Текст книги "Философия науки и техники"
Автор книги: Вячеслав Стёпин
Жанр: Философия, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 12 (всего у книги 36 страниц) [доступный отрывок для чтения: 12 страниц]
В свете сказанного можно уточнить часто используемое понятие «открытие» и противопоставить ему такие термины, как «выяснение» или «обнаружение». Мы можем выяснить род занятий нашего знакомого, можем обнаружить, что он лётчик. Это из сферы ликвидации незнания. Галле не открыл, а обнаружил планету Нептун. Но наука открыла сумчатых животных, открыла явление электризации трением, открыла радиоактивность и многое другое.
Открытия подобного рода часто знаменуют собой переворот в науке, но на них нельзя выйти путём целенаправленного поиска; из знания в неведение нет рационального, целенаправленного пути. С этой точки зрения, так называемые географические открытия нередко представляют собой, скорее, выяснение или обнаружение, ибо в условиях наличия географической карты и системы координат вполне возможен деловой вопрос о наличии или отсутствии островов в определённом районе океана или водопадов на той или иной ещё неисследованной реке. Точнее сказать поэтому, например, что Ливингстон не открыл, а обнаружил или впервые описал водопад Виктория.
Итак, открытие – это соприкосновение с неведением. Специфической особенностью открытий является то, что на них нельзя выйти путём постановки соответствующих деловых вопросов, ибо существующий уровень развития культуры не даёт для этого оснований. Принципиальную невозможность постановки того или иного вопроса следует при этом отличать от его нетрадиционности в рамках той или иной научной области. Легче всего ставить традиционные вопросы, которые, так сказать, у всех на губах, труднее – нетрадиционные. Абсолютное неведение находится вообще за пределами нашего целеполагания. Но есть смысл говорить о неведении относительном, имея в виду отсутствие в границах той или иной специальной дисциплины соответствующих традиций. Надо сказать, что практически такого рода относительное неведение часто ничем не отличается от абсолютного и преодолевается тоже побочным образом.
Все приведённые выше примеры относились в основном к сфере эмпирического исследования. Это вовсе не означает, что на уровне теории мы не открываем новых явлений. Достаточно вспомнить теоретическое открытие позитрона Дираком. Об открытиях такого рода можно говорить тогда, когда построенная теоретическая модель оказывается гораздо богаче, чем мы предполагали, и из неё следуют неожиданные выводы.
Традиции и новацииКак же возникает новое в ходе функционирования науки и какую роль при этом играет взаимодействие традиций? Очевидно, что огромная масса новых научных знаний получается в рамках вполне традиционной работы. Но как сочетать эту традиционность с принципиальными сдвигами, которые сами участники процесса нередко воспринимают как революции? Постараемся показать, что и здесь традиции играют немаловажную роль.
Наиболее простая концепция, претендующая на объяснение коренных новаций в развитии науки, – это концепция «пришельцев». Нередко она напрашивается сама собой. Вот что пишет известный австралийский геолог и историк науки У. Кэри об основателе учения о дрейфе континентов Альфреде Вегенере: «Вегенер изучал астрономию и получил докторскую степень, но затем он перенёс главное внимание на метеорологию и женился на дочери известного метеоролога В.П. Кеппена. Я подозреваю, что будь он по образованию геологом, ему никогда бы не осилить концепцию перемещения материков. Такие экзотические „прыжки“ чаще всего совершаются перебежчиками из чуждых наук, не связанными ортодоксальной догмой».
Концепция «пришельцев» в простейшем случае выглядит так: в данную науку приходит человек из другой области, человек, не связанный традициями этой науки, и делает то, что никак не могли сделать другие. Недостаток этой концепции бросается в глаза. «Пришелец» здесь – это просто свобода от каких-либо традиций, он определён чисто отрицательно, тем, что не связан никакой догмой. Рассуждая так, мы не развиваем Куна, а делаем шаг назад, ибо начинаем воспринимать традицию только как тормоз: отпустите тормоза и сам собой начинается спонтанный процесс творчества. Но Кун убедительно доказал, что успешно работать можно только в рамках некоторой программы.
Другое дело, если «пришелец» принёс с собой в новую область исследований какие-то методы или подходы, которые в ней отсутствовали, но помогают по-новому поставить или решить проблемы. Здесь на первое место выступает не столько свобода от традиций, сколько, напротив, приверженность им в новой обстановке, а «пришелец» – это, скорее, прилежный законопослушник, чем анархист.
Вот что пишет академик В. И. Вернадский о Пастере, имея в виду его работы по проблеме самозарождения: «Пастер выступал как химик, владевший экспериментальным методом, вошедший в новую для него область знания с новыми методами и приёмами работы и увидевший в ней то, чего не видели в ней ранее её изучавшие натуралисты-наблюдатели». Все очень похоже на высказывание У. Кэри о Вегенере с той только разницей, что Вернадский подчёркивает не свободу Пастера от биологических догм, а его приверженность точным экспериментальным методам.
Этот второй вариант концепции «пришельцев», несомненно, представляет большой интерес. Но если в первом случае для нас важна личность учёного, освободившегося от догм и способного к творчеству, то во втором – решающее значение приобретают те методы, которыми он владеет, те традиции работы, которые он с собой принёс, сочетаемость, совместимость этих методов и традиций с атмосферой той области знания, куда они перенесены.
Вернёмся к Пастеру. Сам он о своей работе по проблеме самозарождения писал следующее:"ѕ Я не ввожу новых методов исследования, я ограничиваюсь только тем, что стараюсь производить опыт хорошо, в том случае, когда он был сделан плохо, и избегаю тех ошибок, вследствие которых опыты моих предшественников были сомнительными и противоречивыми". И действительно, Пастер сплошь и рядом повторяет те эксперименты, которые ставились и до него, но делает это более тщательно, на более высоком уровне экспериментальной техники. Он, например, не просто кипятит ту или иную питательную среду, но точно при этом фиксирует время и температуру кипения. Но это значит, что перед нами некоторый «монтаж»: биологический эксперимент «монтируется» с занесёнными из другой области точными количественными методами. Правда, в основе этого монтажа лежит не просто перебор различных возможных вариантов, а «миграция»самого учёного, его переход в другую область.
А можно ли аналогичным образом объяснить успех Вегенера? Какие традиции он внёс в геологию? Начнём с того, что сама идея перемещения материков принадлежит вовсе не ему, ибо высказывалась много раз и многими авторами, начиная с XVII века. Сам У. Кэри приводит длинный список имён и работ. Итак, в этом пункте Вегенер вполне традиционен. Бросается, однако, в глаза следующее, едва ли случайное совпадение. Как мы уже видели, Вегенер – это астроном, перешедший в метеорологию, к этому можно добавить, что он известный полярный исследователь. Иными словами, он своего рода научный «полиглот», не привыкший связывать себя границами той или иной дисциплины. И именно эту полипредметность, т. е. комплексность, Вегенер вносит в обсуждение проблемы перемещения материков, используя данные палеонтологии, стратиграфии, палеоклиматологии, тектоники и т. д.
Интересно в этом плане обратить внимание на то, с какими идеями в первую очередь борется Вегенер, где он видит своих противников. Показательна уже первая фраза его предисловия к четвёртому изданию книги «Происхождение континентов и океанов», написанного в 1928 году: «До сих пор ещё не все исследователи в полной мере осознали тот факт, что для раскрытия тайны былого облика нашей планеты должны внести свой вклад все науки о Земле и что истина может быть установлена только путём объединения данных всех отраслей знания».
Таким образом, в геологию пришёл не человек, свободный от геологических традиций, а универсал, умеющий работать в разных традициях и эти традиции комбинировать. Можно сказать, что Вегенер внёс в геологию метод монтажа.
Но явление монтажа возможно и в чистом виде, т. е. без каких– либо миграционных процессов, без перехода исследователя из одной области науки в другую. Как правило, в поле зрения учёного имеется большое количество методов, большое количество образцов исследовательской деятельности, и он имеет возможность их выбирать и различным образом комбинировать. Большинство реально используемых методик несут на себе следы такой монтажной работы. Можно показать, что они представляют собой комбинацию из более элементарных методов, которые встречаются повсеместно и в самых разнообразных ситуациях.
Проиллюстрируем это на примере двух экспериментов, взятых из разных областей знания. Первый описан в широко известном курсе общей физики Р. В. Поля. Допустим, что мы поставили килограммовую гирю на толстый дубовый стол, нас интересует, деформируется стол при этом или нет. Р. В. Поль предлагает следующий экспериментальный метод. На столе установлены два зеркала, на одно из которых направляется световой пучок. Пробегая между зеркалами, он отбрасывается на стену и даёт на ней изображение источника света. На стене нанесены деления, чтобы следить за перемещением светового указателя. Всякий прогиб крышки стола наклоняет зеркала, что вызывает смещение указателя относительно шкалы. Благодаря большой длине «светового рычага» (около 20 метров) чувствительность установки очень велика.
Сравним этот эксперимент с другим, который предлагает К. А. Тимирязев для наблюдения за ростом растений. Говоря точнее, Тимирязева интересует влияние света на скорость роста. Через блок перекинута шелковинка, на одном конце которой привязана гирька, а на другом – маленький крючок из тонкой проволоки. Крючком подхватывают верхушку стебля, а на блоке устанавливают зеркальце. Пучок света, падая на зеркальце, отбрасывается на стену, на которой нанесена шкала. Если стебель растёт, зеркальце поворачивается вместе с блоком, и световой указатель смещается относительно шкалы.
Не трудно видеть, что эти эксперименты похожи друг на друга, хотя и реализованы в разных конкретных ситуациях, при изучении разных явлений. Если отвлечься от специфики изучаемого материала, то они отличаются друг от друга только несущественными техническими деталями. Но технические детали нас вообще не должны здесь интересовать. Покажем, что оба эксперимента смонтированы из деталей, которые, вообще говоря, независимы друг от друга и встречаются в совсем иных комбинациях.
Во-первых, в обоих случаях речь идёт о зависимости явлений. Нас интересует, вызывает ли гиря, положенная на стол, его деформацию или влияет ли освещение на рост растения. Это обуславливает общую схему обоих экспериментов, состоящую в том, что мы, изменяя одни компоненты ситуации, фиксируем состояние других: растение либо освещается, либо нет; гиря либо кладётся на стол, либо с него снимается. Это настолько часто встречающийся приём, что на него даже легко не обратить внимание. Второй компонент – «световой рычаг». Он вовсе не обязательно связан с первым. Можно, например, исследовать не зависимость роста от освещения, а поставить задачу измерить скорость роста. К. А. Тимирязев показывает, что эксперимент может быть смонтирован и иначе. Можно, например, заменить световой указатель длинной лёгкой стрелкой. Прибор будет, разумеется, менее чувствительным, но в принципе он пригоден для решения тех же задач.
Но в приведённых экспериментах есть и ещё один элемент, который очень часто присутствует в различных научных исследованиях. Этот элемент – постановка меток. Нам необходимо пометить положение светового указателя на стене, ибо в противном случае мы можем не заметить никаких изменений. В данном случае метка позволяет идентифицировать место, но с аналогичной целью можно метить и другие объекты. При этом будет меняться техника реализации метода, но не сам метод. Вот несколько примеров метода меток из разных областей знания: кольцевание птиц с целью наблюдения за их перелётом, мечение муравьёв в муравейнике с целью проследить судьбу отдельного муравья, бутылки с записками в океане для составления карты морских течений, ионизация объёма газа в трубе с целью измерения скорости потока, широко известный метод меченых атомов. Не следует, вероятно, думать, что все эти методы построены по образцу друг друга, но все они имеют один общий корень в истории Культуры: уже первобытный охотник, заламывая ветку, чтобы отметить свой путь, пользовался этим методом.
Как уже отмечалось, в сферу неведения мы проникаем непреднамеренно, т. е. побочным образом. Это значит, что, желая одного, исследователь получает нечто другое, чего он никак не мог ожидать. А всегда ли мы замечаем такие побочные результаты наших действий, всегда ли мы способны их выделить и зафиксировать? Какие факторы при этом играют решающую роль?
Вот как Луиджи Гальвани описывает своё открытие, сыгравшее огромную роль в развитии учения об электричестве: «Я разрезал и препарировал лягушку и, имея в виду совершенно другое, поместил её на стол, на котором находилась электрическая машина, при полном разобщении от кондуктора последней и на довольно большом расстоянии от него. Когда один из моих помощников остриём скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки, то немедленно все мышцы конечностей начали так сокращаться, что казались впавшими в сильнейшие тонические судороги. Другой же из них, который помогал нам в опытах по электричеству, заметил, как ему казалось, что это удаётся тогда, когда из кондуктора машины извлекается искра. Удивлённый новым явлением, он тотчас же обратил на него моё внимание, хотя я замышлял совсем другое и был поглощён своими мыслями. Тогда я зажёгся невероятным усердием и страстным желанием исследовать это явление и вынести на свет то, что было в нем скрытого».
Вильгельм Оствальд в своей «Истории электрохимии» комментирует это описание следующим образом: "Перед нами здесь типичная история случайного открытия. Исследователь занят совсем другими вещами, но среди условий его работы оказывается налицо, между прочим, такие условия, которые вызывают новые явления. Случайности этого рода встречаются гораздо чаще, чем об этом может поведать нам история, ибо в большинстве случаев такие явления или вовсе не замечаются, или если и замечаются, то не подвергаются научному исследованию. Поэтому, кроме случайности здесь существенно важно ещё «до невероятности страстное желание» исследовать новый факт. Вот такое-то желание очень часто отсутствует, потому ли, что первоначальная задача, поставленная себе исследователем, поглощает весь его интерес, так что все новое служит лишь помехой, с устранением коей все дело и кончается, или потому, что исследователь создаёт себе временное «объяснение», удовлетворяющее до известной степени его пытливость".
В этом комментарии обращают на себя внимание следующие два обстоятельства: во-первых, Оствальд склонен сводить успех в подобных условиях к чисто психологическим особенностям учёного, к его «до невероятности страстному желанию» исследовать новый факт, во-вторых, с его точки зрения, это желание исчезает, если новое явление удаётся сравнительно легко объяснить. А если не удаётся? Этого вопроса Оствальд специально не ставит, но фактически на него отвечает в своём последующем анализе.
«Самое интересное во всей этой истории, – пишет он, – то, что у Гальвани не было вовсе основания приходить в столь большое волнение. Что электрические разряды вызывают сокращения мышц, было известно уже и раньше. В такой же мере было известно, что электрический разряд вызывает близ себя электрические процессы и в таких проводниках, которые с первичной цепью вовсе не связаны; явление это называлось „обратным ударом“ разряда. Если бы Гальвани обладал всеми научными познаниями своего времени, ему не трудно было бы создать себе целую теорию по поводу наблюдаемого им явления, так что пытливость его могла бы быть вполне удовлетворена».
Может показаться, что мы приходим к довольно тривиальному результату: исследователь обращает внимание на те явления, которые он не может пока объяснить. А зачем обращать внимание на то, что давно понятно? Но, во-первых, уже это означает, что случайные открытия существенно обусловлены не только теми традициями, в рамках которых имел место неожиданный эффект, но и всей совокупностью традиций эпохи или по крайней мере данной науки. А, во-вторых, дело не просто в трудностях объяснения. Явление должно обратить на себя внимание, оно должно потребовать объяснения, а для этого оно должно не укладываться в существующие представления, должно противоречить им. Одно дело, просто встретить незнакомого человека (мало ли мы их встречаем!), другое, – встретить его там, где мы ожидали только близких друзей.
В целом возникает следующая картина. В рамках некоторой достаточно традиционной работы типа препарирования лягушки, мы отмечаем новый и неожиданный эффект. Дело не в том, что эффектов подобного рода не было до сих пор, и не в том, что наряду с отмеченным, не было каких-то других эффектов. Короче, дело не в характере объективной ситуации. Все определяется всеми другими традициями, той нормативной средой, в которой мы работаем. Именно эта среда выделяет случайный эффект, не принимая его в качестве чего-то обычного.
Нельзя не сказать в этой связи несколько слов о «невежестве» Гальвани, которое отмечает Оствальд. «К счастью для науки, – пишет он, продолжая уже приведённые выше рассуждения, – познания его не были столь широки» Но ведь Гальвани не был физиком, он был биологом и практикующим врачом, в Болонском университете он занимал первоначально кафедру практической анатомии, а позднее – кафедру гинекологии и акушерства. В свете этого Гальвани можно считать своеобразным «пришельцем», но в физику он приносит не новые программы, а способность удивляться тому, что физиков уже не удивляет.
Примером аналогичной фиксации побочного результата может служить открытие Д. И. Ивановского. Изучая мозаичную болезнь табака и используя традиционный для того времени метод фильтрования, Ивановский получает совершенно неожиданный результат: метод не срабатывает, тщательно отфильтрованный сок больного растения сохраняет свои заразные свойства. Этого нельзя не заметить, ибо это противоречит традиции. «Случай свободного прохождения заразного начала через бактериальные фильтры – пишет Ивановский, представлялся совершенно исключительным в микробиологии». Ивановский настолько поражён, что предполагает первоначально, что фильтруется не сам возбудитель, а яд, растворенный в соке больного растения. Перед нами типичный случай побочного эффекта. Однако выделение и закрепление этого эффекта происходит в той же традиции, видоизменяя, разумеется, её функции: метод фильтрования становится теперь методом обнаружения «фильтрующихся вирусов».
Предыдущий пример показывает, что выделение и осознание случайных побочных результатов существенно связано с наличием традиций, которым эти результаты противоречат. Традиции как бы отвергают эти результаты, они не способны их ассимилировать, и именно поэтому случайные феномены оказываются вдруг в центре внимания. Грубо говоря, мы не можем не заметить стену, если она перегородила нам путь.
Существует, однако, и другая возможность выделения побочных результатов, противоположная первой. Она состоит в том, что результат, непреднамеренно полученный в рамках одной из традиций, оказывается существенным для другой. Другая традиция как бы «стоит на страже», чтобы подхватить побочный результат. Развитие исследования начинает напоминать движение с пересадками: с одних традиций, которые двигали нас вперёд, мы как бы пересаживаемся на другие.
Рассмотрим в качестве иллюстрации историю открытия закона Кулона, известного каждому со школьной скамьи. Интересно и поучительно при этом обратить внимание на то, насколько различны и противоречивы те картины, которые предлагают нам по этому поводу историки физики.
Известный специалист по теории упругости и сопротивлению материалов С.П. Тимошенко пишет о Кулоне следующее: «Он изобрёл для измерения малых электрических и магнитных сил весьма чувствительные крутильные весы, а в связи с этим исследовал прочность проволоки на кручение.» Получается так, что Кулон с самого начала исходил из задачи измерения сил взаимодействия электрических зарядов и в поисках решения каким-то чудом изобрёл новый прибор. Что касается его работ по теории упругости, то они представляют собой нечто вторичное и целиком вытекают из идеи построения крутильных весов. Перед нами пример непостижимого для окружающих гениального озарения. Ни о каких программах здесь не может быть и речи.
Но так ли это? Обратимся к некоторым фактам биографии Кулона. По образованию он инженер. Поступив на военную службу, он попадает на остров Мартинику, где на протяжении девяти лет принимает участие в строительных работах. Свой опыт инженера он обобщает в трактате, представленном в 1773 г. во Французскую Академию наук. Трактат посвящён строительной механике и изучению механических свойств материалов. Вернувшись во Францию, Кулон и здесь работает в качестве инженера и продолжает свои научные изыскания в той же области. Уже в 1777 г. он публикует исследования об измерении кручения волос и шёлковых нитей, а позднее, в 1784 г. присоединяет к ним мемуар о кручении металлических проволок. Две последние даты очень важны, если учесть, что первая работа Кулона, посвящённая его знаменитому закону, появилась только в 1785 г., т. е. через восемь лет после того, как он занялся кручением нитей.
О чем все это говорит? Прежде всего о том, что исследования Кулона по теории упругости носили совершенно самостоятельный характер и никак не вытекали из идеи измерения электрических или магнитных взаимодействий. Кулон – инженер и по интересам, и по роду работы, а его исследования целиком укладываются в рамки традиции или, если угодно, парадигмы строительной механики и теории упругости. Здесь, кстати, все, что он делает, вполне естественно и понятно и никак не нуждается в предположении гениального озарения. Итак, по крайней мере одна научная программа в работах Кулона налицо.
Как же осуществляется переход к исследованиям в области электричества? В «Истории физики» Б.И. Спасского читаем следующее: «Для определения силы взаимодействия между электрическими зарядами Кулон построил специальный прибор – крутильные весы. Конструируя этот прибор, Кулон применил ранее открытый им закон пропорциональности между углом закручивания упругой нити и моментом силы». Спасский, в отличие от Тимошенко, не считает, что исследования Кулона по теории упругости носили вторичный характер и вытекали из задачи построения крутильных весов. Создавая эти весы, Кулон просто использовал уже открытый им ранее закон закручивания проволоки. Спасский, однако, как и Тимошенко, настаивает, что весы построены специально для электрических измерений.
Но так ли это? Парадокс заключается в том, что крутильные весы Кулону вовсе не надо было специально строить, они у него уже были задолго до того, как он приступил к определению силы взаимодействия между зарядами. Весы уже были, их надо было только увидеть. Действительно, та установка, которую Кулон использовал при изучении кручения нитей – это и есть крутильные весы. Её нужно было только переосмыслить. В общем плане это выглядит так: изучив влияние явления X на явление Y, мы получаем возможность использовать Y как прибор при изучении X. Но Кулон мог и не опираться на этот общий принцип, ибо у него был конкретный образец аналогичного функционального переосмысления экспериментальной установки в работах основателя теории упругости Роберта Гука. Исследуя деформацию спиральных и винтовых пружин, Гук тут же осознает свои результаты как изобретение особых «философских весов», необходимых для того, «чтобы определять вес любого тела без применения гирь». Иными словами, и здесь Кулон работал в рамках определённой традиции.
Итак, крутильные весы не нужно было специально ни изобретать, ни строить. Кулону требовалось только понять, что решая одну задачу, он, сам того не желая, решил и вторую. Определяя, как угол закручивания нити зависит от действующей силы, он получил тем самым и метод измерения сил. Но тут мы как раз и подходим к самому интересному. До сих пор Кулон работал, как мы уже отмечали, в традиции теории упругости и сопротивления материалов. Однако переосмыслить свою экспериментальную установку и осознать её как весы, он может только благодаря другой традиции, традиции измерения. Эта последняя определяет совершенно новую точку зрения на происходящее, она только и ждёт, чтобы подхватить побочный результат предыдущей работы.
Но переосмыслив свою экспериментальную установку как весы, Кулон точно вступает на широкую столбовую дорогу, на которой можно встретить людей с очень разными приборами и разными задачами. Среди того, что их объединяет, нам важно следующее: методы измерения в широких пределах безразличны к конкретному содержанию тех дисциплин, где они применяются. Не удивительно поэтому, что традиция измерения сразу же уводит Кулона за пределы его первоначальной сравнительно узкой области.
«Кулон, по-видимому, интересовался не столько электричеством, сколько приборами, – пишет Г. Липсон. – Он придумал чрезвычайно чувствительный прибор для измерения силы и искал возможности его применения». Как мы уже видели, Кулону ничего не надо было «придумывать», но в остальном с Липсоном можно согласиться. Получив в свои руки метод измерения малых сил, Кулон сразу становится как бы «космополитом» и начинает путешествовать из одной сферы экспериментального исследования в другую. Правда, и теперь он не сразу приступает к проблемам теории электричества, но начинает с исследования трения между жидкостями и твёрдыми телами. Это ещё раз подчёркивает, что измерение силы взаимодействия между зарядами никогда не было его исходной задачей – ни при изучении кручения нитей, ни при «построении» крутильных весов. Не метод строился здесь под задачу, а наоборот, наличие метода требовало поиска соответствующих задач.
Подведём некоторые итоги. Мы пытались показать, что Кулона вовсе не посещало гениальное озарение. Скорей наоборот, он все время движется как бы по проторённым дорогам. Мы при этом отнюдь не хотели как-то принизить его достижения в области сопротивления материалов и теории упругости. Он прочно вошёл в историю этих дисциплин как талантливый исследователь. Но он здесь продолжатель уже существующих традиций, которые были заложены ещё Галилео Галилеем и Робертом Гуком. Может быть, в развитии учения об электричестве он стоит совершенно обособленно? Оказывается, что и это не так. К формулировкам, близким к закону Кулона, чисто теоретически подходили Эпинус (1759 г.), Пристли (1771 г.), Кавендиш (1773 г.). Иногда этот закон даже называют законом Кулона-Кавендиша. И в то же время очевидно, что Кулон не помещается полностью ни в одной из этих традиций, и это выдвигает его фигуру на совершенно особое место. Закон Кулона не мог быть вскрыт в рамках парадигмы теории упругости, крутильные весы не могли появиться в рамках учения об электричестве. Своеобразие Кулона в том и состоит, что он оказался в точке взаимодействия указанных традиций, соединив их в себе неповторимым образом.
Путь Кулона – это как бы движение по проторённым дорогам, но с пересадками. Раньше эта дорога сопротивления материалов и теории упругости, затем традиция измерения сил. «Пересадка» возможна благодаря появлению особого объекта (в данном случае – это экспериментальная установка при исследовании кручения), который может быть осмыслен и использован в рамках как одной, так и другой традиции работы. Но не так ли и железнодорожная станция, лежащая на пересечении нескольких дорог?
Крайне любопытна дальнейшая судьба закона Кулона. Его открытие, как подчёркивает Я.Г. Дорфман, «не внесло на первых порах никаких новых результатов в развитие учения об электричестве. Плоды этого важного открытия обозначились лишь примерно через 25 лет, когда Пуассон с помощью этого закона решил математическую задачу о распределении заряда на различных проводниках и системах проводников (1811 г.)». Что же произошло? Дело в том, что закон Кулона по своей математической форме совпадает с законом всемирного тяготения Ньютона. Именно на это и обратил внимание Пуассон, после чего в электростатику хлынули математические методы теоретической механики, которые разрабатывались до этого в трудах Эйлера, Лагранжа и Лапласа. Это методы математической теории потенциала. Пуассон в своей работе 1811 г. как раз и осуществляет распространение математического понятия потенциала на электрическое и магнитное поля. «Весь этот быстрый прогресс теории электричества, – пишет Марио Льоцци, – был бы невозможен без предварительного развития идей и аналитических методов теоретической механики».
И здесь, следовательно, мы имеем дело с взаимодействием различных традиций, и Пуассон как бы осуществляет «пересадку» с одного поезда на другой. Пример показывает, что недостаточно просто получить какой-то результат, недостаточно сделать открытие, важно, чтобы сделанное было подхвачено какой-либо достаточно мощной традицией.
Примеров подобного рода можно привести много и без особого труда, что показывает, что мы имеем дело с устойчивой закономерностью. Вот описание первых шагов в развитии радиоастрономии: "Радиоастрономия зародилась в 19311932 гг., когда в процессе экспериментов по исследованию высокочастотных радиопомех в атмосфере (высокочастотных для обычного радиовещания, но низкочастотных с точки зрения радиоастрономии) Янский из лаборатории телефонной компании «Белл» обнаружил, что «Полученные данныеѕ указывают на присутствие трёх отдельных групп шумов: группа 1 – шумы от местных гроз; 2 – шумы от далёких гроз и группа 3 – постоянный свистящий шум неизвестного происхождения». Позднее Янский выяснил, что неизвестные радиоволны приходят от центра Млечного Пути.
Для того, чтобы стать открытием, новый метод должен был проникнуть в астрономию, но астрономы не обратили на работы Янского почти никакого внимания. Успеха добивается его последователь радиоинженер Рибер, который строит около своего дома первый параболический радиотелескоп, изучает астрофизику и вступает в личные контакты с астрономами. Только публикация в 1940 г. первых результатов Рибера послужила толчком к объединению усилий астрономов и радиоинженеров.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?