснение происхождению астероидов и комет, предположив, что пояс астероидов представлял собой несформировавшуюся планету – это было подтверждено и соответствующими расчетами. Было показано, что основными источниками астероидов и облаков комет стали все планеты-гиганты Солнечной системы.
Ныне исследователи пришли к решению первой части шмидтовской концепции – выяснению происхождения допланетного облака. При этом рабочим инструментом в интерпретации космических наблюдений служит т. н. модель Шмидта – Сафронова.
Разносторонней деятельности Шмидта можно только удивляться. Он первым в отечественной науке исследовал закономерности эмиссионного процесса в финансовой сфере, первым из русских альпинистов покорил шеститысячник, организовал первые полярные экспедиции 1930-х гг., сам участвовал в них…
Когда в 1934 г. пароход «Челюскин» был затерт льдами и затонул, а экспедиция под командованием Шмидта в составе 104 человек (в их числе 10 женщин и двое маленьких детей) высадилась на лед, Отто Юльевич сплотил челюскинцев, организовал их быт, наладил научно-исследовательскую работу, не давал падать духом, пока всех их не вывезли на самолетах на Большую землю.
Эта эпопея прославила Шмидта и челюскинцев на весь мир. Б. Шоу, например, искренне изумился: «Что вы за страна!.. Полярную трагедию вы превратили в национальное торжество… На роль главного героя ледовой драмы нашли настоящего Деда Мороза с большой бородой… Уверяю вас, что борода Шмидта завоевала вам тысячи новых друзей!»
Для полярника не прошли бесследно арктические приключения; переболев и пневмонией, и туберкулезом, Отто Юльевич умер 7 сентября 1956 г. в возрасте 64 лет.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.