Электронная библиотека » Виталий Егоров (Zelenyikot) » » онлайн чтение - страница 13

Текст книги "Делай космос!"


  • Текст добавлен: 29 сентября 2018, 15:40


Автор книги: Виталий Егоров (Zelenyikot)


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 14 страниц)

Шрифт:
- 100% +
9.4. Тайна девятой планеты

Удастся ли ученым найти в Солнечной системе еще один крупный объект?



В астрономической среде два года обсуждают сенсацию, которой пока нет. Зимой 2016 года ученые Калифорнийского технологического института Константин Батыгин и Майкл Браун опубликовали статью, вновь возродившую надежды на то, что в Солнечной системе удастся обнаружить еще одну планету. Ряд косвенных признаков указывает, что где-то намного дальше Плутона, есть еще одна планета. Пока ее не нашли, но примерное местоположение рассчитали. Если в расчетах ошибки нет, то это станет самым важным астрономическим открытием столетия.


Первой планетой, открытой «на кончике пера», стала Нептун – еще в 1830-е годы астрономы обратили внимание на непредвиденные отклонения в орбите Урана и предположили, что за ним имеется еще одна планета, которая вызывает гравитационное возмущение. Гипотеза подтвердилась в 1846 году, когда Нептун смогли наблюдать в математически предсказанной области неба. Оказалось, что его видели и раньше, но не могли отличить от далеких звезд. Среднее расстояние до Нептуна – 4,5 миллиарда километров или около 30 астрономических единиц (одна астрономическая единица равна расстоянию от Солнца до Земли – около 150 миллионов километров).


Оптимизм после открытия Нептуна вдохновил многих ученых и любителей астрономии на поиски других, более удаленных планет. Дальнейшие наблюдения за Нептуном и Ураном показывали расхождение между реальным движением планет и предсказанным математически, и это вселяло уверенность, что сенсация 1846 года может повториться. Казалось, в 1930 году поиски увенчались успехом, когда Клайд Томбо обнаружил Плутон на расстоянии около 40 астрономических единиц.



Долгое время Плутон оставался единственным известным объектом Солнечной системы, расположенным дальше от Солнца, чем Нептун. И по мере роста качества астрономической техники, представления о размере Плутона постоянно менялись в сторону уменьшения. К середине века считалось, что он имеет размер, сравнимый с Землей, и очень темную поверхность. В 1978 году удалось уточнить массу Плутона благодаря открытию его спутника Харона. Оказалось, что он намного меньше не то, что Меркурия, но даже земной Луны.


К концу XX века, благодаря технологиям цифровой фотосъемки и компьютерной обработки данных, начались открытия других транснептуновых объектов размером меньше Плутона. Сначала, по привычке, их звали планетами. В Солнечной системе их стало десять, потом одиннадцать, потом двенадцать. Но к началу 2000-х годов астрономы забили тревогу. Стало ясно, что за Нептуном Солнечная система не заканчивается, и каждой ледяной глыбе придавать статус Земли и Юпитера не годится. В 2006 году для плутоноподобных тел придумали отдельное название – карликовая планета. Планет снова стало восемь, как и столетие назад.



Тем временем поиски настоящих планет за пределами орбит Нептуна и Плутона не прекращались. Высказывались даже гипотезы о наличии там красного или коричневого карлика, то есть малого звездоподобного тела массой в несколько десятков Юпитеров, которое составляет с Солнцем двойную звездную систему. Подсказали эту гипотезу… динозавры и прочие вымершие животные. Группа ученых обратила внимание на то, что массовые вымирания на Земле происходят примерно каждые 26 миллионов лет, и предположила, что это период возвращения в окрестности внутренней Солнечной системы массивного тела, которое приводит к увеличению числа комет, устремляющихся к Солнцу и попадающих в Землю. Во многие СМИ эти гипотезы попали в виде антинаучных предсказаний о грядущем нападении пришельцев с планеты или звезды Нибиру.



NASA дважды предпринимало попытки найти возможную планету или коричневый карлик. В 1983 году космический телескоп IRAS осуществил полное картографирование небесной сферы в инфракрасном диапазоне. Телескоп провел наблюдения десятков тысяч источников теплового излучения, открыл несколько астероидов и комет в Солнечной системе и стал причиной шумихи в прессе, когда ученые приняли по ошибке далекую галактику за юпитероподобную планету. В 2009-м году полетел похожий, но более чувствительный и долгоживущий телескоп WISE, который сумел найти несколько коричневых карликов, но на расстоянии в несколько световых лет, то есть не относящихся к Солнечной системе. Он же показал, что в нашей системе планет размером с Сатурн или Юпитер за Нептуном тоже нет.


Разглядеть новую планету или недалекую звезду не удается никому до сих пор. Или ее там вообще нет, или она слишком холодна и излучает или отражает слишком мало света, чтобы ее можно было обнаружить при случайном поиске. Ученым пока приходится полагаться на косвенные признаки: особенности движения других, уже открытых космических тел.


Поначалу обнадеживающие данные получали в аномалиях орбит Урана и Нептуна, но в 1989 году было установлено, что причина аномалий – в ошибочном определении массы Нептуна: он оказался на пять процентов легче, чем думали ранее. После коррекции данных моделирование стало совпадать с наблюдениями, и гипотеза о девятой планете отпала.


Некоторые исследователи задумались о причинах появления долгопериодических комет во внутренней Солнечной системе и об источнике короткопериодических комет. Долгопериодические кометы могут появляться у Солнца раз в сотни или миллионы лет. Короткопериодические облетают вокруг Солнца за 200 или менее лет, то есть находятся гораздо ближе.


Кометы имеют очень короткий по космическим меркам срок жизни. Основной их материал – это лед различного происхождения: из воды, метана, циана и других веществ. Солнечные лучи испаряют льды, и комета превращается в незаметный поток пыли.



Тем не менее, короткопериодические кометы продолжают летать вокруг Солнца и сегодня, спустя миллиарды лет после формирования Солнечной системы. Значит, их число пополняется из какого-то внешнего источника.



Таким источником считается Облако Оорта – гипотетический регион радиусом до 1 светового года, или 60 тысяч астрономических единиц вокруг Солнца. Считается, что там летают миллионы ледяных объектов по круговым орбитам. Но периодически что-то меняет их орбиту и запускает к Солнцу. Что это за сила, пока неизвестно: это может быть гравитационное возмущение от соседних звезд, результаты столкновений в облаке или влияние крупного тела в нем же. Например, это могла бы быть планета размером чуть больше Юпитера – ей даже дали название Тюхе. Авторы гипотезы Тюхе предполагали, что телескоп WISE сможет найти ее, но открытие не состоялось.


Если Облако Оорта – только гипотетическое семейство малых тел Солнечной системы, которое астрономы не могут наблюдать непосредственно, то другое семейство, пояс Койпера, изучено гораздо лучше. Плутон – это первое обнаруженное космическое тело пояса Койпера. Сейчас там открыто еще три карликовые планеты размером с Плутон или чуть меньше и более тысячи малых тел.


Для семейства пояса Койпера характерны круговые орбиты, небольшой наклон к плоскости вращения известных планет Солнечной системы – плоскости эклиптики – и обращение в границах 30 и 55 астрономических единиц. С внутренней стороны пояс Койпера обрывается на орбите Нептуна, кроме того, эта планета оказывает гравитационное возмущение на пояс. Причина внешней резкой границы пояса неизвестна. Это дает основания предполагать наличие еще одной полноценной планеты где-то на расстоянии 50 астрономических единиц.


За поясом Койпера, хотя и частично пересекаясь с ним, лежит область рассеянного диска – еще одной группы малых космических тел, летающих за Нептуном. Для малых тел этого диска, напротив, характерны сильно вытянутые эллиптические орбиты и значительный наклон к плоскости эклиптики. Новые надежды на обнаружение девятой планеты и бурные обсуждения в среде астрономов породили именно тела рассеянного диска.



Некоторые объекты рассеянного диска настолько далеки от Нептуна, что он не оказывает на них никакого гравитационного влияния. Для них придуман отдельный термин «обособленный транснептуновый объект». Один из таких известных объектов под названием Седна приближается к Солнцу на 76 астрономических единиц и отдаляется на 1000 астрономических единиц, поэтому его одновременно считают первым найденным объектом Облака Оорта. Некоторые известные тела рассеянного диска имеют менее экстремальные орбиты, а какие-то, напротив, имеют еще более вытянутую орбиту и сильный наклон плоскости обращения.


Оказалось, что несколько найденных обособленных транснептуновых объектов имеют ближнюю точку своей орбиты в области около 60 астрономических единиц, и эта точка лежит в плоскости эклиптики, а у некоторых объектов орбиты вытянуты в одном направлении. Вероятность такого случайного пролегания орбит составляет 0,025 процента, что мало, то есть более вероятно гравитационное влияние неизвестной планеты. По оценкам ученых Калифорнийского технологического института Константина Батыгина и Майкла Брауна, обративших внимание на необычные орбиты, это может быть планета в десять раз массивнее Земли. Возможно, там летает газовый собрат Нептуна и Урана, либо каменная планета в 2–4 раза больше Земли, так называемая «суперземля». Хотя, учитывая изобилие ледяных тел на периферии Солнечной системы, более вероятно наличие газовой, а не каменной планеты.


По расчетам авторов свежей гипотезы, «их» планета может иметь вытянутую орбиту, приближаясь к Солнцу на 200 и отдаляясь на 1200 астрономических единиц. Ее точное местоположение на земном небе пока рассчитать не удается, но примерная область поисков постепенно сокращается.



Поиск ведется с помощью оптического телескопа «Субару» на Гавайях и телескопа имени Виктора Бланко в Чили. Для того чтобы дополнительно подтвердить существование планеты и уточнить ее возможное местоположение, требуется найти больше тел рассеянного диска. Сейчас эти поиски продолжаются, работы имеют высокий приоритет, и появляются новые находки. Однако, ожидаемая планета по-прежнему неуловима.


Если бы астрономы знали, куда смотреть, то, возможно, смогли бы увидеть планету и оценить ее размер. Но у «дальнобойных» телескопов слишком узкий угол обзора, чтобы осуществлять свободный поиск по большим площадям неба. К примеру, известный космический телескоп Hubble за 25 лет своей работы осмотрел менее 10 процентов всей небесной сферы. Но поиски продолжаются, и если девятую планету Солнечной системы все-таки найдут, то это станет настоящей сенсацией в астрономии.


Глава первоначально подготовлена для научно-популярного портала N+1, и опубликована под названием «Тайна девятой планеты».

Страница: https://nplus1.ru/material/ 2018/01/19/ninth-planets-secret


9.5. Как убивают автоматические межпланетные станции

Космические аппараты – это сложные устройства, которые работают в самых суровых условиях. При запуске всегда присутствует опасность аварии ракеты. В полете может проявиться конструктивная ошибка, на борт могут передать ошибочную программу, а в работе электроники могут случиться сбои из-за галактических частиц и солнечных вспышек. Но если станция спроектирована верно, электроника радиационностойкая, программы проверенные, и весь полет проходит успешно, то кто поставит точку?



30 сентября 2016 года завершилась одна из самых интересных исследовательских программ в межпланетном пространстве в XXI веке – Rosetta и Philae. Стартовав в 2004 году, пара космических аппаратов отправилась в дальний космос. Дважды космические трассы возвращали их к Земле для гравитационного маневра, однажды такой маневр проходил у Марса. По пути произошли две встречи с астероидами: Штейнс и Лютеция, и, наконец, начался главный этап научной программы – сближение с кометой 67P/Чурюмова-Герасименко. Rosetta вышла на орбиту вокруг ядра кометы, сблизилась до нескольких километров, провела анализ газов в коме кометы, рассмотрела частицы пыли под микроскопом и определила их состав, выделила органические соединения, изучила гравитационное и магнитное поле. Philae пошел дальше – совершил посадку на комету. И выход на орбиту кометы и посадка на нее прошли впервые в истории космонавтики. Но даже самые успешные эксперименты рано или поздно заканчиваются, и пришел их час.



Команда Rosetta рассматривала несколько вариантов прекращения исследований. Было большое искушение продолжить полет насколько это возможно долго. Но комета удалялась от Солнца, и солнечные батареи космического аппарата не смогли бы полноценно поддерживать работоспособность бортовых систем. Можно было просто отключить аппарат, и тогда бы он превратился в рукотворный астероид, продолживший свой полет по орбите кометы, постепенно и непредсказуемо удаляясь от нее под воздействием гравитационных возмущений окрестных планет. В конце концов, для Rosetta выбрали судьбу ее напарника Philae – посадку на комету и пребывание там до того момента, пока солнечные лучи не испарят окончательно кометное ядро и не превратят комету в поток пыли. На это уйдут столетия, поэтому с этой неразлучной парочкой мы попрощаемся скорее всего навсегда.


Rosetta и Philae – далеко не первые межпланетные путешественники, чья судьба была решена в далеких Центрах управления полетами на Земле. Тремя годами ранее завершалась работа космического телескопа Herschel. Телескоп летал на расстоянии 1,5 миллиона километров от Земли в стороне противоположной Солнцу. Он изучал Солнечную систему, Галактику и Вселенную в дальнем инфракрасном диапазоне электромагнитных волн.



Для осуществления научной программы инфракрасному детектору телескопа требовалось охлаждение до сверхнизких температур, которые обеспечивал жидкий гелий. Это очень летучий газ, который постепенно стравливали в космос. В результате запас газа иссяк, и телескоп утратил свою работоспособность, несмотря на функционирование всех прочих систем. Создателям телескопа пришлось выбирать из двух вариантов: разбить аппарат о поверхность Луны или оставить его в свободном полете вокруг Солнца. Удар о Луну позволил бы получить больше знаний о составе грунта нашего естественного спутника, но эта работа требовала участия большой группы ученых, что не предусматривалось бюджетом миссии. Поэтому выбрали самый простой и дешевый вариант: отправили телескоп по орбите вокруг Солнца в виде редкого астероида. Теперь Земля может не ждать встречи с ним в ближайшие несколько миллионов лет.



Завершение полета ударом о Луну – чаще всего удел окололунных космических аппаратов. Например, таких как GRAIL. Пара небольших спутников кружила у нашего естественного спутника, собирала данные о неоднородностях гравитационного поля, пока, наконец, не завершила свой путь целенаправленным ударом о встречную гору. Такая «кровожадность» создателей космических аппаратов не случайна. Есть специальная норма, которой руководствуются создатели автоматических межпланетных станций – Доктрина планетной безопасности. Она гласит, что роботы, рассылаемые с Земли по соседним спутникам и планетам, не должны стать разносчиками земных микроорганизмов. Эта традиция идет еще от фантастических произведений, в которых наши микробы несли погибель марсианам. Есть в этой норме и прагматичный смысл: так будущие исследователи страхуются от ошибки обнаружения занесенной земной жизни на других планетах.


Ради соблюдения достоверности экспериментов, перед стартом станции дезинфицируются, но в земных лабораториях невозможно добиться 100 % стерильности. Космическая среда – не самое благоприятное место для жизни, но благодаря Apollo 12 и эксперименту «Биориск», мы знаем, что микробы в космосе могут выживать. Поэтому последним рубежом защиты является способ, который прикончит межпланетный зонд и нежелательных пассажиров на нем. По крайней мере, на это надеются, так как никакого другого способа избавиться от потенциально опасных землян нет.



С 2008 по 2015 год космический аппарат Messenger изучал ближайшую к Солнцу планету – Меркурий. Из-за своей близости к звезде планета воспринималась сухой и безжизненной, поэтому никто не опасался заражения меркуриан. Однако одним из сенсационных открытий станции стала вода на Меркурии. Она сохраняется в форме льда и только в полярных регионах, но земным бактериям нельзя оставлять ни малейшего шанса, поэтому, в лучших голливудских традициях, от них решили избавиться с помощью взрыва. Рабочая орбита Messenger поддерживалась за счет ракетного двигателя. Когда топливо подошло к концу, «последний выдох» маршевой двигательной установки направил космический аппарат на фатальную встречу с меркурианским горным хребтом. Столкновение на скорости 3 км/с не оставило никаких шансов возможным земным посланникам. Зато камерам Messenger удалось взглянуть на поверхность Меркурия с предельно близкого расстояния – около 40 километров.



Еще более драматические события развивались в 2003 году на расстоянии 600 миллионов километров от Солнца. Исследовательский зонд Galileo провел восемь лет, раскрывая тайны Юпитера и его многочисленных спутников. Именно для сохранения чистоты льдов Европы, Ганимеда и Каллисто ученые приняли решение отправить станцию в недра газового гиганта. Из-за сильной гравитации Юпитера скорость космического аппарата на его орбите очень высока. Galileo вращался вокруг планеты-гиганта на скоростях до 51 км/с. Примерно с такой же скоростью зонд и отправился навстречу своей пламенной смерти. Плотная атмосфера Юпитера и высокая скорость зонда привели к тому, что он полностью разрушился и практически испарился еще в верхних слоях атмосферы. Даже сейчас нам наверняка не известно, есть ли у Юпитера твердое ядро, а если есть, то тамошние условия несовместимы не только с жизнью, но и с нашими некоторыми познаниями о физике, поэтому опасений, что земные микроорганизмы загрязнят поверхность, ни у кого не возникло. Сейчас на околоюпитерианской орбите работает новая исследовательская станция Juno. Она должна как раз лучше понять глубинное строение планеты, но в будущем ее ждет судьба Galileo – уничтожение в атмосфере.



Конечно, странно выглядит такая манера разбрасываться функциональными и уникальными космическими аппаратами. Но есть у такой практики и рациональные причины. Любая научная миссия в межпланетном пространстве – всегда полностью дорогостоящее мероприятие. Выгода от таких миссий оценивается в новизне научных данных и значимости совершенных открытий. Когда всё, что можно изучить, изучено, и «корова перестает давать молоко», ставится вопрос о целесообразности дальнейшего финансирования проекта. Успешные миссии и так почти всегда перерабатывают заложенную в бюджет длительность программы и требуют дополнительного финансирования.


Хотя, иногда появляются дополнительные факторы: марсоход Opportunity колесит уже больше десяти лет во многом потому, что отважный путешественник стал любимцем общественности, и любые попытки чиновников прекратить его работу воспринимаются как покушение на национального героя. При этом на марсоходе не работает или почти выработала ресурс большая часть научных приборов, но пока камеры снимают, а колеса крутятся, путешествие будет продолжаться.


Можно представить, каково работать в научной команде, которая сконструировала космический аппарат, вывела на нужную орбиту и многие месяцы или годы работая «бок о бок», практически сроднилась со своим космическим питомцем. Если же пришло время прощаться, то единственным утешением может стать перспектива заняться ещё более интересными и амбициозными задачами в изучении Вселенной.


Иллюстрации

Рис. 1. Принцип работы спектроскопа на примере линии поглощения метана. Источник: NASA/Goddard Space Flight Center


Рис. 2. TIRVIM – спектрометр на автоматической межпланетной станции ExoMars Trace Gas Orbiter. Источник: ESA/Roscosmos/ExoMars/ACS/IKI


Рис. 3. Мачтовая камера марсохода Curiosity. Источник: NASA/JPL–Caltech/MSSS


Рис. 4. Колесо с фотофильтрами для панорамной камеры спускаемого аппарата Phoenix. Источник: NASA/University of Arizona/SSI Team


Рис. 5. Карта распределения тория по лунной поверхности по данным гамма спектрометра зонда Lunar Prospector. Источник: NASA/Lunar and Planetary Institute/Paul Spudis


Рис. 6. Облака Венеры в ультрафиолетовом свете в съемке Mariner 10. Искусственный цвет. Источник: NASA/GSFC


Рис. 7. Астероид 1998 QE2 с малым спутником в радиолуче радиотелескопа Arecibo. Источник: NASA/Arecibo Observatory/Ellen Howell


Рис. 8. Радиоактивное излучение поверхности планет. (Инфографика). Источник: NASA/JPL/UA/Виталий Егоров


Рис. 9. Радарная съемка Моря Безмятежности на Луне радиотелескопом Arecibo. Источник: Bruce Campbell (Smithsonian Institution, National Air and Space Museum); Arecibo/NAIC; NRAO/AUI/NSF


Рис. 10. Наземные испытания марсохода Sojourner. Этап исследования породы прибором APXS. Источник: NASA/JPL


Рис. 11. Спускаемый аппарат Chang’e 3 на поверхности Луны, съемка лунохода Yutu. Источник: Chinese Academy of Sciences / China National Space Administration / The Science and Application Center for Moon and Deepspace Exploration


Рис. 12. Размещение космического телескопа Gaia на разгонном блоке «Фрегат». Источник: ESA-CNES-Arianespace / Optique Vidéo du CSG – P. Baudon


Рис. 13. Панорама Меркурия от зонда Mariner 10, который 1973 году сумел картографировать 45 % поверхности. Источник: NASA/JPL/Mariner 10/Astrogeology Team/U.S. Geological Survey


Рис. 14. Подготовка к вибродинамическому тесту автоматической межпланетной станции Messenger в Лаборатории Университета прикладной физики им. Джона Хопкинса. Источник: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Рис. 15. Цветное изображение Меркурия, полученное широкоугольной камерой Messenger во время пролета у планеты в 2008 году. Источник: NASA/ Johns Hopkins University Applied Physics Laboratory/ Carnegie Institution of Washington


Рис. 16. Совмещенное изображение радарных данных о присутствии замерзшей воды у полюсов Меркурия (желтый цвет), полученное при помощи земного радиотелескопа Arecibo и панорамы Меркурия с зонда Messenger. Источник: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Рис. 17. Меркурий в «ложных цветах», полученных Messenger с использованием спектральных данных, которые не улавливает человеческий взгляд. Такая съемка позволяет лучше выявлять геологические подробности на поверхности планеты. Источник: NASA/Johns Hopkins University Applied Physics Laboratory/ Carnegie Institution of Washington



Рис. 18, 19. «Впадины» (hollows) Меркурия. Выемки в поверхности Меркурия, которые появились в относительно недавнее, по геологическим меркам, время. Вокруг впадин видны мелкие метеоритные кратеры, а на дне кратеров нет – это указывает на молодой возраст этих структур. Источник: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Рис. 20. Панорама ударного бассейна (большого кратера) Толстой, окруженного темными выбросами. Кратеры на Меркурии получают названия по именам людей искусства: художников, писателей, архитекторов и т. п. Съемка зонда Messenger. Источник: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Рис. 21. Выбросы воды (голубой цвет) и гидроксила (красный цвет) из лунного кратера по спектральным данным прибора NASA Moon Mineralogy Mapper, размещенного на борту индийского зонда Chandrayaan-1. Источник: ISRO/NASA/JPL–Caltech/Brown Univ.


Рис. 22. Карта неоднородностей гравитационного поля Луны по данным GRAIL. Источник: NASA/JPL–Caltech/MIT/GSFC


Рис. 23. Модульная конструкция зонда LADEE. Источник: NASA Ames


Рис. 24. Набросок астронавта Apollo 17 Юджина Сернана, изображающий свечение над горизонтом, наблюдаемое с орбиты с теневой стороны Луны. Источник: NASA


Рис. 25. Восход Земли над Луной в съемке орбитального зонда Kaguya. Источник: JAXA / NHK


Рис. 26. Спускаемый аппарат Chang’e 3 на поверхности Луны, съемка лунохода Yutu. Источник. CNSA/Chinese Academy of Sciences/ The Science and Application Center for Moon and Deepspace Exploration


Рис. 27. Луноход Yutu на поверхности Луны. Съемка спускаемого аппарата Chang’e 3. Источник: CNSA/Chinese Academy of Sciences/ The Science and Application Center for Moon and Deepspace Exploration


Рис. 28. Околоземная плазмосфера в съемке ультрафиолетового телескопа Chang’e 3. Источник: CNSA/Chinese Academy of Sciences/The Science and Application Center for Moon and Deepspace Exploration


Рис. 29. Роберт Бёме – основатель компании PTScientists, глава разработчиков лунохода Audi Lunar Quattro и спускаемого аппарата ALINA. Источник: Виталий Егоров.


Рис. 30. Место посадки Apollo 17 в съемке спутника LRO. Источник: NASA/GSFC/Arizona State University


Рис. 31. Марс в съемке околоземного космического телескопа Hubble. Источник: NASA/ESA/STScI/AURA/The Hubble Heritage Team


Рис. 32. Марсоход Opportunity на поверхности Марса в представлении художника. Источник: NASA/JPLCaltech/ Cornell Univ./ Arizona State Univ


Рис. 33. «Черника» (гематитовые конкреции), найденная марсоходом Opportunity на равнине Меридиана. Макросъемка, совмещенная с мультиспектральной съемкой мачтовой камеры. Источник: NASA/JPL–Caltech/Cornell Univ./Arizona State Univ


Рис. 34. Выход гипсовой жилы на поверхность Марса, обнаруженной Opportunity. Мультиспектральная съемка в естественных для человеческих глаз цветах. Источник: NASA/JPL–Caltech/Cornell Univ./ Arizona State Univ


Рис. 35. Карта путешествия марсохода Opportunity от места посадки до кольцевого вала кратера Индевор. Источник: NASA/JPL–Caltech/ Cornell Univ./Arizona State Univ


Рис. 36. Сферические конкреции «Кирквуд» на склоне кольцевого вала кратера Индевор. Источник: NASA/ JPL–Caltech/Cornell Univ./Arizona State Univ


Рис. 37. Панорама с «Лунохода-2», на которой виден след «девятого колеса» – одометра. Источник: ГЕОХИ РАН/Лаборатория сравнительной планетологии


Рис. 38. «Луноход-2» на Луне в съемке спутника LRO. NASA/GSFC/Arizona State University


Рис. 39. Следы марсохода Opportunity на поверхности Марса. Хорошо видны отметки, которые облегчают подсчет дальности пробега. Источник: NASA/JPL–Caltech/Cornell Univ./Arizona State Univ


Рис. 40. Водяной лед, обнаженный в месте недавнего падения небольшого метеорита в средних широтах Марса. Съемка спутника MRO. Источник: NASA/JPL/University of Arizona


Рис. 41. Обрушение на склоне северной полярной шапки Марса. Съемка спутника MRO. Источник: NASA/JPL/University of Arizona


Рис. 42. Марсианский ледник, прикрытый песчаными наносами, заметный в склоне оврага. Съемка спутника MRO. Источник: NASA/JPL/University of Arizona


Рис. 43. Фрагмент северной полярной шапки Марса в съемке ExoMars TGO. Источник: ESA/Roscosmos/CaSSIS


Рис. 44. Место столкновения спускаемого аппарата Schiaparelli с поверхностью Марса. Съемка спутника MRO. Источник: NASA/JPL–Caltech/ University of Arizona


Рис. 45. «Фобос-Грунт» – картина Анастасии Просочкиной.


Рис. 46. Естественный спутник Марса – Фобос. Съемка спутника MRO. Источник: NASA/JPL–Caltech/ University of Arizona


Рис. 47. Марсианский горизонт. Хорошо видна прослойка пыли, висящая в разреженной атмосфере. Взгляд с орбиты Mars Orbiter Mission. Источник: ISRO/ Mars Orbiter MissionИсточник: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Рис. 48. Спутник Марса Фобос на фоне горизонта планеты. Съемка Mars Orbiter Mission. Источник: ISRO/Mars Orbiter Mission


Рис. 49. Полный диск Марса. Съемка Mars Orbiter Mission. Источник: ISRO/Mars Orbiter Mission


Рис. 50. Подготовка к полету спускаемого аппарата InSight. Источник: NASA/JPL–Caltech/Lockheed Martin


Рис. 51. Состав научных приборов и инструментов спускаемого аппарата InSight. Источник: NASA/JPL–Caltech/Lockheed Martin


Рис. 52. Астероид Веста. Мультиспектральная съемка зонда Dawn. Источник: NASA/JPL–Caltech/UCLA/MPS/DLR/IDA


Рис. 53. Церера в съемке околоземного космического телескопа Hubble. Источник: NASA/ESA/ Southwest Research Institute/J. Parker


Рис. 54. Карликовая планета Церера. Мультиспектральная съемка зонда Dawn. Источник: NASA/JPL–Caltech/UCLA/MPS/DLR/IDA


Рис. 55. Гора Ахуна. Панхроматическая съемка зонда Dawn. Источник: NASA/JPL–Caltech/UCLA/MPS/DLR/IDA


Рис. 56. Кратер Оккатор и светлые отложения на его дне. Панхроматическая съемка зонда Dawn. Источник: NASA/JPL–Caltech/ UCLA/MPS/DLR/IDA


Рис. 57. Карбонатные отложения предполагаемого криовулкана на дне кратера Оккатор. Мультиспектральная съемка зонда Dawn. Источник: NASA/JPL–Caltech/UCLA/MPS/DLR/IDA


Рис. 58. Склоны кратера Оккатор с высоты около 50 км. Панхроматическая съемка зонда Dawn. Источник: NASA/JPL–Caltech/UCLA/MPS/DLR/IDA


Рис. 59. Разрушение кометы 73P/ Швассмана-Вахмана в съемке околоземного космического телескопа Hubble. Источник: NASA/ESA/APL/JHU/STScI/ H. Weaver/M. Mutchler/Z. Levay


Рис. 60. Комета (C/2012 S1) ISON в съемке околоземного космического телескопа Hubble. Источник: NASA/ESA/Planetary Science Institute/Hubble Comet ISON Imaging Science Team/J.-Y. Li


Рис. 61. Астероид P/2010 A2 после столкновения с другим астероидом. Съемка околоземного космического телескопа Hubble. (Искусственный цвет). Источник: NASA/ESA/UCLA/D. Jewitt


Рис. 62. Зонд Philae в расщелине кометы 67P/Чурюмова-Герасименко (справа). Съемка с расстояния 2,7 км камерой OSIRIS автоматической межпланетной станции Rosetta. Источник: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Рис. 63. Астероид Штейнс. Съемка с расстояния 800 км навигационной камерой Rosetta. Источник: ESA/Rosetta/NAVCAM


Рис. 64. Астероид Лютеция. Съемка камерой OSIRIS зонда Rosetta. Источник: ESA/Rosetta/ MPS/UPD/LAM/IAA/SSO/INTA/ UPM/DASP/IDA


Рис. 65. Марс в естественных для человеческих глаз цветах. Мультиспектральная съемка камерой OSIRIS зонда Rosetta. Источник: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Рис. 66. Ядро кометы 67P/ Чурюмова-Герасименко с расстояния 171 км. Съемка навигационной камерой Rosetta. Источник: ESA/Rosetta/ NAVCAM


Рис. 67. Ядро кометы 67P/ Чурюмова-Герасименко с расстояния 28 км. Съемка навигационной камерой Rosetta. Источник: ESA/Rosetta/ NAVCAM




Рис. 68, 69, 70. Ядро кометы 67P/Чурюмова-Герасименко с расстояния примерно 8 км. Съемка навигационной камерой Rosetta. Источник: ESA/Rosetta/NAVCAM


Рис. 71. Стена расщелины на ядре кометы 67P/Чурюмова-Герасименко, в которую попал зонд Philae. Самая близкая съемка поверхности кометы с расстояния около 2 метров. Источник: ESA/ Rosetta/Philae/CIVA


Рис. 72. Ядро кометы 67P/Чурюмова-Герасименко на фоне звезд. Операторы навигационной камеры Rosetta специально выбрали момент, когда ядро кометы закрыло солнце, чтобы солнечные лучи подсветили газ и пыль вокруг ядра. Длительная выдержка камеры (около четырех секунд) позволила увидеть и звезды на заднем плане. Источник: ESA/Rosetta/ NavCam


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Следующая
  • 0 Оценок: 0


Популярные книги за неделю


Рекомендации