Текст книги "Делай космос!"
Автор книги: Виталий Егоров (Zelenyikot)
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 14 страниц) [доступный отрывок для чтения: 4 страниц]
2. Меркурий
2.1. Messenger: знакомство и прощание с Меркурием
Кажется странным, что третья по близости планета к Земле до недавнего времени была хуже всего изучена. На Венеру и Марс слетало более десятка космических аппаратов. Даже у Юпитера земные посланники бывали чаще. У Сатурна два десятка лет проработала исследовательская станция Cassini. Кажется, что против Меркурия сложился настоящий заговор.
К сожалению, никакого заговора тут нет. Точнее есть, но это заговор сил природы. Меркурий очень близок к Солнцу, поэтому не все телескопы могут его наблюдать. Например, космический телескоп Hubble не может снимать из-за опасности засветки. Космическим аппаратам добраться до Меркурия сложнее, чем до Юпитера или даже Плутона. Летать во внешнюю Солнечную систему относительно просто – достаточно набрать третью космическую скорость: 16,65 км/с. Лететь к Меркурию тоже просто – стартовав с Земли, надо сбрасывать скорость.
Сложности начинаются, когда спутник пытается задержаться у Меркурия и выйти на его орбиту. Первая планета Солнечной системы – еще и самая маленькая, – ее масса незначительна по сравнению с колоссальной силой притяжения близкого Солнца. То есть, стартовав с Земли в сторону Меркурия, мы фактически будем падать на Солнце. В ходе падения будет возрастать скорость. Чтобы задержаться и выйти на орбиту Меркурия, потребуется много топлива.
Messenger
Из-за таких сложностей первый меркурианский исследователь от NASA – Mariner-10 вращался на околосолнечной орбите, только пролетая мимо планеты. Он всего трижды, в 1974-75-х годах, пролетел мимо Меркурия, успев снять менее половины видимой поверхности.
Этот снимок – практически единственное, что было у ученых для изучения поверхности планеты. Были еще некоторые результаты наземных наблюдений, например с радиотелескопов, но их явно не хватало для детального представления о планете.
Поэтому в 80-е задумали новую экспедицию. Для этого потребовалось просчитать новую траекторию, в которой космический аппарат активно использовал гравитацию ближайших планет. Новый зонд NASA Messenger, запущенный уже в 2004 году, использовал совершенно безумную траекторию, которая включала два пролета у Земли, два пролета у Венеры и три пролета у Меркурия, и только на четвертой встрече проходил выход на орбиту планеты. Такой маршрут требовал много времени, но экономил топливо, а значит, массу и стоимость всей экспедиции.
Пролетев почти 8 миллиардов километров (расстояние как до Плутона в его максимальном удалении), Messenger в очередной раз приблизился к Меркурию и вышел на эллиптическую орбиту. Он приближался к поверхности на 200 километров, а потом удалялся на 15 тысяч километров. Такая орбита требовалась по нескольким причинам. Прежде всего были технические ограничения: аппарат мог перегреться от солнечного излучения, отраженного от поверхности Меркурия. От прямых солнечных лучей Messenger прикрывался композитным щитом, но поверхность планеты отражает примерно 8 % солнечного излучения, что в тех местах тоже весьма немало. Кроме этого, эллиптическая орбита позволяла производить съемку и изучение Меркурия с разной широтой захвата изображения: от узких кадров высокого разрешения вблизи поверхности до широких – издалека.
Научные приборы космического аппарата позволяли провести широкий спектр планетологических исследований: камеры видимого и ближнего инфракрасного диапазона позволили рассмотреть и картографировать планету, наборы мультиспектральных фильтров – оценить цветовые вариации грунта; нейтронный, гамма и рентгеновский спектрометры помогли определить элементный состав поверхности и содержание воды в приповерхностном слое; лазерный высотомер создал карту высот Меркурия и помог «заглянуть» в вечно темные кратеры у полюсов планеты. Несколько приборов помогли изучить внешние условия, в которых приходилось работать спутнику и постоянно пребывать планете: магнитометр смог определить магнитное поле Меркурия; ультрафиолетовый спектрометр – изучить разреженную атмосферу и экзосферу, а датчик заряженных частиц – оценить воздействие солнечного ветра и заряженных частиц на планету.
И что же удалось сделать за четыре года?
Сначала никто и не предполагал, что аппарат столько протянет. Первоначально предполагалась работа на год. Затем работу аппарата продлили еще на год. Затем еще… В результате аппарат держали на орбите до последнего – пока позволял запас топлива.
Первым делом планету картографировали. Сбылась мечта многих астрономов и планетологов – они смогли заглянуть во тьму неизвестности. Впрочем, тьма еще оставалась в кратерах «вечной ночи» у полюсов планеты.
Ось вращения Меркурия практически не отклонена и перпендикулярна плоскости орбиты, поэтому на планете нет смены времен года, а в глубокие кратеры на полюсах Меркурия никогда не заглядывает Солнце.
С этими теневыми участками связана первая интрига. Радиоастрономические наблюдения планеты еще в 90-е годы выявили интересные подробности – у полюсов нашли участки, которые отражали радиоволны практически так же, как это должен был бы делать водяной лед. Лед? На планете, где температура на экваторе днем достигает +350 градусов Цельсия?
Радиоастрономам не верили до тех пор, пока не прилетел аппарат Messenger. Первое открытие, которое он сделал – определил, что участки «блестящие» в радиодиапазоне, точно соответствуют участкам вечной тени в приполярных кратерах. Дальше помог нейтронный спектрометр – он сумел определить, что в приполярных регионах все-таки есть вода, то есть данные этого прибора тоже оказались в пользу существования на Меркурии льда. Хотя его разрешающая способность не позволяла точно привязать затененные кратеры к повышенной концентрации воды в грунте.
Для исследования содержимого кратеров в «вечной тьме» использовали лазерный дальномер. Разумеется, его интенсивности не хватило бы для использования в качестве фотовспышки. Но дальномер позволил определить интенсивность отраженного лазерного луча, и первые попытки посветить лазером в ледники дали обескураживающий результат – предполагаемый «лед» оказался примерно в два раза темнее, чем грунт, окружающий кратеры.
Наконец, лазерный дальномер поймал блеск: поверхность самых приполярных и глубоких кратеров отразила света в четыре раза больше, чем это делал окружающий грунт, – очередное доказательство наличия льда было получено. Но что же стало с черными-черными кратерами? Для того чтобы понять, что творится во тьме, пришлось разработать новую термическую модель поверхности. Оказалось, что в кратерах, куда хоть немного заглядывает Солнце, свет немного отражается от стенок и освещает дно. И именно это объяснило, почему аппарат не увидел там льда – даже слабенький свет, отражаемый стенками кратера, все равно способен растапливать лед, лежащий на дне. А чтобы понять, что же мы тогда видим, надо вспомнить, откуда на Меркурии вообще может быть лед.
Главным источником льда и воды во внутренней Солнечной системе считаются кометы. Хотя исследование, проведенное аппаратом Rosetta на комете 67P/Чурюмова-Герасименко, поставило под сомнение кометное происхождение земных океанов, а исследование автоматической межпланетной станции LRO, в том числе российского прибора LEND, поставило под сомнение кометное происхождение воды на Луне, о происхождении льда на Меркурии можно говорить увереннее. В его окрестностях кометы появляются гораздо чаще, так как Солнце тянет их своей гравитацией как мух к меду. Поэтому кометы намного чаще падают на Меркурий, чем на какое-либо другое тело в Солнечной системе, за исключением, конечно, Солнца. В момент падения кометы вода испаряется, чтобы потом сконденсироваться в виде снега только там, где достаточно холодно и темно, то есть в кратерах на полюсах.
Комета по своей структуре – это «грязный снежок»– кусок льда с пылью и углеродными соединениями, по текстуре напоминающими уголь. Вот здесь-то ученые и подобрались к ответу на загадку темных кратеров. Темнее местного грунта оказалась органика. Замерзшая вода, принесенная кометами вперемешку с пылью и органическими соединениями, покоится на дне выбитых кратеров. Там, где свет попадает в кратер, верхний слой льда испаряется, оставляя только темный слой органических соединений. Вода и органические соединения – казалось бы, лучшие ингредиенты для зарождения жизни, но для поддержания воды в жидком состоянии, не хватает плотной атмосферы, поэтому, как и на кометах, на Меркурии не может зародиться жизнь.
Зато меркурианские загадки на этом не заканчиваются. Аппарат Messenger рассмотрел еще одну особенность поверхности планеты, которую так и не смогли окончательно объяснить. Странные участки выщербленного грунта, которые назвали «впадинами» (hollows), встречаются практически по всей территории Меркурия. Пока ученые могут только сказать, что впадины имеют недавнее происхождение, настолько, что, возможно, процесс их формирования продолжается до сих пор. Это удалось определить по наличию метеоритных кратеров. Точнее, по их отсутствию, что говорит о сравнительной молодости этих образований. Впадины обнажают нижележащий грунт голубоватого или синеватого цвета. Какую-то привязку впадины имеют к выходам вулканической лавы, но эти вулканы успокоились задолго до того, как начали формироваться впадины. Считается, что это некий летучий минерал, который медленно испаряется под воздействием солнечных лучей или даже заряженных частиц, но приборы Messenger не позволили точно определить состав и характеристики изменяющегося грунта.
Другими, не такими интригующими, но любопытными открытиями на Меркурии стали магнитное поле и признаки недавнего вулканизма.
Магнитное поле Меркурия в сто раз слабее земного, но даже такая интенсивность указывает на жидкое ядро планеты и продолжающиеся токи в нем.
Относительно недавно успокоившиеся вулканы тоже стали сюрпризом. Возможно, еще динозавры могли бы наблюдать извержения на Меркурии, если бы, конечно, обладали соответствующей техникой.
Уникальное в истории космонавтики наблюдение Messenger сделал, взглянув на систему Земля/Луна. Он даже смог показать лунное затмение, когда Луна скрылась в тени Земли.
Космический аппарат работал на орбите Меркурия более четырех лет. С каждым годом орбита спутника снижалась, и ученые использовали это для получения снимков с повышенным разрешением для более тщательного осмотра местности.
К концу 2014 года аппарат полностью исчерпал запасы топлива, но продлить его время работы на несколько месяцев удалось, обеспечив реактивный импульс сжатым гелием, который предназначался для создания давления в топливных баках.
Наконец пришло время прощаться с космическим аппаратом. 30 апреля 2015 года с «последним вздохом» двигательной установки спутник был направлен к месту своего вечного успокоения.
На этом история Messenger закончилась. Но не закончилась наука. Ученым еще предстоит обработать немало данных, и результатом будут новые открытия. Тем более что теперь Меркурий снова останется наедине с собой и кометами почти на 10 лет. Следующий европейско-японский аппарат BepiColombo прибудет к Меркурию не ранее 2024-го года. Ожидается, что BepiColombo сможет разгадать загадки, оставленные Messenger.
3. Луна
3.1. Луна после «Аполлона»
У Земли и Луны весьма непростые взаимоотношения. После активного и тесного общения в 60-е и 70-е, после высадок астронавтов и поездок луноходов, после доставки и изучения грунта, мировая космонавтика практически забыла о спутнике Земли, сконцентрировав деятельность на других направлениях. Это даже стало причиной появления мифа, повествующего о запрете изучения Луны кем-то или чем-то. Однако исследования продолжаются, причем довольно активные.
После старта в 1976 году возвращаемого модуля «Луна-24» и доставки последней щепотки реголита между Землей и Луной остался только вакуум. Лишь спустя 14 лет космонавтика стала возвращаться к Луне. Правда, о пилотируемых путешествиях пока что забыли – слишком невыгодное соотношение между затратами и научно-практической пользой от полета. Поэтому сейчас летают в основном спутники, слетал один луноход, и готовятся другие посадочные аппараты.
В 90-е годы первыми к Луне вернулись японцы, снарядившие миссию Hiten. Спутник по большей части предназначался только для отработки технологии перелетов, гравитационных маневров и аэродинамического торможения в атмосфере Земли, то есть японцы в то время учились летать между Землей и Луной. На борту Hiten находился еще микроспутник, который хотели выбросить на окололунной орбите, но аппарат не включился.
В 1994-м году к Луне отправился американский исследовательский аппарат Clementine.
Его тоже использовали для тестов и изучения влияния дальнего космоса на электронику, но к этому добавили еще и несколько приборов: ультрафиолетовый и инфракрасные спектрометры, а также камеру высокого разрешения с шестью цветными фильтрами. Благодаря оборудованию на аппарате Clementine, ученым удалось начать геологическое картографирование Луны. Полезным устройством стал лазерный высотомер для создания трехмерной карты лунной местности.
Clementine
На основе данных Clementine удалось создать онлайн-карту Google Moon, которую позже дополнили снимками с орбитальных модулей Apollo и второй японской автоматической станции Kaguya.
Снимки камеры высокого разрешения Clementine оказались не очень высокого разрешения (от 7 до 20 метров), так как спутник летал на высоте около 400 километров – с такого расстояния много не рассмотришь. Зато благодаря Clementine ученые получили первые косвенные данные о наличии на полюсах Луны воды в повышенной концентрации.
Следом, в 1998 году, полетел Lunar Prospector, тоже от NASA.
Его камерами вообще не оборудовали, и устроен он был довольно просто, но зато смог провести первое геологическое картографирование Луны при помощи нейтронного датчика и гамма-спектрометра. Спутнику удалось определить, что на полюсах Луны вода может достигать концентрации 10 % в грунте.
Применение гамма-спектрометра позволило определить распределение по поверхности Луны кремния, железа, титана, алюминия, фосфора и калия. Были проведены более точные измерения гравитационного поля и выявлены новые неоднородности – масконы – места повышенной «концентрации массы», то есть повышенной плотности, которая увеличивала гравитацию.
В 2000-х к «лунному клубу» стали присоединяться новые участники. В 2003 году Европейское космическое агентство запустило экспериментальную миссию Smart-1. Задачи полета тоже были по большей части технологические: Европа училась использовать плазменный двигатель для перелетов в дальнем космосе. Но кроме этого имелись и бортовые камеры для съемки в видимом и инфракрасном диапазонах.
Камера у Smart-1 была небольшой, а орбита – высокой: от 400 до 3000 километров, поэтому кадры получались в основном широкоугольными с низким разрешением. Наиболее детальные кадры были всего 50 м на пиксель, а глобальную карту удалось построить только из кадров в 250 м на пиксель.
Smart-1
Когда Smart-1 летел к Луне, он опробовал лазерную связь с Землей. Передавать данные по лучу тогда не предполагали, только пытались «пострелять» в однометровый телескоп обсерватории на острове Тенерифе. Цель была изучить влияние земной атмосферы на луч. Попытка оказалась удачной: в телескоп попали, но развивать технологию не стали – радиосвязь показалась тогда надежнее.
Здесь надо отвлечься и ответить на вопрос, который, наверняка, уже у многих возникал: почему нельзя спуститься пониже, чтобы снимки поверхности были качественнее? Вроде бы атмосферы нет, летай хоть на 10 метрах! Но с Луной не все так просто. И атмосфера с пылью там какая-никакая есть, но ей можно пренебречь, а пренебрегать нельзя масконами. Маскон – это локальное увеличение гравитационного поля.
Гравитационное поле Луны неоднородно. Предположим, что мы летим на высоте 10 километров над однородной равниной. Сила притяжения, действующая на аппарат, имеет одно неизменное значение. Мы его компенсируем ускорением двигательной установки, набираем первую космическую скорость и можем летать на этой высоте бесконечно, если нам ничто не помешает. Но если мы будем летать не вокруг гигантского бильярдного шара, а вокруг, к примеру Луны, то равнина быстро кончится. И встретится нам, к примеру горный хребет, высотой 5 километров. Что будет с гравитационным полем? Правильно: притяжение аппарата возрастет. Этакая гравитационная выбоина на орбите спутника. И чем ниже спутник прижимается к поверхности, тем более мелкие «выбоины» начинают на него оказывать воздействие.
Луна же еще сложнее. Когда-то на нее падали огромные астероиды, которые пробивали кору и вызывали поднятие более плотной мантийной породы к дневной поверхности. А дневная поверхность сложена из более рыхлых и легких вулканических пород. В результате мы получаем относительно гладкую равнину с разнородным гравитационным полем. Мантийное вещество – более плотное и массивное, то есть притягивает сильнее и получается эквивалент гравитационной «горы». Это, собственно, и называется маскон – концентратор массы.
В 2007 году к Луне отправилась японская Kaguya. Научившись летать к естественному спутнику Земли, японцы решили усердно заняться его изучением. Масса аппарата достигала почти 3 тонны – проект назвали «самой масштабной лунной программой после программы Apollo».
На борту были установлены два инфракрасных, рентгеновский и гамма-спектрометр для изучения геологии Луны. Заглянуть глубже в недра спутника Земли должен был прибор Lunar Radar Sounder.
Kaguya
Kaguya сопровождалась двумя малыми спутниками-ретрансляторами Okina и Ouna, каждый массой по 53 килограмма. Благодаря им удалось исследовать неоднородности гравитационного поля на обратной стороне – составить более подробную карту масконов. Kaguya сначала летала на высоте 100 километров, затем снизилась до 50 километров, сделала шикарные кадры лунных пейзажей и прекрасный закат Земли, но увидеть Apollo или Луноходы не смогла – разрешения камеры не хватило.
За два года работы Kaguya аппарат смог получить богатый набор данных со своих приборов, в интернет-архивах можно найти фото и видео с лунной орбиты, сделанные аппаратом (http://wms.selene.darts.isas.jaxa.jp/selene_viewer/index_e.html). Открыт для всех и архив научной информации: http://l2db.selene.darts.isas.jaxa.jp/index.html.en.
Вслед за Kaguya к Луне отправились новички: индийцы и китайцы. У них сейчас разворачивается целая лунная гонка в беспилотном режиме.
В 2008 году к Луне стартовала первая в дальнем космосе автоматическая миссия Индии – Chandrayaan-1.
Chandrayaan-1
Аппарат нес на борту несколько индийских и иностранных приборов, среди которых находились инфракрасные и рентгеновские спектрометры. На борту была установлена стереокамера, которая снимала поверхность с разрешением до 5 метров.
Интересное исследование было проведено американским прибором Mini-SAR – небольшим радаром с синтезированной апертурной решеткой. Ученые хотели выяснить запасы льда на лунных полюсах. После нескольких месяцев работы полюса были как следует осмотрены, и первые отчеты оказались весьма оптимистичными. Радар определял рассеяние радиоволн на различных элементах рельефа. Повышенный коэффициент рассеяния мог возникать на раздробленных элементах породы, как писалось в отчетах – «roughness» – шероховатостях. Похожий эффект могли вызывать и залежи льда. Анализ приполярных областей показал два типа кратеров, которые демонстрировали высокую степень рассеяния. Первый тип – молодые кратеры, которые рассеивали радиолуч не только на дне, но и вокруг себя, то есть на породе, которая была выброшена при падении астероида. Другой тип кратера – «аномальный», такие кратеры рассеивали сигналы только на дне. Причем отмечалось, что большинство эти кратеров находится в глубокой тени, куда никогда не попадают лучи Солнца. На дне одного из аномальных кратеров зарегистрировали температуру, вероятно, самую низкую на Луне: 25 Кельвинов или минус 248 градусов Цельсия. Ученые NASA пришли к выводу, что радар видит на склонах «аномальных кратеров» отложения льда.
Оценки ледяных залежей по данным радара Chandrayaan-1 примерно подтверждали оценки нейтронного детектора Lunar Prospector – 600 миллионов тонн.
Позже китайские ученые провели свое независимое исследование на основе данных Chandrayaan-1 и LRO и пришли к выводу, что «нормальные» и «аномальные» кратеры на Луне ничем не отличаются по коэффициенту рассеяния ни у полюсов, ни у экватора, где льда не ожидается. Они же напомнили, что исследование с Земли при помощи радиотелескопа Аресибо не обнаружило никаких залежей льда. Так что, лунные запасы воды по-прежнему хранят тайну и еще ждут своего первооткрывателя.
Chandrayaan-1 нес еще один интересный прибор – Moon Mineralogy Mapper – инфракрасный гиперспектрометр для геологического картографирования Луны в высоком разрешении. Он тоже дал противоречивые результаты. Во-первых, в очередной раз подтвердил повышенное содержание воды или водородсодержащих минералов в приполярных регионах. Во-вторых, нашел признаки воды и гидроксила в тех местах, где Lunar Prospector не показывал никаких признаков повышенного содержания водорода. Проблема с Moon Mineralogy Mapper в том, что он анализировал буквально верхние миллиметры грунта, и та вода, которую он нашел, может быть результатом воздействия солнечного ветра на лунный реголит, а не указывать на ее богатые залежи в недрах.
К сожалению, миссия Chandrayaan-1 прекратилась раньше запланированного срока из-за технической неисправности на аппарате – он не проработал и года. Сейчас Индия готовится осуществить посадочную миссию и высадить на Луне мини-луноход.
Дальше всех из «новичков» в изучении Луны продвинулся Китай. На его счету два спутника Chang’e 1 и 2, один луноход Yutu и один технологический облет Луны с возвращением капсулы – так они готовятся к доставке лунного грунта, а в перспективе и к пилотируемому полету.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?