Текст книги "Делай космос!"
Автор книги: Виталий Егоров (Zelenyikot)
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 14 страниц) [доступный отрывок для чтения: 4 страниц]
1.4. Как изучают планеты с помощью радио и радиации
Космическая радиация – это потоки фотонов и других элементарных частиц с очень высокой энергией, которыми наполнено все межзвездное и межпланетное пространство. Это результат излучения звезд, выбросов газопылевых дисков вокруг черных дыр, нейтронных звезд и пульсаров, взрывов сверхновых. Космической радиацией называют гамма-лучи и элементарные частицы: протоны (ядра атомов водорода), нейтроны, альфа– и бета-лучи, рентген, тяжелые заряженные частицы. Практически любой катаклизм во Вселенной является источником космической радиации. Она является проблемой для космонавтов и электроники, но для ученых радиация – подарок, позволяющий узнать много подробностей о космосе.
Гамма-спектроскопия
Гамма-лучи – это высокоэнергичные фотоны, их источником является Солнце и далекие взрывные события в галактике и за ее пределами, но гамма-спектроскопия в планетологии изучает не те лучи, которые выбрасываются из звезд и черных дыр, а те, которыми «фонят» планеты и другие безатмосферные или слабоатмосферные космические тела.
Планеты и астероиды начинают излучать в гамма-диапазоне под воздействием бомбардировки более массивных частиц: высокоэнергетичных протонов, альфа-,бета– лучей и нейтронов. В результате взаимодействия заряженных частиц с грунтом на поверхности небесных тел образуются гамма-лучи. И, как мы помним, каждый химический элемент излучает в своем спектральном диапазоне. То есть нам достаточно провести гамма-спектрометром над поверхностью, чтобы понять из чего она состоит. Но так мы получим только ее химический состав, а вот если к нему добавить информацию, например с инфракрасных спектрометров и с камер видимого диапазона, то можно получить более наглядную картину, включающую геологический состав поверхности.
Так, с помощью гамма-спектрометрии ученые узнали об относительно высоких концентрациях ториевых, железных и титановых руд на Луне. Радиоактивные породы тоже хорошо искать этим методом. С помощью гамма-спектрометра на аппарате Mars Odyssey удалось обнаружить на Марсе два района с аномально высоким содержанием ториевых и, вероятно, урановых руд. Вполне возможно, что там когда-то происходили процессы (как на Земле, в Африке) с образованием естественного атомного реактора. Это обнадеживающая находка означает, что атомные электростанции будущих марсианских поселенцев могут работать на местном сырье.
Нейтронные детекторы
Космические частицы, врезающиеся в грунт безатмосферных тел, выбивают не только фотоны, но и более крупные элементарные частицы, в том числе нейтроны. Выбитые нейтроны движутся через грунт с высокой скоростью и при столкновениях с каждым атомом водорода теряют много энергии. Соответственно, измеряя энергию вылетающих с поверхности нейтронов можно определить, находится ли под ней водород.
Водород – очень летучий газ, который не задерживается в грунте в свободной форме, особенно там, где атмосферное давление стремится к нулю. Чтобы сохранить водород в грунте, его нужно связать на химическом уровне, и лучшим средством для этого остается вода. Таким образом, пролетая над поверхностью и собирая данные о скоростях вылетающих нейтронов, можно определить примерное содержание воды в грунте. Разумеется, чем ниже мы пролетим, тем точнее будут данные.
Нейтронные спектрометры на орбитальных аппаратах пока дают погрешность в сотню километров. Если использовать специальный ограничитель, называемый «коллиматор», то можно повысить точность до десятков километров. Еще для этого метода ограничена глубина зондирования. Все нейтроны вылетают с глубины не ниже 1 метра, поэтому о запасах воды в более глубоких слоях остается только догадываться и полагаться на другие методы исследования.
С помощью российских нейтронных детекторов LEND и HEND, были получены данные о распределении водорода/воды в приповерхностных слоях Луны и Марса. И если марсианские данные уже дважды подтвердились, то лунные еще ждут своей проверки.
На Марсе в приполярный регион высадился посадочный модуль Phoenix, и там, где HEND прогнозировал до 70 % воды в грунте, прямо под пылью нашелся пласт водяного льда. В кратере Гейла, где работает марсоход Curiosity, HEND обещал 5 %, а по данным марсохода содержание воды в грунте колеблется от 3 % до 5 %, и лишь изредка попадаются «оазисы» аж в 6 %.
После такого успеха HEND его российского «брата» DAN «усадили» прямо на марсоход, и он теперь собирает данные не с высоты 300 километров, как предшественник, а гораздо ниже – с полуметра. Правда, глубина зондирования по-прежнему не превышает одного метра, зато пространственное разрешение увеличилось с десятков километров до сантиметров.
Впрочем, несмотря на успехи нейтронных детекторов, окончательного доверия к ним еще нет. Ледники на Луне ждут своего первооткрывателя, а космические агентства, как и частные компании, все больше внимания обращают на ее полюса. Хотя концентрация влаги на Луне, по данным спутников, не превышает 4 %.
Радиолокация
Зондирование планет в радиодиапазоне начали проводить еще с Земли. Много информации смог собрать известный радиотелескоп Аресибо в Пуэрто-Рико, чья параболическая антенна диаметром в 300 метров появлялась во множестве голливудских фильмов. Еще в 80-е годы он обнаружил на полюсах горячего Меркурия странный отблеск, источником которого мог стать водяной лед. Ученые долго не могли поверить в то, что на самой близкой к Солнцу планете могут существовать ледники. Пришлось ждать результатов зонда Messenger, который при помощи нейтронного детектора и лазерной локации смог подтвердить факт наличия льда на полюсах Меркурия.
Впечатляющие картины показал радиотелескоп Аресибо во время суперлуния 2013 г. На Луне с его помощью удалось разглядеть последствия катастрофических лавовых потоков и «наводнений». Если совместить эти снимки с картами распределения минералов, полученных с орбитальных спектрометров, то можно составить подробную геологическую карту местности и, возможно, реконструировать эволюцию поверхности Луны. К ней неоднократно отправляли радары на спутниках, но их энергии было недостаточно, чтобы проникнуть глубоко в грунт.
Радиоволны позволяют не только заглядывать под поверхность планет и спутников, но и показывают высокую эффективность на облачных планетах. Три радара летало к Венере. «Венера-15» и «Венера-16» провели картографирование северного полюса в 80-е годы, а потом, в 90-е, Magellan составил почти полную его карту.
Аппарат Cassini на орбите Сатурна использовал свой радарный инструмент, чтобы проникнуть сквозь плотную атмосферу его спутника Титана. В ходе многочисленных пролетов космическая станция Cassini постепенно приоткрывала вечную пелену атмосферы и открывала науке этот поистине удивительный мир, в чем-то невероятно похожий на земной, а в чем-то разительно от него отличающийся. Многократная радарная съемка позволила не просто картографировать Титан, но и наблюдать динамические процессы на нем. Так, таинственно появившийся, а потом исчезнувший остров, сочли признаком происходящих сезонных изменений на самом крупном спутнике Сатурна. Возможно, это был ледяной айсберг, обрушившийся в метановое море.
Другие диапазоны радиоволн и другая конструкция радара позволяют забираться гораздо глубже. На орбите Марса работают два космических аппарата, оборудованные радарами, чьи волны проникают в кору планеты на 1–3 километра.
Исследование европейского космического аппарата Mars Express позволило получить информацию о мощности и структуре полярных льдов и оценить запасы воды на полюсах Марса. Его же сканирование позволило обнаружить древние астероидные кратеры, погребенные под сотнями метров вулканической лавы и осадочными накоплениями марсианского океана в северном полушарии планеты. Ранее ученые неоднократно отмечали видимую разницу в количестве метеоритных кратеров в южном и северном полушариях Марса, и Mars Express позволил разгадать эту загадку. А если бы на «Красной планете» существовали марсиане, зарывшиеся от вакуума, засухи и мороза в подмарсианский город-убежище, то Mars Express нашел бы его.
Радар привезли даже на поверхность Луны. Китайский луноход Yutu («Нефритовый заяц») успел пройти всего сотню метров, но даже во время такого короткого пути ему удалось получить интереснейшие профили лунной поверхности на глубину около четырехсот метров. В будущем такая информация будет жизненно необходима для строительства лунной станции, базы или поселения.
Альфа-лучевая и рентгенофлоуресцентная спектроскопия
Когда дело доходит до исследования космических тел посадочными аппаратами, практически невозможно обойтись без трогательных – в прямом смысле – моментов альфа-лучевой рентгенофлоуресцентной спектроскопии.
Приборы типа APXS (Alpha Particle X-Ray Spectrometer) устанавливались на все марсоходы NASA. APXS имеется на посадочном аппарате Philae на ядре кометы 67P/Чурюмова-Герасименко. На советских луноходах был установлен похожий прибор – РИФМА. Принцип работы метода напоминает гамма-спектроскопию, за тем исключением, что датчик имеет свой собственный источник заряженных частиц (какой-нибудь радиоактивный материал), прежде всего альфа-лучей. Заряженными частицами бомбардируется исследуемый образец, в ходе процессов поглощения альфа-частиц ядрами атомов выделяется рентгеновское излучение. Для каждого химического элемента спектр излучения будет свой, что позволяет определять химический состав образца.
Это далеко не исчерпывающий обзор оборудования для исследования Солнечной системы. Как правило, на межпланетные аппараты ставятся и астрофизические приборы для регистрации энергичных частиц, межпланетной радиации, плазмы и пыли. Межпланетные перелеты позволяют изучать еще и космическое пространство, взаимосвязи Солнца, планет и межзвездной среды, но это уже другая история.
1.5. Кто, как и зачем обрабатывает снимки из космоса
Фотографии из космоса, публикуемые на сайте NASA и других космических агентств, иногда вызывают сомнения в подлинности – внимательные энтузиасты находят на изображениях следы редактирования, ретуширования или манипуляций с цветом. Так повелось еще со времен зарождения «лунного заговора», а теперь под подозрение попали снимки, сделанные не только американцами, но и европейцами, японцами, индийцами. Разберемся, зачем вообще обрабатывают космические изображения и могут ли они, несмотря на это, считаться подлинными.
Для того чтобы правильно оценивать качество космических снимков, которые мы находим в Сети, необходимо учитывать два важных фактора. Один из них связан с характером взаимодействия космических агентств и широкой публики, другой продиктован физическими законами.
Физика цифровой фотографии
Как правило, тот, кто упрекает космические агентства за манипуляции с цветом, использование фильтров или публикацию черно-белых фотографий «в наш век прогресса цифровых технологий», не учитывает физических процессов получения цифровых изображений. Как мы уже знаем, обычные земные фотоаппараты снимают точно так же, как профессиональные телескопы – через цветные фильтры, только они не показывают нам промежуточные этапы подготовки снимков.
Космические снимки – одно из самых эффективных средств популяризации исследовательских миссий в ближнем и дальнем космосе. Однако далеко не все кадры сразу оказываются в распоряжении СМИ.
Изображения, полученные из космоса, можно условно разделить на три группы: «сырые» (raw), научные и публичные. Сырые, или исходные файлы с космических аппаратов иногда бывают доступны всем желающим, а иногда нет. Например, изображения, полученные марсоходами Curiosity и Opportunity или искусственным спутником Сатурна Cassini, публикуются практически в режиме реального времени, так что любой желающий может увидеть их одновременно с учеными, изучающими Марс или Сатурн. Необработанные фотографии Земли с пилотируемой Международной космической станции выкладываются на отдельный сервер NASA (eol.jsc.nasa.gov). Космонавты загружают их в Сеть тысячами, и ни у кого нет времени на их предобработку. Единственное, что добавляют к ним на Земле – географическую привязку для облегчения поиска.
В случае с менее популярными проектами, такими как Messenger, New Horizons или Dawn все иначе. Сырые снимки, полученные с этих аппаратов, не публикуются сразу при получении, а выкладываются с опозданием на недели, месяцы или даже годы. Это необходимо для того, чтобы ученые, запустившие аппарат, могли спокойно проанализировать данные и в случае каких-либо открытий первыми доложить о них на конференциях.
Файлы с научными кадрами зачастую имеют специфический формат, который понимают только специальные программы или приложения. Такие файлы несут большой объем информации об обстоятельствах съемки (время, положение космического аппарата, положение объекта съемки, угол освещения, характеристики съемки и т. д.). Эта информация, не будучи засекреченной, настолько неинтересна большинству энтузиастов космонавтики, что обычно ее выкладывают в таких местах, которые удобны для ученых, но отпугивают посторонних сложным интерфейсом. Такие сайты или FTP-серверы в открытом доступе – это NASA PDS, ESA PSA, JAXA archive. Даже Китай выложил кадры с Луны на сайте своей Академии наук (сервер которой периодически падает). Когда предыдущий российский метеорологический спутник «Электро-Л» занимался съемкой, кадры с него можно было найти на сервере НЦОМЗ, позже туда стали добавлять новые снимки второго «Электро-Л», при этом удаляя старые. Со спутников дистанционного зондирования Земли можно посмотреть только предварительные изображения, а сами снимки придется заказывать на Геопортале Роскосмоса.
Обычно за ретушь критикуют публичные кадры, которые прилагаются к пресс-релизам NASA и других космических агентств, – ведь именно они попадаются на глаза пользователям Интернета в первую очередь. И при желании там можно найти много чего: и манипуляции с цветом, и наложение нескольких снимков, и «копировать/вставить», и даже прямую ретушь с затиранием некоторых фрагментов изображения. Мотивация NASA в случае со всеми этими манипуляциями проста настолько, что ей готовы поверить далеко не все: так красивее.
Но ведь правда, бездонная чернота космоса выглядит более впечатляюще, когда ей не мешают мусор на объективе и следы от заряженных частиц на пленке или матрице. Цветной кадр, и правда, привлекательнее черно-белого. Панорама из снимков лучше отдельных кадров. При этом важно, что в случае с NASA почти всегда можно найти исходные кадры и сравнить одно с другим. Это касается и лунных снимков пилотируемой экспедиции Apollo, и кадров с марсохода Curiosity.
Перед учеными не стоит задача поставлять красивые фотографии для пресс-релизов и СМИ. Камеры космических аппаратов прежде всего являются инженерными или научными инструментами, которые помогают управлять этими аппаратами или получать информацию о космосе. Применение фильтра ближнего инфракрасного света, который не виден глазу, вместо красного, привело к покраснению Марса на многих кадрах, ушедших в СМИ. Пояснение про инфракрасный диапазон перепечатали далеко не все, что породило споры о том, какого цвета Марс на самом деле.
Однако на марсоходе Curiosity стоит «фильтр Байера», что позволяет ему снимать в цвете, привычном нашему глазу.
Применение отдельных фильтров удобнее с точки зрения выбора диапазонов света, в которых хочется посмотреть на объект. Но если этот объект движется, то на снимках в разных диапазонах его положение меняется. На Марсе подобное происходило при съемке закатов у марсохода Spirit и Opportunity – у них нет «фильтра Байера», поэтому на кадрах заката Солнца получились цветные горы и три Солнца: красное, зеленое и синее. Похожие трудности возникали у станции Cassini при съемке спутников Сатурна. С той же ситуацией сталкивается аппарат DSCOVR, снимающий Землю и Луну с расстояния 1,5 миллиона километров. Чтобы получить из такой съемки красивое фото, пригодное для распространения в СМИ, приходится поработать в редакторе изображений.
Есть еще один физический фактор, о котором знают далеко не все, – черно-белые снимки имеют более высокое разрешение и четкость по сравнению с цветными. Это так называемые панхроматические снимки, которые включают в себя всю световую информацию, попадающую в камеру, без отсечения каких-либо ее частей фильтрами. Поэтому многие «дальнобойные» камеры спутников снимают только в панхроме, что для нас означает черно-белые кадры. Такая камера LORRI установлена на аппарате New Horizons, камера NAC – на лунном спутнике LRO. Большинство телескопов снимает в панхроме, если только специально не применяются фильтры.
Мультиспектральная «цветная» камера, оборудованная фильтрами и имеющая гораздо меньшее разрешение, может прилагаться к панхроматической. При этом ее цветные снимки можно накладывать на панхроматические, в результате чего мы получим цветные снимки высокого разрешения.
Такой метод часто применяют при съемке Земли с высоким разрешением. Если знать об этом, то можно увидеть, например, на некоторых кадрах Google Map типичный ореол, который оставляет размытый цветной кадр.
Дополнительная обработка
Часто приходится прибегать к инструментам графических редакторов, когда нужно почистить кадр перед публикацией. Представления о безупречности космической техники не всегда оправданы, поэтому мусор на космических камерах – дело распространенное. Например, камера MAHLI на марсоходе Curiosity загрязнена, на каждом кадре видно множество соринок, которые находятся где-то в оптике камер.
Одна соринка в солнечном телескопе STEREO-B, который ведет наблюдение за Солнцем, породила отдельный миф об инопланетной космической станции, постоянно летающей над северным полюсом нашей звезды.
Еще в космосе нередки заряженные частицы – составная часть космической радиации, которые оставляют свои следы на фотоматрице в виде отдельных точек или полос. Чем дольше выдержка снимка, чем ближе к Солнцу космический аппарат и чем выше солнечная активность, тем больше остается следов. На снимках появляется «снег», который не очень презентабельно смотрится, поэтому его тоже стараются счистить («отфотошопить») перед публикацией снимков для СМИ.
Поэтому можно сказать: да, NASA «фотошопит» снимки из космоса. ESA «фотошопит». Роскосмос «фотошопит», как и все прочие, кто заботится о красивых и качественных фотографиях космоса.
Глава первоначально подготовлена для научно-популярного портала N+1, и опубликована под названием «Созвездие Фотожабы. Кто, как и зачем обрабатывает снимки из космоса».
Страница: https://nplus1.ru/material/ 2016/08/10/Photoshop-and-NASA
1.6. Золотая обертка
Вероятно, многие, кто наблюдал подготовку космического аппарата к запуску или видел фотографии американских или китайских лунных модулей на Луне, задавались вопросом: что за странная золотая фольга покрывает аппараты?
Все знают, что в космосе бывает очень холодно и очень жарко, в зависимости от того, есть поблизости источник теплового излучения или нет. К примеру, скафандр, в котором работают космонавты на орбите, рассчитан на эксплуатацию при температурах от – 100 до +100 градусов Цельсия. Но в космосе нет атмосферы, поэтому замерзнуть на ветру там невозможно, а вся передача тепла осуществляется излучением, прежде всего, инфракрасным. И человеку, и электронике для функционирования требуется выдерживать определенный баланс температур, поэтому им нельзя замерзать в тени и перегреваться под прямыми лучами Солнца. Для того чтобы остановить теплообмен между телом и внешней средой, на пути инфракрасных лучей необходимо поставить преграду – экран.
Такой преградой для космических аппаратов является ЭВТИ – экранно-вакуумная теплоизоляция. Вакуумная она не потому, что из нее откачивают воздух, а потому, что она выполняет свое предназначение в вакууме.
ЭВТИ – это многослойная «ткань» из тонкой пленки с металлическим напылением. Это напыление может быть алюминиевым, медным или золотым. На современных российских межпланетных станциях и телескопах используется металлизированная ЭВТИ на основе оксида индия, на американском зонде MAVEN – с германиевым напылением.
Такая теплоизоляция используется и на Земле. К примеру, в так называемых «Спасательных одеялах» (многослойные покрывала из металлизированной пленки, хорошо удерживающие тепло), но, поскольку внизу у нас еще есть ветер и дождь, то полной изоляции от холода она не дает.
В «золото» космические аппараты в массовом порядке стали одевать сравнительно недавно, примерно одно-два десятилетие назад, поэтому еще не все привыкли к их новому образу. Хотя золотистой теплоизоляцией были покрыты уже аппараты NASA в программах Gemini и Apollo. Но, к примеру, российский космический корабль «Союз» по-прежнему одевается в невзрачную «куртку».
На заре космонавтики экранная теплоизоляция достигалась блестящими полированными боками спутников или белой краской. Но по мере увеличения длительности эксплуатации аппаратов, становилось ясно, что требуется что-то более существенное.
В ранние «ватники», заворачивались лунные спускаемые аппараты серии «Луна». Например, «Луна-13» совершила мягкую посадку в 1966 году и проработала на поверхности Луны семь дней, пока не сели аккумуляторы. Примерно такой же тканью были укутаны и советские луноходы. Однако, на распространенных повсюду снимках и музейных макетах «Луноходы» изображены «голыми», поэтому сегодня нигде нельзя увидеть облик тех исторических аппаратов, что сейчас стоят на Луне.
Со временем теплозащита развивалась, и к 90-м годам стала все ближе подходить к нынешнему золотому цвету.
ЭВТИ на космическом аппарате «Марс-96» была ярко-оранжевой, но еще на тканевой основе. Во время старта такой тканью была покрыта практически вся станция.
Наконец, с приходом XXI века, началась «золотая» эпоха. При этом важно отметить, что разные производители ЭВТИ имеют разные технологии, ноу-хау и секреты. Каждый производитель космических аппаратов выбирает наиболее подходящую ему модель теплоизоляции. Далеко не всякая «золотая фольга» по факту оказывается золотой: металлов, дающих такой оттенок, несколько.
В России ЭВТИ производит «НИИ космических и авиационных материалов». Увидеть и сравнить разные типы теплоизоляции можно на фотоснимках космических аппаратов перед их размещением под головным обтекателем ракеты. Например, космический телескоп Gaia Европейского космического агентства запускался российской ракетой и разгонным блоком «Фрегат» производства НПО Лавочкина. На снимках видно, что ЭВТИ отличается, хоть и оба типа ткани имеют золотистый оттенок.
Можно обратить внимание, что «золотая пленка» несколько небрежно покрывает аппараты. Дело в том, что эта изоляция не должна прилипать к поверхности, а должна выступать именно экраном, находясь между телом и средой, чтобы отражать инфракрасные лучи обратно к источнику.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?