Текст книги "100 великих научных достижений России"
Автор книги: Виорель Ломов
Жанр: Биографии и Мемуары, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 34 страниц)
SZeffect и другие эффекты Сюняева
Физик, астрофизик; профессор МФТИ и почетный профессор 20 ведущих университетов и институтов мира, член 20 зарубежных академий и научных обществ, академик АН СССР (РАН); главный научный сотрудник Института космических исследований РАН, директор астрофизического отделения Института Макса Планка в Гархинге (Германия); руководитель нескольких международных космических проектов; главный редактор журналов «Письма в Астрономический журнал» и «Astrophysics and Space Physics Reviews»; лауреат 17 отечественных и международных наград, в том числе Государственной премии РФ и премии Крафурда по астрономии Королевской АН Швеции (аналог Нобелевской) – Рашид Алиевич Сюняев (род. 1943) написал 1400 персональных и коллективных работ (данные SAO/NASA ADS) по теоретической астрофизике, космологии, астрофизике высоких энергий, рентгеновской астрономии, космическим исследованиям, взаимодействию вещества и излучения в астрофизических условиях. Несколько фундаментальных открытий ученого: эффект Сюняева – Зельдовича (SZeffect), теория дисковой аккреции (совместно с Н.И. Шакурой) и др. – принадлежат к числу самых цитируемых трудов в области астрофизики.
Р.А. Сюняев не раз возглавлял отечественные и международные коллективы ученых, занимавшиеся астрофизическими исследованиями Вселенной: рентгеновскими, гамма– и прочими наблюдениями с модуля «Квант» комплекса орбитальной станции «Мир», с орбитальной обсерватории ГРАНАТ, с гамма-обсерватории ИНТЕГРАЛ, в рамках международного астрофизического проекта «Спектр-Рентген-Гамма»…
Уже свыше 30 лет Сюняев является непререкаемым авторитетом в одном из важнейших разделов астрономии, космологии – физическом учении «о Вселенной как едином целом и о всей охваченной астрономическими наблюдениями области Вселенной как части целого» (БСЭ). Эта наука основывается на системе знаний эпохи, прежде всего – на законах физики и на результатах исследования однородности, изотропности и расширения части Вселенной, доступной для астрономических наблюдений.
В фундаменте космологии заложены общая теория относительности, теория поля, внегалактическая астрономия и другие науки. Общепринятой стала модель горячей Вселенной, в которой на ранней стадии развития вещество и излучение имели очень высокую температуру и плотность. Расширение привело к их постепенному охлаждению и образованию атомов, галактик, звезд и других космических тел. Наблюдаемое реликтовое излучение с температурой около 3 °К – это «остывшее» излучение, сохранившееся с ранних стадий развития Вселенной, со времен Большого взрыва. Снижение температуры микроволнового фонового излучения, происходящее при его взаимодействии с массивными объектами получило название эффекта Сюняева – Зельдовича. (Я.Б. Зельдович – академик АН СССР, выдающийся физико-химик.) В терминах астрофизики SZeffect интерпретируют как «изменение интенсивности радиоизлучения реликтового фона из-за обратного эффекта Комптона на горячих электронах межзвездного и межгалактического газа».
Р.А. Сюняев
Приводя еще и формулу изменения радиоизлучения (даже с расшифровкой всех латинских букв), мы вряд ли проясним сущность этого открытия непосвященным:
В этом выражении главным символом является y. Суть же эффекта такова: «Кванты редкого излучения при пролете через галактику, могут получать дополнительный “толчок” от движущихся с высокими скоростями электронов» (А. Тимошенко.) То есть при прохождении фотонов через горячий газ часть их рассеивается на электронах, получая при этом некоторую энергию. Отклонение спектра фотонов от спектра абсолютно черного тела и есть y.
Статья Сюняева и Зельдовича «The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies», содержащая это открытие, была опубликована в 1972 г.
О «практическом» применении эффекта Сюняева – Зельдовича можно найти сообщения в астрофизических журналах, в пресс-релизах астрофизических центров, на официальных сайтах РОСКОСМОСА и НАСА, в СМИ. То и дело появляются новые сообщения о том, как с использованием этого эффекта астрономы обнаружили 10 новых скоплений галактик; идентифицировали 20 из 169 подобных скоплений; открыли самое большое из известных скоплений галактик – объект SPT-CL J0546–5345 массой в 800 триллионов Солнц и т. д. Одна из последних публикаций сообщает о необъяснимом природном явлении – движении со скоростью в миллионы км/час под действием неизвестных сил галактик, удаленных от Земли на расстояние 300—2500 млн световых лет. Попутно говорится и об аномальном замедлении системы зондов «Пионер» (автоматических межпланетных станций), летящих за рамки Солнечной системы…
Эффект Сюняева – Зельдовича позволяет определять расстояние до скоплений галактик с горячим межгалактическим газом, постоянную Хаббла, характеризующую темп расширения и возраст Вселенной, измерять скорость движения скопления галактик относительно микроволнового фонового (реликтового) излучения.
Более полная информация о десятках тысяч далеких скоплений галактик по эффекту Сюняева – Зельдовича позволит ученым судить о параметрах нашей Вселенной, даст возможность «уточнить природу “темной энергии” и наблюдать эволюцию темпа расширения Вселенной и постоянной Хаббла».
За это открытие Международный астрономический союз присудил Р.А. Сюняеву важнейшую в мире награду в области космологии – премию Грубера и Золотую медаль (2003), а в 2008 г. ученый был удостоен премии Крафурда Королевской АН Швеции – аналога Нобелевской премии.
Нобелевскую премию теоретикам (особенно советско-российским) присуждать не любят, а вот зарубежные экспериментаторы за подтверждение этого открытия две премии получили.
Не менее важным открытием Сюняева в астрофизике стала «стандартная теория» аккреции (процесс падения вещества на космическое тело из окружающего пространства) на релятивистские звезды, созданная им совместно с астрофизиком Н.И. Шакурой (1972–1973). Это учение является сегодня основой при описании процессов в окрестностях черных дыр и нейтронных звезд.
В 1970 г. у Сюняева и Зельдовича вышла статья «Small-scale fluctuations of relic radiation», в которой ученые «предсказали существование акустических пиков в угловом распределении реликтового излучения». В 1983 г. это явление было обнаружено при наблюдениях, а через 17 лет с его помощью впервые была измерена скорость галактик. Сегодня изучением перемещений галактик занимаются специализированные спутники, обычное радио-, оптические и инфракрасные телескопы. Мировое значение имеют работы астрофизика, связанные с наблюдением рентгеновских лучей от Сверхновой в Большом Магеллановом облаке 1987А; открытием восьми черных дыр в нашей Галактике и подтверждением описанного Сюняевым механизма засасывания вещества черными дырами (1987–1992); получением формулы Сюняева – Титарчука, описывающей формирование спектров излучения в горячей астрофизической плазме. В 2000 г. Сюняев получил Государственную премию России за результаты наблюдений черных дыр и нейтронных звезд приборами орбитальной обсерватории ГРАНАТ.
Сегодня коллективные работы – залог успеха большинства исследований. У Сюняева много таких трудов: с Я.Б. Зельдовичем и В.Г. Куртом они рассчитали кинетику рекомбинации водорода во Вселенной; с Ю.Н. Гнединым предсказали существование циклотронных линий в спектре излучения рентгеновских пульсаров – нейтронных звезд с сильными магнитными полями; с В.М. Лютым и А.М. Черепащуком предложили оптические методы поиска двойных рентгеновских систем и т. д.
Физика
Вольтова дуга Петрова
Электротехник, самоучка физик-экспериментатор, лектор; преподаватель курса физики и математики в Академии художеств и во 2-м Кадетском корпусе, заслуженный профессор и заведующий кафедрой физики Императорской медико-хирургической академии, академик Петербургской АН и Медико-хирургической академии, почетный член Эрлангенского физико-математического общества и ряда других ученых обществ; создатель и руководитель физического кабинета; действительный статский советник, Василий Владимирович Петров (1761–1834) является одним из первых русских исследователей в области электротехники и практического применения электричества. Первым в мире наблюдал дуговой разряд и открыл электросварку.
В XVIII–XIX вв. Россия напоминала прихожую, сквозь которую научные открытия проходили в горницу Европы не задерживаясь. Стоило русским ученым вдруг заявить о своем приоритете, Европа каждый раз недоумевала так, точно эти открытия не к ней зашли через переднюю, а от нее вышли в свет. Открытие В.В. Петровым электросварки прекрасно иллюстрирует сей казус. «Трагедия изоляции от мировой науки работ Ломоносова, Петрова и других наших ученых-одиночек и состояла только в том, что они не могли включиться в коллективную работу ученых за границей, так как они не имели возможности путешествовать за границу. Это и есть ответ на вопрос – о причине отсутствия влияния их работ на мировую науку… Работы ученого, происходящие вне коллектива, обычно остаются незамеченными» (П.Л. Капица).
Время, а еще больше старания министра просвещения С.С. Уварова, питавшего к Василию Владимировичу за его независимость суждений личную неприязнь, убрали из памяти потомков имя и дела Петрова (не сохранился даже портрет ученого, и была заброшена его могила). Во всяком случае, русские физики, а тем более европейские во второй половине XIX в. не имели никакого представления о великих трудах электротехника. В 1886 г. на глаза одному студенту случайно попалась работа Петрова «Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков» (180), о которой тот поведал научной общественности. Русскому ученому был возвращен приоритет открытия электросварки, принадлежавший английскому физику Г. Дэви, который, кстати, вовсе и не претендовал на первенство. Англичанин, хорошо наслышанный об экспериментах Петрова, в 1808 г. лишь повторил их.
Что же это были за опыты? Если коротко, уникальные и преждевременные. Наука и экспериментальная база еще не были готовы к ним.
Посему исследователь действовал больше по наитию, но ведомый своим гением. «Отец русской электротехники», как любят называть сейчас Петрова историки науки, прекрасный педагог, в стенах Медико-хирургической академии, где он заведовал кафедрой, оборудовал лучший в России (да и, быть может, в мире) физический кабинет, оснастил его приобретенными у графа Д.П. Бутурлина, а также в Лондоне физическими приборами, и по 14 часов в день с упоением занимался физическими и химическими опытами.
В.В. Петров. Гравюра XIX в.
Эксперименты давали физику ответ на многие вопросы теории, почерпнутые им в том числе и из книг и журнальных статей европейских ученых, после чего он демонстрировал их студентам на занятиях. Собственно, это «хобби» и привело ученого к его открытиям. Одним из постоянных увлечений Петрова было электричество. Заинтересовавшись открытиями Л. Гальвани и А. Вольта, особенно вольтовым столбом – гальванической батареей, сооруженной Вольта в 1800 г., представлявшей собой прибор из нескольких десятков чашек, заполненных соленой водой и объединенных металлическими дугами из меди и цинка, Петров решил сконструировать такую же. Что и сделал, но воистину в российских масштабах – увеличил число элементов батареи сразу на два порядка!
Соединив последовательно 2100 пар медных и цинковых кружков, которые изолировались друг от друга бумажными кружками, смоченными электролитом – водным раствором нашатыря, физик собрал огромную гальваническую батарею, электродвижущая сила которой достигала 1700 вольт, и получил на ней мощный источник электрического тока.
Если эти тысячи элементов выстроить в столб, как их собирал Вольта, они достигли бы длины 12 метров, и с ними вряд ли можно было бы проводить какие-либо опыты. Однако ученый сумел уложить все эти «кружочки» в достаточно компактный трехметровый ящик, явивший собою воистину инженерное чудо. (Через 150 лет в Московском энергетическом институте была воссоздана 1/20 часть гальванической батареи, на которой повторили эксперимент, давший точные характеристики аппарата Петрова. – Я.А. Шнейберг.)
Проводя на батарее разнообразные эксперименты, Петров прикрепил к ее полюсам две проволоки с прикрученными кусочками древесного угля, соединил электроды, потом развел их – и получил ослепительную вспышку белого пламени. Это и была электрическая дуга, названная позднее «вольтовой».
Многократно повторив опыты, ученый издал в 1803 г. великолепную во всех смыслах книгу «Известие о гальвани-вольтовских опытах», не нашедшую, к сожалению, должного сочувствия к ней в Министерстве просвещения и в научных кругах. В этом труде, написанном «наипаче для пользы тех читателей, которые… живут в отдаленных от обеих столиц местах и которые не имели случая приобрести нужные понятия в сих предметах», ученый описал свою уникальную батарею и обстоятельно изложил исследования свойств электрической дуги. Петров убедительно показал, что действие дуги основано на химических процессах, происходящих между металлами и электролитом, а также предложил использовать электрическую дугу для освещения, плавления и варки металлов, восстановления металлов из их окислов.
На этой и других установках академик изучал электропроводность и физико-химические свойства разных веществ – древесного угля, льда, фосфора, серы; исследовал электрические явления в различных газовых средах; впервые произвел опыты электролиза (разложения посредством электрического тока) жидкостей – воды, алкоголя, растительных масел, окислов металлов (ртути, свинца, олова); вел изучение «действия Гальвани-Вольтовской жидкости на тела живых, особливо животных», а также свечение фосфоров животного и минерального царства (люминесценцию); впервые применил изоляцию сургучом проволочного проводника и параллельное соединение электрических цепей; первым в мире исследовал электрические явления с наэлектризованными телами в разреженном пространстве (электрический разряд в вакууме, статическое электричество, электризация тел); за 25 лет до Г.С. Ома установил зависимость силы постоянного тока от площади поперечного сечения проводника, чем «предвосхитил закон Ома»; ввел в электротехнику термин «сопротивление»…
Надо сказать, что многие труды Петрова стали не только фактом истории, но и по сию пору представляют научный интерес. Академик С.И. Вавилов, например, относил работы Петрова по люминесценции чуть ли не к последнему слову науки. Президент АН вообще отвел Василию Владимировичу не оспариваемое никем место: «В истории русской физики до половины XIX в. В.В. Петров не только хронологически, но и по своему значению непосредственно следует за М.В. Ломоносовым».
Законы Ленца
Физик, геофизик, геодезист, электротехник, географ, путешественник, педагог; профессор Морского кадетского корпуса, Михайловской артиллерийской академии, Главного педагогического института, Михайловского артиллерийского училища; профессор, заведующий кафедрой физики и физической географии, декан физико-математического факультета, ректор Санкт-Петербургского университета; академик императорской Санкт-Петербургской АН, член ряда зарубежных АН и научных обществ Европы; основатель научной школы физиков; один из учредителей Русского географического общества; создатель учебников физики для средних школ; тайный советник, Эмилий Христианович Ленц, настоящее имя Генрих Фридрих Эмиль Ленц (1804–1865), является автором фундаментальных законов электродинамики. Ленц установил факт обратимости магнитоэлектрической машины и электродвигателя, совместно с академиком Б.С. Якоби разработал методы расчета электромагнитов.
Помимо главного закона сохранения и превращения в каждом разделе физики есть еще несколько основных законов. Скажем, в механике это закон Архимеда, закон всемирного тяготения, законы Ньютона и т. д. В электричестве и магнетизме – законы Ома, Кулона и др. Среди них два принадлежат Э.Х. Ленцу: закон его имени (его часто называют правилом) и закон Джоуля – Ленца, открытый в начале 1840-х гг. экспериментальным путем независимо друг от друга обоими учеными. Ленц получил и интерпретировал результаты раньше Дж. Джоуля, и благодаря более совершенному методу они у него были точнее, но английский физик опередил русского с публикацией. Тут уж ничего не поделаешь – такова планида у русских ученых! Есть у Ленца и два «довесочка»: в законе электромагнитной индукции Фарадея по закону Ленца определяется знак электродвижущей силы (ЭДС); а еще Эмилий Христианович первым обратил внимание на закон Ома и всячески содействовал его признанию.
После открытия датским ученым Х.К. Эрстедом в 1820 г. электромагнетизма (электродинамики), ученые разных стран – А. Ампер, М. Фарадей, Д.К. Максвелл, Г. Герц и др. – добились в новой области науки впечатляющих достижений. Однако из-за отсутствия точных приборов, а также методов измерения электрических и магнитных величин в формулах и теориях зачастую не было и однозначных трактовок.
Э.Х. Ленц
В частности, отсутствовала количественная характеристика электромагнитной индукции (явления возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него), не было правила (исключая несколько мнемонических), определяющего направление индуктированных токов, и др. Большую часть этих сложных физических проблем разрешил один из лучших экспериментаторов своего времени Э.Х. Ленц.
В 1833 г. ученый представил Петербургской АН доклад «Об определении направления гальванических токов, возбуждаемых электродинамической индукцией», в котором указал на различное толкование Фарадеем индуцируемых токов в случае вольта-электрической и в случае магнитоэлектрической индукции и объявил, что в обоих случаях действует один и тот же индукционный процесс, подчиняющийся общему правилу: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении».
Теоретические выкладки подкреплялись блестящими экспериментами, показывающими, что индукционный ток всегда противодействует изменению, порождающему его. С тех пор правило Ленца, предписывая направление движения индукционного тока, действует в электромагнитной индукции, как правила уличного движения на городских улицах.
Выводя свое правило, Ленц впервые обосновал и справедливость закона сохранения и превращения энергии при взаимных превращениях механической и электромагнитной энергии. Перемещая магнит или проводник с током вблизи замкнутого проводника, ученый показал, что механическая энергия этого перемещения превращается в электромагнитную энергию тока индукции. «Работа перемещения первого проводника превращается в электрическую энергию во втором проводнике», – заметил физик. Закон сохранения и превращения энергии в его современном виде был открыт лишь через восемь лет после доклада Ленца немецким физиком Р. Майером.
Работы Ленца в этом направлении позволили ему впервые сформулировать в 1833 г. фундаментальный принцип обратимости электрических машин. Экспериментально доказав обратимость генераторного и двигательного режимов электрических машин, физик совершил настоящий переворот в развитии электротехники.
Не менее значительны исследования Ленцем теплового действия электрического тока. В 1832 г. ученый впервые обратил внимание на изменение проводимости нагреваемых металлических проводников. Сконструировав прибор для измерения количества тепла, выделяемого при прохождении тока в платиновой проволоке, ученый провел большую серию опытов, позволивших ему сформулировать в 1843 г. новый закон, дающий количественную оценку теплового действия электрического тока: «Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока». Как уже было сказано, Джоуль, проводя аналогичные эксперименты, выполнил гораздо меньше измерений и пользовался менее точным прибором. Научное сообщество не стало мелочиться и отдало приоритет в открытии закона обоим ученым.
Закон Джоуля – Ленца определяет количество тепла Q, выделяющегося в проводнике при прохождении через него электрического тока: Q пропорционально сопротивлению R проводника, квадрату силы тока I в цепи и времени прохождения тока t:
Q = aI2Rt,
где а – коэффициент пропорциональности, зависящий от выбранных единиц измерения.
Сфера применения закона обширна. На нем основан расчет всех электрических цепей и электронных схем, электроосветительных установок, нагревательных и отопительных электроприборов.
Согласно закону, для уменьшения тепловых потерь в линиях электропередач повышают передаваемое напряжение, что снижает силу тока, а значит, и нагрев провода. Чтобы проводник чрезмерно не разогревался и не стал источником пожара, ввели нормы расчета сечений проводов.
На принципе разогрева проводника при увеличении его электрического сопротивления устроены все электронагревательные приборы, нагревательные элементы которых изготавливают из специальных тугоплавких сплавов с высоким удельным сопротивлением (нихром, константан) и по возможности большой длины и малого сечения провода.
Для защиты электрических цепей от протекания токов высокой силы используют электрические (плавкие) одноразовые предохранители относительно малого сечения из легкоплавкого сплава. При перегрузке в сети и при коротком замыкании тока эти проводники расплавляются и размыкают цепь, предохраняя ее от перегрева и возгорания.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.