Электронная библиотека » Виталий Егоров (Zelenyikot) » » онлайн чтение - страница 6

Текст книги "Делай космос!"


  • Текст добавлен: 29 сентября 2018, 15:40


Автор книги: Виталий Егоров (Zelenyikot)


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 14 страниц)

Шрифт:
- 100% +
4.4. ExoMars TGO: разгадать вторую загадку Марса

Никто не знает, есть/была ли жизнь на Марсе. Это первая загадка. Примерно пятнадцать лет назад второй загадкой стала вода на Марсе. Сейчас ее уже многократно разгадали – воду нашли, картографировали, изучили с поверхности. Но нашли загадку не менее важную – марсианский метан.



Метан – это простое органическое соединение с одним атомом углерода и четырьмя – водорода. Метан играет большую роль в жизни человечества на Земле, так как это основной компонент природного газа. Все углеводороды называют органическими веществами, но далеко не всё относится к живым организмам. Однако сейчас считается, что до 90 % земного метана, в том числе запасенного в недрах, имеет биологическое происхождение. В то же время, в космосе его тоже немало. Метан регистрировали на кометах, в атмосфере Юпитера метан занимает массу равную трем планетам Земля, а на спутнике Сатурна Титане текут метановые реки в ледяных берегах.


ExoMars Trace Gas Orbiter


В 2003 году астрономы сообщили сенсационную новость – на Марсе найден метан. Более того, он был не равномерно «размазан» по всей атмосфере, а явно тяготел к определенным участкам планеты. Концентрация его была довольно ничтожна: от 250 до 10 частей на миллиард по разным оценкам. Общий объем выброса метана весной 2003 года примерно соответствовал 42 тысячам тонн газа, для сравнения: это примерно треть не самого крупного танкера-газовоза. То есть объемы скромные, и «Газпром» такие запасы заинтересовать не смогли, зато очень взволновали научный мир.



Метановые выбросы зарегистрировали одновременно американские и российские астрономы, а через год эти данные были подтверждены с марсианской орбиты спутником Mars Express, то есть ошибки быть не могло. Ученым потребовалось найти ответ: откуда он взялся. Объяснить всё марсианской жизнью – слишком заманчиво, но не достаточно аргументировано. Метан может быть результатом геофизической активности марсианских недр, а может вырабатываться в некоторых реакциях окисления железа… Однозначно можно было сказать, что этот метан по геологическим меркам выделился недавно, так как под солнечным ультрафиолетом органические соединения в атмосфере Марса распадаются за несколько сотен лет.



Пока ученые думали, откуда метан появился на Марсе, он пропал. То есть практически совсем. То ли рассеялся в атмосфере до ничтожного значения, то ли исчез по другой причине, оставив концентрации, которые едва регистрировались доступными на тот день приборами: телескопами с Земли и спектрометрами станции Mars Express.


Ученые приняли вызов, и к 2012 году снарядили марсоход Curiosity, оборудовав его чутким газоанализатором, способным определять метан атмосфере. Правда, послали его не туда, где наблюдались выбросы метана, так как главными в проекте были геологи, а у них нашлись свои цели в кратере Гейла.


Успешно высадившись и освоившись на Марсе, Curiosity провел первые исследования и признал, что метана на планете нет. Точнее нет в той концентрации, которая была доступна приборам аппарата. Астрономы с Земли практически подтвердили его результаты: метана и правда было совсем мало, на пределе разрешающей способности земных спектрометров.


Пока исследователи размышляли о марсианском «метане Шредингера», прошел еще год и Curiosity прислал новые данные – таинственный газ снова появился в кратере Гейла… А потом снова пропал.


Пока американские ученые пытались высмотреть метан с телескопов с Земли и гонялись за ним на марсоходе, европейские и российские планетологи решили взяться за дело по-своему. Получив колоссальный опыт совместной эксплуатации космический аппаратов Mars Express и Venus Express и значительно доработав исследовательские приборы, они решили искать марсианский метан с орбиты. Как уже упоминалось, Mars Express регистрировал метан, но его разрешающая способность по распределению атмосферных газов оставляла желать лучшего. Набравшись опыта, россияне и европейцы решили подготовить аппарат, который сможет искать метан с точностью не менее чем в тысячу раз превышающую возможности Mars Express. Так родилась идея космического аппарата ExoMars Trace Gas Orbiter (TGO).



Точнее, идея у европейцев появилась давно, но она переживала нелегкую судьбу, пока Европейское космическое агентство не подписало в 2013 году договор с Роскосмосом.



Сотрудничество по «ЭкзоМарсу» строится по принципам уже отработанным на «Экспрессах»: Россия обязалась предоставить две ракеты «Протон-М» для запуска спутника TGO в 2016-м и марсохода Paster в 2020-м году. На аппарате TGO были установлены российские научные приборы вместе с европейскими.


Первым рейсом отправился спутник Trace Gas Orbiter. Он сбросил тестовый спускаемый модуль Schiaparelli, а затем полтора года выходил на рабочую орбиту и уже весной 2018 года занялся разгадыванием «метановой головоломки». Заодно он сможет определить низкие концентрации других газов в атмосфере Марса, если они там есть. Например, если местные вулканы не совсем еще окаменели, и хотя бы немного сочатся вулканическими газами, TGO должен найти эти газы и определить их источники.


Вообще, если первое десятилетие XXI века было посвящено изучению геологии Марса как с орбиты, так и с поверхности, то сейчас уже идет «атмосферный» этап. В 2014 году к Марсу прибыли американский аппарат MAVEN и индийский Mars Orbiter Mission.


Аппарат NASA «заточен» под изучение атмосферы и магнитосферы Марса, но он занимается верхними слоями и их взаимодействием с космическим ветром. То есть MAVEN должен ответить на вопрос «как Марс теряет свою атмосферу», в то время как ExoMars TGO будет искать возможные источники ее пополнения из недр планеты.


Индийские ученые тоже заинтересовались метановым вопросом и даже снарядили отдельный прибор для его поиска, но его качество оставляет желать лучшего. Индийцы здраво оценили свои возможности в межпланетных исследованиях и подчеркнули более демонстрационное значение своего аппарата.



ExoMars TGO – это трехметровый четырехтонный космический аппарат, который несет на борту 600 килограммовую «летающую тарелку» Schiaparelli и четыре основных научных прибора.


Schiaparelli потребовался европейцам, чтобы научиться садиться на Марс. Ранее у них был неудачный опыт посадки в 2003 году – небольшой аппарат Beagle-2 ушел в атмосферу и не подал больше признаков жизни. Как оказалось, Beagle-2 все-таки сумел мягко сесть, но прекратил работу, так и не выйдя на связь. Теперь же ESA попыталось повторить опыт на более высоком уровне: вооружив аппарат датчиками, которые будут собирать массу информации во время снижения и посадки.



Следующий этап проекта ExoMars – посадку марсохода, берет на себя Роскосмос. В далеком будущем, возможно, Европа замахнется на новую амбициозную задачу – доставку грунта с Марса.


На Schiaparelli разместили и климатическую исследовательскую станцию, но она должна была проработать всего неделю – пока не сядут аккумуляторы. Долговременных источников питания для аппарата не предусмотрено. Еще одна любопытная деталь Schiaparelli – лазерный уголковый отражатель. Спутник ExoMars TGO не оборудован лазером, поэтому уголковый отражатель Schiaparelli точно так же оставили на будущее.


Для Schiaparelli выбрали место посадки на равнине Меридиана. На ней уже работает марсоход Opportunity, и эта посадка стала самым тесным сближением на Марсе двух посадочных аппаратов. Несмотря на «близость», реально их будут разделять сотни километров, поэтому «Оппи» не сможет изучить место неудачной посадки «Скиппи».


Два главных научных прибора ExoMars TGO: европейский NOMAD и российский ACS являются блоками нескольких спектрометров и частично дополняют друг друга, но захватывают разные диапазоны волн инфракрасного света. Именно на них возлагается главная задача миссии – картография газов атмосферы Марса.



Оба они пользуются одним методом – наблюдают атмосферу на просвет. То есть анализируют свет солнца, погружающегося в атмосферу Марса на линии горизонта. Этот метод и высокое спектральное разрешение приборов позволяет не просто определять газы в атмосфере, но даже отличать их изотопный состав. А это ключевой показатель, который в теории позволит отличить биогенный газ от геологических выбросов. Разница только – в атомном весе углерода.


На Земле жизнь предпочитает выделять метан с легким изотопом С-12, потому что его легче связывать с водородом в результате биохимических процессов. Геологические процессы не так избирательны, и в них С-12 и С-13 формируют метан примерно в равных пропорциях. Помимо метана на биологическую активность может указывать аммиак, который точно так же выделяется живыми организмами в результате жизнедеятельности. Пока аммиака на Марсе не находили, но если он хоть немного содержится в атмосфере, то TGO его найдет. Разумеется, ученые знают только земную жизнь и, фактически, ее признаки ищут на Марсе, но за неимением альтернатив приходится «искать там, где светлее». В свое оправдание они говорят, что законы физики и химии на наших планетах работают одинаково, геологическое строение похожее, а когда-то и условия были схожи, поэтому нет оснований полагать, что эволюция вещества из неживого в живое проходила как-то иначе.



К слову сказать, до конца не ясно, как на Земле-то проходил процесс зарождения жизни, и это, кстати, важный аргумент в пользу исследования Марса. Казалось бы, зачем тратить сотни миллионов долларов, чтобы найти того, кто напустил газу на другой планете? А вот для того – чтобы понять, как мы на нашей-то планете оказались.


Сейчас уже мало кто из ученых всерьез полагает, что мы можем оказаться марсианами-переселенцами, в виде бактерий добравшиеся на метеоритах с Марса на Землю. Скорее возможен обратный вариант – найдя на Марсе местную жизнь придется доказать, что она действительно местная, а не залетела с Земли. Но все-таки, Марс является такой относительно независимой лабораторией, где вдалеке от Земли мог проводиться повторный природный эксперимент по созданию живой материи, способной к осознанию себя и окружающего мира, запуску космических аппаратов и написанию постов.


Кроме оптических спектрометров TGO несет на борту еще камеру CaSSIS, которая может снимать поверхность с разрешением до 5 метров, и проводить стереосъемку местности. Предыдущий аппарат ESA Mars Express уже много лет ведет свои наблюдения за поверхностью. Разрешение его камер – до 20 метров, то есть снимки TGO будут охватывать более узкие полосы местности, зато детали поверхности видны будут лучше. Снимки этой камеры будут использованы, в том числе для выбора места посадки будущего марсохода Paster, который должен стартовать в 2020-м году.


Четвертый прибор TGO снова российский – нейтронный детектор FREND. Его задача – картографирование содержания воды в грунте Марса на глубине до одного метра.


Подобный прибор того же Отдела ядерной планетологии Института космических исследований РАН у Марса уже летает, но разрешение его карт очень низкое – фактически равное высоте полета спутника.



HEND – летает на американском аппарате Mars Odyssey с 2001 года. Грубо говоря, он ловит все нейтроны, которые вылетают с поверхности, независимо от угла отражения. Поэтому очень сложно определить, откуда какой нейтрон прилетел, да и карты распределения воды, которые помог составить HEND, слишком мелкого масштаба.


На орбите Луны, на спутнике NASA LRO, протестировано следующее поколение прибора – LEND. Он уже имеет так называемый «коллиматор» – маску, которая отсекает часть нейтронов, позволяя принимать их только с узкого участка местности. Этот коллиматор уже наделал шуму в лунной геологии, найдя воду там, где ее быть не должно. Так что, наверняка найдется что-то интересное и на Марсе, осталось только подождать несколько лет, пока наберется необходимый объем данных.


4.5. Schiaparelli: посадка на Марс для начинающих

Спускаемый зонд Европейского космического агентства Schiaparelli был потерян 19 октября 2016 года в результате программной ошибки системы управления радара-высотомера.


Schiaparelli


Зонд должен был научить Европейское космической агентство садиться на Марс… но не научил. И эта авария стала далеко не первой в попытках землян достичь поверхности «Красной планеты».



Сейчас на Марсе действуют два космических аппарата: марсоходы Opportunity и Curiosity. В предыдущие годы успешно потрудились еще два марсохода и четыре посадочные станции. Восемь аппаратов сели неудачно, разбившись о поверхность Красной планеты, или частично неудачно, проработав около минуты. Одна посадочная станция пролетела мимо Марса. То есть, счет между землянами и «ПВО марсиан» почти равный, но все же земляне пока проигрывают. Все полностью успешные посадочные миссии на Марсе оказались американскими.


С 1970-х годов инженерам NASA везло – почти все посадки на «Красную планету» удавались им с первой попытки, за одним редким исключением.



В 1971 году Марса достигло первое изделие человеческих рук: советский марсоход «Марс-2». Из-за ошибки определения угла входа в атмосферу скорость посадки была такой, что изделие разбилось о поверхность планеты и не смогло принести никакой научной пользы.



Брат-близнец «Марс-3» оказался более успешен – он благополучно спустился и сел, успел даже приступить к работе, но вышел из строя примерно через минуту. Пара этих аппаратов СССР должна была отработать технологию посадки на Марс, изучить свойства грунта: плотность, структуру, химический состав. Это исследование рассматривалось как предварение более сложных программ: отправки мощного марсохода, а затем и пилотируемой высадки.


Частично с задачей удалось справиться: «Марс-3» показал, что садиться можно, и что Марс столь же твердый, как и Луна. Аппарат заложил практически классическую схему спуска, которая во многом повторялась вплоть до Curiosity, хотя в деталях были и отличия.


Как и большинство посадочных марсианских модулей, «Марс-3» входил в атмосферу планеты без предварительного торможения на перелетной скорости 5,8 километров в секунду. Первый удар атмосферы принимал на себя тормозной конус, который NASA называет Heat Shield, «Тепловой Щит». Название неслучайно, поскольку даже разреженная атмосфера Марса на такой скорости нагревает его до температуры свыше 1500 градусов Цельсия.


Форма теплового щита рассчитана так, что трение атмосферы незначительно, а нагрев происходит из-за ударной волны, которую формирует перед собой щит. Сильно сжатый газ нагревается и передает температуру поверхности щита. Материал поверхности щита начинает испаряться и тем самым охлаждать более глубокие слои.


Космический аппарат ненадолго окутывает облако плазмы. Через плазму не проходят радиоволны, поэтому на самом жарком этапе спуска поддерживать связь с аппаратом невозможно. Но из-за расстояния между нашими планетами и задержки времени поступления сигнала на 7–10 минут, управлять посадкой с Земли все равно не получилось бы.


Тормозные конусы имелись у всех аппаратов, пытавшихся сесть на Марс. Но у всех, кроме советских «Марсов», щиты составляли часть полной теплозащитной капсулы, в которой прятались марсоход или модуль. На наших же аппаратах щит и «скорлупа» крепились отдельно.



Когда гиперзвуковая скорость падает до сверхзвуковой, щит перестает быть эффективным. Сразу от него не избавляются, но начинается этап парашютного торможения: сначала выпускается тонкий вытяжной, а за ним уже и основной парашют. Атмосферный поток еще высок – скорость составляет около 1500 километров в час, поэтому парашют называют сверхзвуковым. Чтобы поток не порвал резко раскрывшийся купол, используют технологию разрифовки: стропы заплетают таким образом, чтобы раскрытие было постепенным.


Чем шире раскрывается парашют, тем больше падает скорость, но атмосфера Марса настолько разрежена, что ее плотности не хватает для обеспечения мягкой посадки. Впрочем, и на Земле парашюта для мягкой посадки недостаточно, и требуются двигатели мягкой посадки.



На Марсе парашют позволяет сбрасывать скорость примерно до 300 километров в час, и требуется еще какое-то инженерное решение, чтобы доставить в сохранности полезную нагрузку на поверхность. Здесь уже открывается больше простора для творчества инженеров и конструкторов.


Советские «Марсы» имели довольно малую массу для посадочных станций, поэтому обходились небольшими тормозными пороховыми двигателями. Причем, у «Марса-2» и «Марса-3» двигателей было два: один уводил парашют в сторону, а второй – «подвешивал» яйцеобразную капсулу на цепях над поверхностью планеты.


Последние метры «Марсы» пролетали в свободном падении, и удар на себя принимала толстая пенопластовая «скорлупа». Из-за смещенного центра масс, по принципу неваляшки, «яйцо» стабилизировалось, и верхняя часть кожуха отстреливалась в сторону. Затем раскладывались «лепестки», которые позволяли развернуть посадочную станцию вертикально, чтобы антенны могли передать данные на спутник.


У «Марса-6» в 1973 году был один твердотопливный двигатель мягкой посадки, который сразу и гасил скорость, и отводил парашют. Точнее, должен был это делать. Что с ним произошло на самом деле, мы не знаем – передача данных с него прервалась примерно на этапе отделения парашюта, и сам аппарат на поверхности Марса пока не обнаружен. Существует гипотеза, что, как и в случае со Schiaparelli, к аварии привела неверная оценка расстояния до поверхности.


Передача данных в полете, реализованном на «Марсе-6» – это тоже результат опыта «Марса-3». «Третий» молчал, как и задумывалось, но специалисты на Земле поняли, что лучше бы он вещал на протяжении всей посадки. И хотя «Марс-6» отключился, не добравшись до поверхности, поработать он все же успел: провел первый непосредственный анализ атмосферы Марса и передал результаты на Землю. Напарник «Марса-6», «Марс-7», промахнулся мимо планеты, и его сигналы какое-то время регистрировались орбитальной станцией.



Аппараты Viking-1 и Viking-2 от NASA в 1976 году использовали более сложную систему посадки – их уже оснастили жидкостными ракетными двигателями. Жидкостный двигатель позволяет автоматике контролировать импульс, добиваясь плавности спуска и меньшей скорости столкновения с поверхностью. При этом весь процесс посадки для Viking протекал легче, поскольку скорость входа аппаратов в атмосферу составляла всего 3 километра в секунду. Межпланетные аппараты сначала выходили на околомарсианскую орбиту, выбирали подходящее место, и только потом посадочные модули спускались в атмосферу. Благодаря такой схеме на поверхность «Красной планеты» удалось доставить массивные аппараты, которые проработали несколько лет и провели массу экспериментов, в том числе по поиску воды и жизни (правда, не нашли).



Следующая посадка произошла целых двадцать лет спустя, в 1997 году. Спускаемый аппарат Mars Pathfinder должен был протестировать несколько технологий, в том числе способ торможения при помощи «воздушных мешков». Первая часть спуска проходила по привычной для NASA схеме, в капсуле. А уже из капсулы на привязи вытягивался спускаемый аппарат. В нескольких десятках метров над поверхностью срабатывали твердотопливные тормозные двигатели. Вокруг аппарата надувались баллоны из прочной ткани, которую используют для создания скафандров.


Модуль в «пузырях» ударялся о поверхность и сотни метров скакал, подобно мячу. В конце концов, баллоны сдувались, и Mars Pathfinder раскладывался по хитрой схеме, обеспечивающей вертикализацию аппарата, на каком бы боку ни оказался аппарат в конце движения.


Впервые эту технологию с «лепестками» применили еще в СССР для посадки «Луны-9», а позже она пригодилась для посадки марсоходов Spirit и Opportunity.


Первый европейский посадочный зонд Beagle 2 в 2003 году садился похожим образом, только он умудрился обойтись даже без порохового тормозного двигателя. Спускался аппарат в капсуле и на парашюте, а потом тоже сразу скакал как мячик. Beagle 2 сел практически удачно, даже сумел немного поработать на поверхности, подобно «Марсу-3». Только на Земле узнали об этом спустя десять лет после посадки.


Для нормальной работы Beagle 2 надо было развернуть 4 лепестка с солнечными батареями и одну панель с приборами. Аппарат успел раскрыть только две солнечные батареи и остановился навсегда по неизвестной причине. Скорее всего, его аккумулятор сел, не успев зарядиться от Солнца, но это только предположение. Beagle 2 не передал данные о себе, поэтому, с точки зрения ESA, он ушел в атмосферу и навсегда замолчал. Нашли Beagle 2 только в 2013 году по снимкам марсианского спутника MRO.



В 1999 году NASA потеряло свою единственную посадочную миссию на Марсе – аппарат Mars Polar Lander. К его модулю прилагались два отделяемых импактных (ударных) зонда Deep space 2. Предполагалось, что они будут садиться и работать самостоятельно. И хотя потеряли все вместе, можно считать эту неудачу сразу за три. Картина выглядела так же, как и у других аварий на посадке: аппараты ушли в атмосферу – и тишина. Южный полюс Марса оказался недостижим, даже следов миссии не нашли.


В 2009 году попытку покорения полюса, на этот раз Северного, повторили. Конструкция Phoenix во многом повторяла Polar Lander, только с учетом прежних ошибок. Это была спускаемая платформа, похожая на Viking, только спускалась она без торможения на орбите. Полет завершился удачной посадкой. Было изучено северное приполярье и найдена марсианская вода.



В 2012 году марсоход Curiosity стал самым тяжелым объектом, который удалось благополучно доставить на Марс. Мало того, что он был вдвое тяжелее средней массы других марсианских посадочных модулей, Curiosity отличался еще и высочайшей конструктивной сложностью, поэтому эквилибристика в надувном мяче ему не подходила, и даже ронять его со спускаемой платформы на высоте пары метров было нельзя. Сесть мягко платформа может, но на последних метрах реактивная струя поднимает слишком много пыли. Поэтому даже на легких аппаратах конструкторы стараются ставить как можно больше сопел, чтобы распределять реактивный поток.


Для посадки Curiosity пришлось разрабатывать новую сложнейшую конструкцию, которая оставляла ракетные двигатели высоко наверху и вместе с ними поднимала мастерство посадки до фантастического уровня – SkyCrane.



По сути технология и название SkyCrane заимствованы у вертолетчиков. Именно там принцип «подлететь, зависнуть и погрузить» применяется давно и успешно. Только пропеллер на Марсе бесполезен, поэтому пришлось полагаться на ракетные двигатели. Сейчас взлетающей, зависающей и мягко садящейся ракетой никого не удивишь, а в середине 2000-х – это было весьма рискованное решение. Думаю, инженеры Jet Propulsion Laboratory потратили немало трудов, чтобы убедить всех чиновников NASA в успехе своего плана.


Наконец, вторая европейская попытка посадки на Марс – Schiaparelli, который опирался, кажется, на весь предыдущий опыт посадок на Марс: и на свой, и на чужой. В целом, посадочная схема повторяла схему Phoenix или Viking, только вместо ног удар приходился на широкий поддон из алюминиевых сот, что напоминает советские «Марсы».


Памятуя о неудаче Beagle 2, инженеры ESA разработали модуль «из целого куска», без каких-либо подвижных механизмов, антенн или панелей. От солнечных батарей вообще отказались.


Странно, что при этом решили обойтись без воздушных мешков, хотя они практически успешно посадили Beagle 2. Видимо, когда в 2013 году нашли пропавший зонд, разработка Schiaparelli дошла уже до того уровня, когда что-либо переделывать было поздно. Тем более, как показывают предварительные сообщения, сбой в посадке Schiaparelli случился на программном уровне, а не в «железе».


В целом, опыт полетов и посадок на Марс говорит о том, что это дело сложное, но возможное. И опыт здесь является определяющим фактором – частота попыток повышает шансы на успех, и даже наземной отработки с испытаниями всех возможных сценариев никогда не бывает мало.


В будущем, вероятно, полеты на Марс дополнятся новыми приемами и технологиями. И в России, и в США не первый год испытываются надувные тормозные щиты. Космопромышленник Илон Маск собирается сажать на поверхность Марса корабль BFR массой в десятки тонн при помощи аэродинамической посадки по схеме Space Shuttle. Сотрудники РКК «Энергия» тоже рассматривали такую схему еще в 1980-х – 1990-х годах и сочли ее вполне перспективной.



Из более реальных проектов в ближайшие годы стоит ожидать посадку марсохода Paster в рамках российско-европейского проекта ExoMars – там будет применена платформа. Также нас ждет посадка американского марсохода MSL (Mars Science Laboratory) 2020 – SkyCrane. И, возможно, посадка китайского марсохода – как именно ее будут осуществлять, пока неизвестно, но, скорее всего, либо на платформе, либо по схеме Spirit/Opportunity.


Глава первоначально подготовлена для научно-популярного портала N+1, и опубликована под названием «9:8 в пользу марсиан. Почему так трудно совершить успешную посадку на Красной планете».

Страница: https://nplus1.ru/material/ 2016/10/27/mars-landing-difficulties



Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Следующая
  • 0 Оценок: 0


Популярные книги за неделю


Рекомендации