Электронная библиотека » Виталий Егоров (Zelenyikot) » » онлайн чтение - страница 11

Текст книги "Делай космос!"


  • Текст добавлен: 29 сентября 2018, 15:40


Автор книги: Виталий Егоров (Zelenyikot)


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 14 страниц)

Шрифт:
- 100% +
7.2. Juno: что у бога под одеждой

Автоматическая межпланетная станция NASA Juno проработала на орбите у планеты-гиганта Юпитера два года. Несмотря на технические проблемы, станция собрала немало интересных данных, наснимала изобилие красочных фото и значительно приблизилась к целям своего исследования – узнать, что скрывается в облачных недрах самой большой планеты Солнечной системы.



Благодаря новой орбите, позволяющей тесные сближения и осмотр издалека, Juno получает уникальную информацию.


В отличие от большинства дальних космических станций, Juno оборудована солнечными батареями, которые раскинулись на огромную площадь 64 кв м. На расстоянии Юпитера поступление энергии от Солнца составляет примерно 4 % от земного уровня, поэтому солнечные батареи Juno вырабатывают примерно столько энергии, сколько выдаст обычная земная солнечная батарея для дачи площадью 3 кв м. Такое решение было вынужденным, так как у NASA закончился плутоний-238, который использовали для радиоизотопных термоэлектрических генераторов. Последние запасы изотопа, в 90-е годы купленные в России, ездят по Марсу в составе марсохода Curiosity и полетели ко внешним пределам Солнечной системы в зонде New Horizons. Сейчас NASA возобновило производство плутония-238, но временно перешло на солнечную энергию.


Juno находится на вытянутой орбите вокруг Юпитера. Ближайшая точка полета над облачным слоем планеты-гиганта проходит на высоте 4200 километров, а дальняя – на расстоянии 8 миллионов километров. Полный облет станция совершает за 53,5 земных дня. Предварительный план полета предполагал сокращение эллипса орбиты до расстояния от 4200 километров до 3 миллионов километров. План пришлось менять, когда Juno столкнулась с техническими проблемами. Заело два клапана на гелиевых баках наддува топливных баков. Двигатель не смог выполнить маневр торможения и понижения орбиты, поэтому пришлось оставаться на переходной. Благодаря новой орбите стало возможным продление миссии аппарата, так как на ней меньше воздействие радиационных поясов планеты, и бортовая электроника с научными приборами прослужит дольше. В начале июня 2018 года ученые продлили научную деятельность Juno до 2021 года, а чиновники выделили на это средства.



С лета 2016 года до мая 2018-го Juno совершила двенадцать оборотов по своей орбите и смогла передать новые данные о распределении атмосферных слоев планеты, проникнуть под облачное покрывало полюсов Юпитера, открыть новый радиационный пояс и узнать о неожиданной связи недр гиганта с его магнитным полем. Все желающие имеют доступ к архиву снимков цветной камеры Juno (www.missionjuno.swri.edu/junocam), и энтузиасты самостоятельно занимаются их обработкой, создавая настоящие художественные полотна.


Наиболее эффектные картины тайфунов в инфракрасном диапазоне получились у полюса Юпитера. Один центральный полярный тайфун планеты окружен восемью другими стабильными тайфунами, причем они плохо заметны при взгляде «невооруженным глазом» и находятся на глубине.



Юпитер – не единственная планета Солнечной системе с постоянными атмосферными структурами на полюсе. Венера обладает парой тайфунов, которую тоже рассмотрели на облачной глубине в инфракрасном диапазоне. Полюс Сатурна украшает правильный шестиугольник, и хотя точно не установлены причины его возникновения, но экспериментально подтверждена возможность формирования шести тайфунов вокруг одного центрального.


Принес Юпитер сюрпризы и у более изученного экватора. Оказалось, что светлая экваториальная полоса – это поток аммиака, который поднимается из более глубокого слоя.



Ранее считалось, что верхняя атмосфера планеты-гиганта на глубину до 100 километров однородна, теперь же ясно, что это не так.


Происхождение коричневых и оранжевых оттенков в атмосфере пока неизвестно, по одной из гипотез – это углеводороды, которые меняют свой цвет под воздействием солнечного ультрафиолета. Другое возможное соединение – гидросульфид аммония, желтоватая соль на основе азота, серы и водорода. Белые облака – это кристаллы аммиака. Скорость движения встречных потоков ветра достигает 360 км/ч.


Знаменитое Большое Красное пятно Юпитера – это крупный антициклонный шторм, который возникает на стыке встречных атмосферных потоков в южном полушарии, поднимается на восемь километров выше окружающих облаков и уходит в недра планеты на глубину до 300 километров. Красное пятно имеет около 16 тысяч километров в поперечнике, то есть больше диаметра Земли. Оно наблюдается более 200 лет и за это время приобрело более темно-оранжевый цвет, и сократило свои размеры вдвое, постепенно уменьшаясь и сегодня. По краю Красного пятна дуют ветры на скоростях до 430 км/ч, но внутри движение медленнее. Причины возникновения и длительной стабильности Большого красного пятна Юпитера неизвестны, возможно, это как-то связано с неоднородностью магнитного поля планеты.



Магнитное поле Юпитера сложнее в северном полушарии планеты, где между экватором и полюсом наблюдается обширная область высокой напряженности магнитного поля, которая падает к северному полюсу. Южнее экватора магнитное поле также имеет неоднородности, в том числе в районе Красного пятна. Как считается, магнитное поле возникает от токов, протекающих во внешнем ядре Юпитера, состоящего из жидкого «металлического» водорода, который формируется в условиях высокого давления на глубине ниже 15 тысяч километров.


Магнитное поле планеты-гиганта, взаимодействуя с солнечным ветром, а также плазмой и заряженными частицами, которые выбрасываются с естественных спутников, формирует мощные радиационные пояса. Радиационные пояса Земли пополняются в основном от Солнца, у Юпитера же главный источник ионизирующего излучения – выбросы газов с Ио и других больших спутников: Европы, Ганимеда, Каллисто. Ио располагается ближе всех к Юпитеру и является самым вулканически активным телом в Солнечной системе: постоянно там извергаются десятки вулканов, и Juno смогла увидеть их в инфракрасном диапазоне.


Пролетая на близком расстоянии от облачной поверхности Юпитера, Juno смогла уточнить характеристики известных радиационных поясов и даже обнаружить новый. Три луны планеты-гиганта вращаются внутри радиационных поясов, которые представляют угрозу для электроники и будущих покорителей космоса. Электроны и тяжелые заряженные частицы: протоны, ионы различных газов, обладающие высокой энергией и скоростью, вращаются вокруг планеты на расстояниях до 1 миллиона километров. Оказалось, и на близком расстоянии от планеты в плоскости экватора имеется радиационный пояс, наполненный ионами водорода, кислорода и серы, которые движутся на скоростях близких к скорости света. Ближе к полюсам ожидалась встреча с элементами радиационного пояса, наполненного легкими и быстрыми электронами. Но и там Juno зарегистрировала наличие тяжелых заряженных частиц, которые создают большой шум в приборах.



Хотя Юпитер – газовый гигант и не имеет твердой поверхности, он далеко не весь наполнен облачными вихрями. Так называемый «погодный слой» Юпитера, который демонстрирует эффекты атмосферной динамики, простирается вглубь примерно на 3 тысячи километров. Дальше высокое давление и температура превращает основной компонент атмосферы планеты-гиганта – водород – в электропроводящую жидкость. Благодаря электропроводности, жидкий «океан» Юпитера попадает в зависимость от мощного магнитного поля планеты, и ветер «погодного слоя» уже не властен над ним. Глубже 3 тысяч километров планета ведет себя как твердое тело, что установлено при помощи анализа гравитационного поля. Предполагается, что у Сатурна облачный «погодный слой» должен быть еще толще, а у коричневых карликов, которые тоже родственны Юпитеру, – наоборот тоньше.


Исследование Юпитера продолжается. Пока не обработаны все накопленные Juno данные, и миссия идет полным ходом, поэтому впереди новые открытия, разгадки и новые тайны из недр самой большой планеты Солнечной системы.


8. Плутон

8.1. New Horizons: свидание с Плутоном

14 июля происходила самая важная встреча 2015 года, а может и всего десятилетия. Космический аппарат NASA New Horizons находился в самой активной фазе своей миссии – встречи с Плутоном и изучении этой карликовой планеты с ее окрестностями. Космический аппарат за сутки промчался через систему Плутона и его спутников, собрал несколько гигабайт научных данных и улетел дальше – в пояс Койпера, облако Оорта и к другим звездам.



История Плутона началась еще до его открытия. В 40-е гг XIX в. ученые определили, что за орбитой Урана есть другие планеты. На это указывали его особенности орбитального вращения. В результате, почти сразу открыли Нептун, но поведение Урана указывало на то, что должен быть еще один возмутитель гравитационного спокойствия. Когда, наконец, в 1930 г. нашелся Плутон, ученые решили – вот оно! Очередной триумф науки. Правда, по первоначальным прикидкам выходило, что найденная планета должна быть никак не меньше Юпитера.


New Horizons


На протяжении всего XX в. масса Плутона пересчитывалась в сторону уменьшения, пока, наконец, ученые не пришли к выводу, что Плутон никакого отношения к поведению Урана не имеет. В конце прошлого века возможности астрономической техники позволили открыть целое семейство транснептуновых объектов. Большинство занептуновых тел оказались астероидами и кометами, которые наполняют пояс Койпера. Но некоторые тела оказались не многим меньше самого Плутона, поэтому у астрономов возникла проблема: объявлять ли их планетами или лишить этого звания Плутон?



В 2006 году вопрос решился не в пользу Плутона. С тех пор правильный ответ на вопрос «Сколько планет в Солнечной системе?» таков: «восемь планет и пять карликовых планет».


После «разжалования» интерес к Плутону только возрос. Он все еще остается самым крупным телом в поясе Койпера, и, кроме всего прочего, он вместе со своим спутником Хароном представляет собой уникальное в Солнечной системе тело – двойную планету. Ближайшая аналогия такой системы – Земля и Луна. На третьем месте – Солнце и Юпитер. Дело в соотношении масс основного тела и спутника. Фактически, Харон не вращается вокруг Плутона, а оба они вращаются вокруг точки пространства между ними, которая является центром их масс.


Физику такого вращения можно представить, наблюдая за метателем молота перед броском.


У Земли и Луны тоже имеется такой общий центр масс, но он не выходит за пределы Земли, поэтому мы не считаемся двойной планетной системой. Хотя астрономы пока так и не договорились о том, что считать двойной планетой.



В январе 2006 года к Плутону стартовала миссия New Horizons. Ее создатели стремились максимально сократить время достижения карликовой планеты, поэтому сделали относительно маленький и легкий аппарат около 650 килограмм (и стоимостью около 650 миллионов долларов), который сильно разогнали у Земли. На торможение топливо просто не предусматривалось, поэтому изучение Плутона предполагалось с пролета по прямолинейной траектории.


Причин такого решения несколько. Задачу выхода на орбиту можно решить различными путями, которые потребуют гораздо больше времени, увеличения массы аппарата, дополнительных средств на его разработку и управление. Плутон слишком легкий, чтобы его гравитация помогала выходу на орбиту, а атмосфера ничтожна, чтобы пытаться использовать ее для торможения. Ключевым параметром остается время полета. Можно было загрузить побольше топлива и разгонять не так быстро, используя экономичные траектории и гравитационные маневры, как, например, летела Rosetta или Juno. Но это потребовало бы намного больше времени.


Можно понять ученых, которые хотели поскорее увидеть далекий Плутон, но, мне кажется, девятилетний полет был удобен и чиновникам, распределявшим бюджет. Было бы гораздо сложнее объяснить им перспективность миссии, которая даст результат только через двадцать лет, когда большинство утвердивших ее людей уйдет, как минимум, на пенсию.



Несмотря на прямолинейность траектории New Horizons, из его полета удалось выжать дополнительную научную информацию – изучить систему Юпитера через год после старта (для сравнения: Juno, используя экономичные орбиты, добирался до Юпитера 5 лет). New Horizons пронесся на расстоянии 2,3 миллиона километров от планеты-гиганта и провел тренировку будущей основной работы у Плутона.


Особенно удачно получились упражнения со спутником Юпитера Ио. По многим параметрам он похож на Плутон, поэтому ему уделялось особое внимание.


Съемка «дальнобойной» камерой LORRI показала феноменальную картину извержения гигантского вулкана.



Вулкан Тваштар выбрасывает лаву на 300 километров. Но он там такой не один. Наблюдение теневой стороны Ио с длинной выдержкой тремя оптическими приборами New Horizons показало множество горячих пятен, выдающих необычайную геологическую активность спутника Юпитера.


Вулканическая активность Ио – результат гравитационного взаимодействия с Юпитером. Возможно, похожие процессы происходили и между Плутоном и Хароном, так что, недра карликовой планеты тоже могут быть разогреты, а на коре могут быть обнаружены прорывы горячих гейзеров. Если бы они были на Плутоне, то инфракрасные камеры их нашли бы.


Про оптические приборы New Horizons надо сказать отдельно. Главный его калибр – LORRI – это зеркальный телескоп схемы Ричи-Кретьена с диаметром главного зеркала в 20,8 см и фокусным расстоянием в 2630 мм. Поле его зрения 0,29 градуса – это значит, что он увидел бы только 1/2 Луны, если бы посмотрел с Земли. Камера LORRI оборудована одномегапиксельной CCD панхроматической матрицей. Наилучшее разрешение на поверхности Плутона, полученное этой камерой, составляет чуть более 100 м на пиксель.


Второе устройство Ralph представляет собой, фактически, два прибора, использующие один телескоп. Фокусное расстояние Ralph в четыре раза меньше LORRI, поэтому и все видимые объекты получаются хуже качеством в сравнении с «дальнобойной камерой». Зато широта видимого поля больше в 20 раз (5,7 градуса). К тому же, Ralph – это не камера, так как вместо матрицы используются сканирующие линейки.



Цветным сканером является прибор MVIC, который имеет семь сканирующих линеек, выполненных по технологии TDI CCD. Четыре цветных сканирующих линейки видят инфракрасный, красный, синий цвета, и свечение метана в ближнем инфракрасном диапазоне. То есть простым сложением полученных снимков невозможно создать изображение в видимом диапазоне.


LEISA имеет теллурид-кадмиево-ртутный инфракрасный датчик, на котором размещено 256х256 чувствительных элементов. Элементы расположены в линии по 256 штук и работают в режиме пуш-брум, то есть каждая линия датчика воспринимает свою длину инфракрасной волны (свой отдельный цвет). Это делает LEISA инфракрасным гиперспектрометром, так как он видит в большом спектральном разрешении. Такие возможности позволят провести качественное геологическое сканирование Плутона и определить породы, из которых сложена кора карликовой планеты.



После пролета Юпитера New Horizons был отправлен в гибернацию для сохранения ресурсов оборудования. Лишь изредка его пробуждали для перепроверки работоспособности и техобслуживания. Иногда будили его и для работы: снимать пролетающие в отдалении астероиды или Нептун.


В 2015 году наступила пора возвращаться к активной работе. Уже с января New Horizons приступил к съемке системы Плутона и Харона, но его разрешающая способность еще не дотягивала до возможностей космического телескопа Hubble. С этого околоземного телескопа еще в 2012 году открыли последний из известных пяти спутников Плутона, но ученые не оставляли надежды обнаружить еще спутники или кольца. Показательно, что стартовал New Horizons, когда у Плутона знали только три спутника.


5 мая 2015 года оптические возможности камеры LORRI сравнялись с возможностями Hubble, и с этого момента научная значимость New Horizons стала расти. Практически каждый новый снимок позволял уверенно говорить «этого мы не видели ранее». Хотя, на первый взгляд снимки так и оставались малоразличимыми. Только сократив расстояние в несколько раз, New Horizons стал радовать новыми подробностями.



Как и ожидалось, поверхность Плутона оказалась очень разнородной. Ярко белые пятна на нем соседствуют с угольно черными. Такой дисбаланс наблюдается не часто в Солнечной системе. Можно только вспомнить спутник Сатурна Япет, у которого ледяная поверхность частично засыпана пылью из кольца Сатурна. Или яркие пятна Цереры приходят на ум.


Ученым еще предстоит узнать происхождение различных типов поверхности и причины появления сложных форм рельефа. Но нынешняя гипотеза столкновения прото-Плутона и прото-Харона уже указывает на катастрофические события, которые здесь произошли на заре Солнечной системы.


На спутнике Плутона Хароне, тоже не все так просто. Он оказался очень похож на нашу Луну: у него тоже два полушария отличаются друг от друга, а на том, что развернуто к Плутону, тоже видно темное «море».


New Horizons должен был изучить не только поверхность Плутона и спутников, но искать атмосферу у обоих. Для этого аппарат оборудован ультрафиолетовым спектрометром Alice. Зонд наблюдал атмосферу Плутона, чтобы определить ее состав, происхождение, распространение и динамику потери. Для более подробного изучения атмосферы, траектория пролета предусматривала полет New Horizons через тень сначала Плутона, потом Харона. Это позволило не только искать горячие точки на телах карликовой планеты и спутника, но и увидеть рассеяние солнечного света газовой оболочкой этих тел. Alice сможет определить газовый состав атмосферы или атмосфер, если таковая найдется у Харона.



Помимо оптических средств изучения New Horizons оборудован приборами для регистрации плазмы, ионизированных частиц и космической пыли, на аппарате предусмотрено даже использование радара…



После пролета системы Плутона New Horizons постарается «перехватить» еще 1 или 2 астероида из пояса Койпера, чем немало расширит границы познания человечества об этом далеком и ледяном регионе Солнечной системы. Далее путь космического аппарата проляжет в облако Оорта, а через тысячи или десятки тысяч лет полета он, возможно, посетит и какую-нибудь соседнюю звездную систему. Только мы об этом никогда не узнаем. Энерговыделение радиоизотопного термоэлектрического генератора New Horizons продолжится еще около 15 лет, а потом людям придется с ним только попрощаться. Зато на просторах Вселенной останется частичка праха первооткрывателя Плутона Клайда Томбо, как единственное представительство человечества в дальнем космосе. (А плутоний-238 РИТЭГа New Horizons станет самой далекой частичкой России).


9. Будущие цели

9.1. Где и как будут искать внеземную жизнь после Марса

Свежие научные данные открывают новые перспективы поиска внеземной жизни в Солнечной системе. С интервалом всего в месяц опубликованы результаты исследований, которые добавляют еще два «водяных» космических тела. На сегодня жидкую воду на поверхности можно найти только на Земле; на Марсе местами появляются полоски влажного песка; на спутнике Сатурна Энцеладе бьют мощные гейзеры из подледного океана через трещины в ледяной коре; и на его соседе Титане извергаются ледяной лавой криовулканы. Сегодня в число объектов, где можно «потрогать» воду, добавляются спутник Юпитера Европа и карликовая планета Церера в Главном астероидном поясе.



Европа давно известна как водный мир, и она не первый год привлекает к себе внимание астробиологов. Но на пути исследователей, ищущих белковые формы жизни, стоит не только космическое пространство и высокая радиация радиационного пояса Юпитера, но и толстая ледяная кора. По разным оценкам теория «толстой коры» предполагает толщину льда от 30 до 100 километров. Современными технологиями это расстояние преодолеть сложнее, чем миллиард километров вакуума.

Нынешний взгляд на строение Европы сформирован по данным Voyager, Galilleo и наблюдениям с Земли. Европа – это самый маленький из четырех «галилеевых» спутников Юпитера. Она отличается высокой яркостью и гладкостью поверхности. Причина такого облика – в очень молодой, по космическим меркам, ледяной коре, которая обновляется за счет тектонических процессов, похожих на земные. Гладкость поверхности является одним из косвенных доказательств наличия подледного океана, глубина, которого может достигать 100 километров. Таким образом, на Европе воды в два раза больше, чем на Земле. Ниже идет каменная мантия, а в центре предполагается металлическое ядро.



Считается, что рыжие пятна и полосы на Европе – это результаты выбросов воды через трещины и проломы во льду, а цвет возникает от железа и серы, растворенной в подледном океане. Всего три месяца назад ученые полагали, что такие выбросы происходили в древности, а к нашему времени уже прекратились.


В отличие от Земли, чьи недра, как считается, в основном нагревает радиоактивный распад, главный «обогреватель» на Европе – это приливное воздействие Юпитера. Притяжение планеты-гиганта вынуждает спутник то менять свою форму на яйцевидную, с приближением к Юпитеру, то возвращаться в шаровую по мере отдаления. Разумеется, эти колебания совсем незначительны и разница «яйца» и шара – всего в 30 метров, но деформация в масштабе всего спутника вызывает немалый нагрев, способный поддерживать океан жидкой воды.


В декабре 2013 года многолетние наблюдения Европы при помощи телескопа Hubble и его ультрафиолетового спектрометра, принесли неожиданный результат – оказалось, что ледяной панцирь спутника не монолитен. В моменты отдаления от Юпитера во льду у Южного полюса Европы открываются трещины. Из них вырываются гигантские струи воды, которые поднимаются на высоту 200 километров, а затем опадают на поверхность. Мощность выброса впечатляющая – до 5 тонн воды в секунду. Для сравнения, интенсивность гейзеров Энцелада – 200 килограмм в секунду.



Правда, неизвестна частота выбросов на Европе: за 15 лет обнаружили всего два извержения, но мониторинг осуществлялся не в постоянном режиме, поэтому, возможно, они происходят чаще.


Несмотря на эпизодичность выбросов, новое знание открывает новые возможности в исследовании Европы и поиске жизни в подледном океане.


Ранее рассматривались различные концепции и идеи преодоления ледяной преграды. Среди предложений были весьма экзотичные, вроде атомного реактора, которым предполагалось проплавить скважину и запустить под лед подводную лодку. Но для начала рассматривалась идея небольшого импактора, который надеялись просто загнать поглубже в лед, без надежды докопаться до жидкого океана. Дело дошло даже до испытаний.



Исследованию Европы при помощи бура и поискам внеземной жизни посвящен низкобюджетный фантастический фильм «Europa Report». Хотя, единственной заслугой фильма я бы назвал качественно изображенную невесомость на борту корабля, нельзя не приветствовать попытку современного кинематографа шагнуть дальше Марса.


Благодаря нынешнему открытию Hubble, вообще отпадает необходимость как в пилотируемой экспедиции, так и буровых работах. Теперь достаточно спланировать беспосадочную миссию. Аппарат должен вращаться на низкой орбите, ожидая, когда произойдет очередное извержение. В этот момент ему достаточно пролететь через струю, чтобы собрать образцы свежей воды. Таким способом конечно не порыбачить, но следы микроорганизмов или их жизнедеятельности в воде (точнее это уже будет снег) обнаружить можно. Полученные результаты позволят оценить вероятность внеземной жизни и шансы присутствия гигантских разумных кальмаров в океане Европы.



После открытия Hubble NASA решило выделить средства на запуск исследовательского космического аппарата Europa Clipper. Эта тяжелая и дорогая миссия предполагается к запуску в 2022–2025 годы. Зонд будет вращаться вокруг Юпитера, периодически сближаясь с Европой, так как представляют опасность радиационные пояса, в которых находится ледяной спутник. Возможно, сделают и небольшой посадочный модуль для изучения льда с поверхности.


Европейской космическое агентство тоже готовит экспедицию к Европе и ее соседям – JUICE – ее предполагается отправить только в 2022 году, а долетит аппарат к 2030-му, поэтому интрига сохранится надолго. Россия как-то собиралась исследовать Европу с поверхности, но не нашла возможности создания аппарата с достаточной радиационной защитой, поэтому перенацелилась на Ганимед, но до запуска еще далеко.


Вообще Европа, кажется, рекордсмен дальнего космоса по количеству отмененных миссий к ней. Сейчас у Юпитера работает зонд NASA Juno, но исследование спутников в его научную программу не входит.


Впрочем, для поисков внеземной воды и жизни на спутнике уже не обязательно лететь к Юпитеру. Вторую сенсацию в 2014 году подарила Церера при помощи инфракрасного телескопа Herschel. Анализ этой карликовой планеты позволил ученым Европейского космического агентства обнаружить выбросы воды и там.


Правда, здесь выделение воды оказалось гораздо скромнее, всего 6 килограмм в секунду. Зато удалось их точно локализовать. Выбросы осуществляются из двух круговых структур на одной широте, но в разных полушариях.



В начале 2015 года орбитальный зонд NASA Dawn достиг Цереры и значительно продвинул наши познания об этой карликовой планете, обнаружив на ней выбросы воды из двух круговых структур на одной широте, но в разных полушариях. Сегодня исследования продолжаются, и открытия еще могут произойти, однако с поверхности Цереру пока изучить нельзя, посадочных миссий пока никто не готовит.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Следующая
  • 0 Оценок: 0


Популярные книги за неделю


Рекомендации